A New Efficient Route to 2-Alkylsemicarbazides †
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Funding
References
- Belletire, J.L.; Rauh, R.J.; Huérou, Y.L. Semicarbazide. In The Electronic Encyclopedia of Reagents for Organic Synthesis (e-EROS); John Wiley & Sons: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Vass, M.; Hruska, K.; Franek, M. Nitrofuran antibiotics: a review on the application, prohibition and residual analysis. Vet. Med. 2008, 53, 469–500. [Google Scholar] [CrossRef]
- Xu, Y.; Mayhugh, D.; Saeed, A.; Wang, X.; Thompson, R.C.; Dominianni, S.J.; Kauffman, R.F.; Singh, J.; Bean, J.S.; Bensch, W.R.; et al. Design and synthesis of a potent and selective triazolone-based peroxisome proliferator-activated receptor α agonist. J. Med. Chem. 2003, 46, 5121–5124. [Google Scholar] [CrossRef] [PubMed]
- Krappmann, D.; Nagel, D.; Schlauderer, F.; Lammens, K.; Hopfner, K.-P.; Chrusciel, R.A.; Kling, D.L.; Bedore, M.W. Inhibitors of MALT1 propease. Patent WO 2014086478; Chem. Abstr. 2014, 161, 86223. [Google Scholar]
- Bourguet, C.B.; Boulay, P.-L.; Claing, A.; Lubell, W.D. Design and synthesis of novel azapeptide activators of apoptosis mediated by caspase-9 in cancer cells. Bioorg. Med. Chem. Lett. 2014, 24, 3361–3365. [Google Scholar] [CrossRef]
- Smith, P.A.S.; Clegg, J.M.; Lakritz, J. Preparation of alkyl azides from hydrazine derivatives. J. Org. Chem. 1958, 23, 1595–1599. [Google Scholar] [CrossRef]
- Vogelesang, C. Methylated semicarbazides. Rec. Trav. Chim. 1943, 62, 5–11. [Google Scholar] [CrossRef]
- Gabriel, S. Über einige Hydrazin-Derivate. Chem. Ber. 1914, 47, 3028–3033. [Google Scholar] [CrossRef]
- Lum, D.W.; Mador, I.L. Preparation of substituted semicarbazides. Patent US 2959615; Chem. Abstr. 1961, 55, 22440. [Google Scholar]
- Backer, H.J. Réductions électrochimiques, Troisième Mémoire. Réduction des nitrosamines. Rec. Trav. Chim. 1913, 32, 39–47. [Google Scholar] [CrossRef]
- Szimhardt, N.; Stierstorfer, J. Methylsemicarbazide as a ligand in late 3d transition metal complexes. Chem. Eur. J. 2018, 24, 2687–2698. [Google Scholar] [CrossRef]
- Viner, R.C.; Rzepa, P.R.; Mitchell, G. Pyridazinone derivatives as herbicides. Patent WO 2014154828; Chem. Abstr. 2014, 161, 551169. [Google Scholar]
- Shibayama, A.; Kajiki, R.; Kobayashi, M.; Mitsunari, T.; Nagamatsu, A. 6-Acyl-1,2,4-triazine-3,5-dione derivative and herbicides. Patent WO 2012002096; Chem. Abstr. 2012, 156, 122559. [Google Scholar]
- Maliga, P.; Allison, L.A.; Hajdukiewicz, P.T. Nuclear-encoded transcription system in plastids of higher plants. Patent WO 9706250; Chem. Abstr. 1997, 126, 234441. [Google Scholar]
- Argentine, M.D.; Braden, T.M.; Czarnik, J.; Conder, E.W.; Dunlap, S.E.; Fennell, J.W.; LaPack, M.A.; Rothhaar, R.R.; Scherer, R.B.; Schmid, C.R.; et al. The role of new technologies in defining a manufacturing process for PPARα agonist LY518674. Org. Process Res. Dev. 2009, 13, 131–143. [Google Scholar] [CrossRef]
- Bonnard, H.; Lecomte, L.; Senet, J.-P. Verfahren zur Synthese von 1-Alkyl-3-hydroxy-5-halogen-1,2,4-triazolen sowie neue Hydrazinderivate. Patent DE 4416868; Chem. Abstr. 1995, 122, 133194. [Google Scholar]
- Gever, G.; O’Keefe, C.; Drake, G.; Ebetino, F.; Michels, J.; Hayes, K. Chemotherapeutic nitrofurans. I. Some derivatives of 3-amino-2-oxazolidone. J. Am. Chem. Soc. 1955, 77, 2277–2281. [Google Scholar] [CrossRef]
- Hale, W.J.; Lange, N.A. Four-membered cyclic ureas. III. The condensation of isocyanic acid with alkyl Schiff bases and related compounds. J. Am. Chem. Soc. 1920, 42, 107–116. [Google Scholar] [CrossRef]
- Ciba Limited. New hydrazine carboxylic acid halides and process for preparing same. Patent GB 898419; Chem. Abstr. 1963, 58, 52963. [Google Scholar]
- Fauber, B.; Laddywahetty, T.; Rene, O. Heteroarylalkylene aryl sultam derivatives as RORc modulators. Patent WO 2016096936; Chem. Abstr. 2016, 165, 127244. [Google Scholar]
- Braden, T.M.; Coffey, D.S.; Doecke, C.W.; LeTourneau, M.E.; Martinelli, M.J.; Meyer, C.L.; Miller, R.D.; Pawlak, J.M.; Pedersen, S.W.; Schmid, C.R.; et al. A convergent kilogram-scale synthesis of the PPARα agonist LY518674: Discovery of a novel acid-mediated triazolone synthesis. Org. Process Res. Dev. 2007, 11, 431–440. [Google Scholar] [CrossRef]
- Jencks, W.P.; Gilchrist, M. Nonlinear structure-reactivity correlations. The reactivity of nucleophilic reagents toward esters. J. Am. Chem. Soc. 1968, 90, 2622–2637. [Google Scholar] [CrossRef]
- Grant, H.M.; McTigue, P.; Ward, D.G. The basicities of aliphatic amides. Aust. J. Chem. 1983, 36, 2211–2218. [Google Scholar] [CrossRef]
- Sigma-Tau Industrie Farmaceutiche Riunite, S.p.A. Dérivés de triazolinone et procédé de préparation. Patent BE 821084; Chem. Abstr. 1975, 83, 179071. [Google Scholar]
- Hrebabecky, H.; Beranek, J. Isomerisation, alkylation, and cyclisation of glyoxylic acid semicarbazone derivatives. Coll. Czech. Chem. Commun. 1975, 40, 2364–2377. [Google Scholar] [CrossRef]
- Garcia Mellado, O.; Cortes Cortes, E. Derivatives of 5-R1-2[(N-R2)-furfuryliden; thiophenyliden] semicarbazones and thiosemicarbazones, method for obtaining and using the same for the preparation of a drug for the Chagas disease. Patent MX 2007013128; Chem. Abstr. 2009, 155, 11750. [Google Scholar]
- Douchez, A.; Lubell, W.D. Chemoselective alkylation for diversity-oriented synthesis of 1,3,4-benzotriazepin-2-ones and pyrrolo[1,2][1,3,4]benzotriazepin-6-ones, potential turn surrogates. Org. Lett. 2015, 17, 6046–6049. [Google Scholar] [CrossRef]
- Doan, N.-D.; Zhang, J.; Traoré, M.; Kamdem, W.; Lubell, W.D. Solid-phase synthesis of C-terminal azapeptides. J. Pept. Sci. 2015, 21, 387–391. [Google Scholar] [CrossRef]
- Garcia-Ramos, Y.; Lubell, W.D. Synthesis and alkylation of aza-glycinyl dipeptide building blocks. J. Pept. Sci. 2013, 19, 725–729. [Google Scholar] [CrossRef]
- Noyáček, A.; Sedláčková, V.; Vondráček, B.; Šeyčík, B.; Bedrník, P.; Gut, J. Synthesis of 1-benzyl-6-azauracil derivatives, chlorinated in the nucleus. Coll. Czech. Chem. Commun. 1981, 46, 2203–2206. [Google Scholar] [CrossRef]
- Bourguet, C.B.; Proulx, C.; Klocek, S.; Sabatino, D.; Lubell, W.D. Solution-phase submonomer diversification of aza-dipeptide building blocks and their application in aza-peptide and aza-DKP synthesis. J. Pept. Sci. 2010, 16, 284–296. [Google Scholar] [CrossRef]
- Proulx, C.; Lubell, W.D. Aza-1,2,3-triazole-3-alanine synthesis via copper-catalyzed 1,3-dipolar cycloaddition on aza-progargylglycine. J. Org. Chem. 2010, 75, 5385–5387. [Google Scholar] [CrossRef] [PubMed]
- Sabatino, D.; Proulx, C.; Klocek, S.; Bourguet, C.B.; Boeglin, D.; Ong, H.; Lubell, W.D. Exploring side-chain diversity by submonomer solid-phase aza-peptide synthesis. Org. Lett. 2009, 11, 3650–3653. [Google Scholar] [CrossRef] [PubMed]
- Qi, B.; Tao, H.; Wu, D.; Bai, J.; Shi, Y.; Gong, P. Synthesis and biological evaluation of 4-phenoxy-6,7-disubstituted quinolines possessing semicarbazone scaffolds as selective c-Met inhibitors. Arch. Pharm. 2013, 346, 596–609. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, E.; Damoiseaux, R.; Ho, C.-L. C.; Chamberlain, B.T.; Jung, M.E.; Bradley, K.A. Protective molecules against anthrax toxin. Patent WO 2014113607; Chem. Abstr. 2014, 161, 275703. [Google Scholar]
- Jung, M.E.; Chamberlain, B.T.; Ho, C.-L. C.; Gillespie, E.J.; Bradley, K.A. Structure–activity relationship of semicarbazone EGA furnishes photoaffinity inhibitors of anthrax toxin cellular entry. ACS Med. Chem. Lett. 2014, 5, 363–367. [Google Scholar] [CrossRef]
- Brondani, D.J.; Moreira, D.R.M.; de Farias, M.P.A.; Souza, F.R.S.; Barbosa, F.F.; Leite, A.C.L. A new and efficient N-alkylation procedure for semicarbazides/semicarbazones derivatives. Tetrahedron Lett. 2007, 48, 3919–3923. [Google Scholar] [CrossRef]
- Mederski, W.W.K.R.; Germann, M. A general synthesis of 1-aryl carbamoyl-2-alkyl-4-aryl substituted semicarbazides as nonbasic factor Xa inhibitors. Bioorg. Med. Chem. Lett. 2003, 13, 3715–3718. [Google Scholar] [CrossRef]
- Kurian, L.A.; Silva, T.A.; Sabatino, D. Submonomer synthesis of azapeptide ligands of the insulin receptor tyrosine kinase domain. Bioorg. Med. Chem. Lett. 2014, 24, 4176–4180. [Google Scholar] [CrossRef]
- Fesenko, A.A.; Yankov, A.N.; Shutalev, A.D. An efficient and stereoselective approach to 14-membered hexaaza macrocycles using novel semicarbazone-based amidoalkylation reagents. Tetrahedron Lett. 2016, 57, 5784–5787. [Google Scholar] [CrossRef]
- Kessler, H. Detection of hindered rotation and inversion by NMR spectroscopy. Angew. Chem. Internat. Edn. 1970, 9, 219–235. [Google Scholar] [CrossRef]
Entry | 1 | R | R2Hal | Base | Reaction conditions | Product | Yield, b % |
---|---|---|---|---|---|---|---|
1 | (E)-1a | 4-MeOC6H4 | BuBr | K2CO3 | DMF, rt, 12 h | 2a | 0 |
2 | (E)-1b | 4-MeC6H4 | MeI | K2CO3 | DMF, rt, 17 h | 2b | 0 |
3 | (E)-1b | 4-MeC6H4 | MeI | NaH | MeCN, rt, 5.3 h | 2b | 95 |
4 | (E)-1c | 4-MeC6H4 | MeI | K2CO3 | DMF, rt, 120 h | 2c | - c |
5 | (E)-1c | 4-MeC6H4 | MeI | DBU | DMF, rt, 24 h | 2c | - d |
6 | (E)-1c | 4-MeC6H4 | MeI | NaH | MeCN, rt, 2 h | 2c | 97 |
7 | (E)-1d | Ph | MeI | NaH | MeCN, rt, 1.5 h | 2d | 72 |
8 | (E)-1d | Ph | EtI | NaH | MeCN, rt, 26 h | 2e | 90 |
9 | (E)-1d | Ph | BuI | NaH | MeCN, reflux, 26 h | 2f | 88 |
10 | (E)-1d | Ph | PhCH2Br | NaH | MeCN, rt, 19 h | 2g | 96 |
11 | 1e e | Et | PhCH2Br | NaH | MeCN, rt, 72 h | 2h | 70 |
12 | 1f f | Pr | PhCH2Cl | NaH | MeCN, reflux, 4 h | 2i | 70 |
13 | 1f f | Pr | 4-MeOC6H4CH2Cl | NaH | MeCN, reflux, 4 h | 2j | 66 |
14 | (E)-1g | i-Pr | PhCH2Cl | NaH | MeCN, reflux, 4 h | 2k | 72 |
15 | (E)-1g | i-Pr | 4-MeOC6H4CH2Cl | NaH | MeCN, reflux, 4 h | 2l | 78 |
Entry | Alkylating Reagent (equiv.) | Reaction Conditions | Product | Yield, a% |
---|---|---|---|---|
1 | (MeO)2SO2 (1.06) | rt, 17 h | 5a | 72 |
2 | EtBr (10.3) | reflux, 9 h | 5b | 71 |
3 | PrBr (5.0) | reflux, 9 h | 5c | 71 |
4 | BuBr (10.0) | reflux, 9 h | 5d | 59 |
5 | PhCH2Br (1.06) | reflux, 6.5 h | 5e | 60 |
6 | n-C8H17Br (5.0) | reflux, 9 h | 6fb | 58 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fesenko, A.A.; Trafimova, L.A.; Zimin, M.O.; Kuvakin, A.S.; Shutalev, A.D. A New Efficient Route to 2-Alkylsemicarbazides. Proceedings 2019, 41, 46. https://doi.org/10.3390/ecsoc-23-06501
Fesenko AA, Trafimova LA, Zimin MO, Kuvakin AS, Shutalev AD. A New Efficient Route to 2-Alkylsemicarbazides. Proceedings. 2019; 41(1):46. https://doi.org/10.3390/ecsoc-23-06501
Chicago/Turabian StyleFesenko, Anastasia A., Ludmila A. Trafimova, Maxim O. Zimin, Alexander S. Kuvakin, and Anatoly D. Shutalev. 2019. "A New Efficient Route to 2-Alkylsemicarbazides" Proceedings 41, no. 1: 46. https://doi.org/10.3390/ecsoc-23-06501
APA StyleFesenko, A. A., Trafimova, L. A., Zimin, M. O., Kuvakin, A. S., & Shutalev, A. D. (2019). A New Efficient Route to 2-Alkylsemicarbazides. Proceedings, 41(1), 46. https://doi.org/10.3390/ecsoc-23-06501