Fractional-Order Modeling and Stochastic Dynamics Analysis of a Nonlinear Rubbing Overhung Rotor System
Abstract
1. Introduction
2. Fractional-Order Modeling of the Rubbing Overhung Rotor
2.1. Equation of Motion for the Rubbing Rotor
2.2. Fractional Calculus and Approximation Schemes
3. Stochastic Analysis of the Fractional Nonlinear Vibrations
3.1. Polynomial Chaos Expansion
3.2. Sparse Grid for Solving Coefficients
4. Results and Discussion
4.1. Deterministic Analysis
- (1)
- As the order decreases, the damping effect is weakened, resulting in less efficient energy dissipation and allowing for more energy to be retained in the system. This energy accumulation effect may make it difficult for the system to reach a steady state after a long period of operation.
- (2)
- The lower fractional-order derivatives imply that the system has a strong memory effect, allowing the system to maintain a large amplitude of vibration when it is excited. This strong memory effect allows the system to maintain a complex dynamic behavior over long periods.
- (3)
- The introduction of fractional-order derivatives may change the dynamics of the system, including its intrinsic frequency and damping ratio. When the damping effect is weakened, the system is more likely to reach the resonance condition.
4.2. Stochastic Uncertainty Quantification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lavrenko, I.; Popov, A.; Seleznov, I.; Kiyono, K. Fractal Analysis of the Centrifuge Vibrograms. Fractal Fract. 2024, 8, 60. [Google Scholar] [CrossRef]
- Zhao, B.; Xie, L.; Li, H.; Zhang, S.; Wang, B.; Li, C. Reliability Analysis of Aero-Engine Compressor Rotor System Considering Cruise Characteristics. IEEE Trans. Reliab. 2020, 69, 245–259. [Google Scholar] [CrossRef]
- Ma, H.; Wu, Z.; Zeng, J.; Wang, W.; Wang, H.; Guan, H.; Zhang, W. Review on Dynamic Modeling and Vibration Characteristics of Rotating Cracked Blades. J. Dyn. Monit. Diagn. 2023, 2, 207–227. [Google Scholar] [CrossRef]
- Almutairi, K.M.; Sinha, J.K. A Comprehensive 3-Steps Methodology for Vibration-Based Fault Detection, Diagnosis and Localization in Rotating Machines. J. Dyn. Monit. Diagn. 2024, 3, 49–58. [Google Scholar] [CrossRef]
- Fu, C.; Zhu, W.; Zheng, Z.; Sun, C.; Yang, Y.; Lu, K. Nonlinear Responses of a Dual-Rotor System with Rub-Impact Fault Subject to Interval Uncertain Parameters. Mech. Syst. Signal Process. 2022, 170, 108827. [Google Scholar] [CrossRef]
- Ma, H.; Zhao, Q.; Zhao, X.; Han, Q.; Wen, B. Dynamic Characteristics Analysis of a Rotor–Stator System under Different Rubbing Forms. Appl. Math. Model. 2015, 39, 2392–2408. [Google Scholar] [CrossRef]
- Prabith, K.; Krishna, I.R.P. The Numerical Modeling of Rotor–Stator Rubbing in Rotating Machinery: A Comprehensive Review. Nonlinear Dyn. 2020, 101, 1317–1363. [Google Scholar] [CrossRef]
- Guan, H.; Ma, H.; Yang, Y.; Wang, P.; Xu, H.; Xiong, Q.; Liu, M. Vibration Characteristic Investigation of an Eccentric Rotor System with Rubbing. Mech. Based Des. Struct. Mach. 2023, 52, 6275–6304. [Google Scholar] [CrossRef]
- Shang, Z.; Jiang, J.; Hong, L. The Global Responses Characteristics of a Rotor/Stator Rubbing System with Dry Friction Effects. J. Sound Vib. 2011, 330, 2150–2160. [Google Scholar] [CrossRef]
- Chipato, E.; Shaw, A.D.; Friswell, M.I. Frictional Effects on the Nonlinear Dynamics of an Overhung Rotor. Commun. Nonlinear Sci. Numer. Simul. 2019, 78, 104875. [Google Scholar] [CrossRef]
- Begg, I.C. Friction Induced Rotor Whirl—A Study in Stability. J. Eng. Ind. 1974, 96, 450–454. [Google Scholar] [CrossRef]
- Fu, C.; Zheng, Z.; Zhu, W.; Lu, K.; Yang, Y. Non-Intrusive Frequency Response Analysis of Nonlinear Systems with Interval Uncertainty: A Comparative Study. Chaos Solitons Fractals 2022, 165, 112815. [Google Scholar] [CrossRef]
- Li, H.N.; Wang, W.; Lai, S.K.; Yao, L.Q.; Li, C. Nonlinear Vibration and Stability Analysis of Rotating Functionally Graded Piezoelectric Nanobeams. Int. J. Struct. Stab. Dyn. 2024, 24, 2450103. [Google Scholar] [CrossRef]
- Zhao, H.; Li, F.; Fu, C. An ε-Accelerated Bivariate Dimension-Reduction Interval Finite Element Method. Comput. Methods Appl. Mech. Eng. 2024, 421, 116811. [Google Scholar] [CrossRef]
- Guo, L.-M.; Cai, J.-W.; Xie, Z.-Y.; Li, C. Mechanical Responses of Symmetric Straight and Curved Composite Microbeams. J. Vib. Eng. Technol. 2024, 12, 1537–1549. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, X.; Hua, H.; Liang, X. Nonlinear Stochastic Dynamics of a Rub-Impact Rotor System with Probabilistic Uncertainties. Nonlinear Dyn. 2020, 102, 2229–2246. [Google Scholar] [CrossRef]
- Fu, C.; Zhang, K.; Cheng, H.; Zhu, W.; Zheng, Z.; Lu, K.; Yang, Y. A Comprehensive Study on Natural Characteristics and Dynamic Responses of a Dual-Rotor System with Inter-Shaft Bearing under Non-Random Uncertainty. J. Sound Vib. 2024, 570, 118091. [Google Scholar] [CrossRef]
- Bi, S.; Beer, M.; Cogan, S.; Mottershead, J. Stochastic Model Updating with Uncertainty Quantification: An Overview and Tutorial. Mech. Syst. Signal Process. 2023, 204, 110784. [Google Scholar] [CrossRef]
- Kartheek, A.; Vijayan, K. Stochastic Finite Element Analysis Using Polynomial Chaos on a Flexible Rotor with Contact Nonlinearity. Nonlinear Dyn. 2024, 112, 11299–11311. [Google Scholar] [CrossRef]
- Liu, X.-X.; Xu, Y.-B.; Han, C.; Zhang, F. Performance Analysis of Electrical Signal Output of Multi-State Flexoelectric Structures with Parameter Uncertainties through Quasi-Monte Carlo Method. Smart Mater. Struct. 2024, 33, 045019. [Google Scholar] [CrossRef]
- Garg, N.; Yadav, S.; Aswal, D.K. Monte Carlo Simulation in Uncertainty Evaluation: Strategy, Implications and Future Prospects. Mapan 2019, 34, 299–304. [Google Scholar] [CrossRef]
- Zhao, H.; Fu, C.; Zhang, Y.; Zhu, W.; Lu, K.; Francis, E.M. Dimensional Decomposition-Aided Metamodels for Uncertainty Quantification and Optimization in Engineering: A Review. Comput. Methods Appl. Mech. Eng. 2024, 428, 117098. [Google Scholar] [CrossRef]
- Liu, X.-X.; Xie, Q.-Z.; Du, R.-J.; Zhang, F. Real-World Engineering Problems: Two Surrogate Methods for Robust Vibration Control of Moving Mass-Beam Coupling Systems with Epistemic Uncertainty. Aerosp. Sci. Technol. 2022, 130, 107916. [Google Scholar] [CrossRef]
- Fu, C.; Feng, G.; Ma, J.; Lu, K.; Yang, Y.; Gu, F. Predicting the Dynamic Response of Dual-Rotor System Subject to Interval Parametric Uncertainties Based on the Non-Intrusive Metamodel. Mathematics 2020, 8, 736. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Z.; Hua, H. Uncertainty Quantization and Reliability Analysis for Rotor/Stator Rub-Impact Using Advanced Kriging Surrogate Model. J. Sound Vib. 2022, 525, 116800. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Gao, Z. Nonlinear Analysis of a Rub-Impact Rotor with Random Stiffness under Random Excitation. Adv. Mech. Eng. 2016, 8, 168781401666809. [Google Scholar] [CrossRef]
- Li, A.; Qian, H.; Ma, Y.; Yan, X.; Cao, Z.; Zhu, R.; Jiang, D. Sensitivity Analysis of the Rotor-Bearing System with Fractional Power Nonlinearity Using Multicomplex Variable Derivation. Nonlinear Dyn. 2024, 112, 8071–8088. [Google Scholar] [CrossRef]
- Bayat, Z.; Haddadpour, H.; Zamani, Z. Coupled Bending Torsional Vibrations of Viscoelastic Rotors with Fractional Damper. J. Vib. Control 2023, 29, 1850–1861. [Google Scholar] [CrossRef]
- Noor, S.; Alyousef, H.A.; Shafee, A.; Shah, R.; El-Tantawy, S.A. A Novel Analytical Technique for Analyzing the (3+1)-Dimensional Fractional Calogero- Bogoyavlenskii-Schiff Equation: Investigating Solitary/Shock Waves and Many Others Physical Phenomena. Phys. Scr. 2024, 99, 065257. [Google Scholar] [CrossRef]
- Shang, M.; Qin, W.; Li, H.; Liu, Q.; Wang, H. Harvesting Vibration Energy by Novel Piezoelectric Structure with Arc-Shaped Branches. Mech. Syst. Signal Process. 2023, 200, 110577. [Google Scholar] [CrossRef]
- Alhejaili, W.; Az-Zo’bi, E.A.; Shah, R.; El-Tantawy, S.A. On the Analytical Soliton Approximations to Fractional Forced Korteweg–de Vries Equation Arising in Fluids and Plasmas Using Two Novel Techniques. Commun. Theor. Phys. 2024, 76, 085001. [Google Scholar] [CrossRef]
- Noor, S.; Albalawi, W.; Shah, R.; Shafee, A.; Ismaeel, S.M.E.; El-Tantawy, S.A. A Comparative Analytical Investigation for Some Linear and Nonlinear Time-Fractional Partial Differential Equations in the Framework of the Aboodh Transformation. Front. Phys. 2024, 12, 1374049. [Google Scholar] [CrossRef]
- Ren, Y.; Li, L.; Wang, W.; Wang, L.; Pang, W. Magnetically Suspended Control Sensitive Gyroscope Rotor High-Precision Deflection Decoupling Method Using Quantum Neural Network and Fractional-Order Terminal Sliding Mode Control. Fractal Fract. 2024, 8, 120. [Google Scholar] [CrossRef]
- Ivanov, D. Identification of Fractional Models of an Induction Motor with Errors in Variables. Fractal Fract. 2023, 7, 485. [Google Scholar] [CrossRef]
- Cao, J.; Ma, C.; Jiang, Z.; Liu, S. Nonlinear Dynamic Analysis of Fractional Order Rub-Impact Rotor System. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1443–1463. [Google Scholar] [CrossRef]
- Smyth, P.A.; Varney, P.A.; Green, I. A Fractional Calculus Model of Viscoelastic Stator Supports Coupled With Elastic Rotor–Stator Rub. J. Tribol. 2016, 138, 041101. [Google Scholar] [CrossRef]
- Yan, D.; Wang, W.; Chen, Q. Fractional-Order Modeling and Dynamic Analyses of a Bending-Torsional Coupling Generator Rotor Shaft System with Multiple Faults. Chaos Solitons Fractals 2018, 110, 1–15. [Google Scholar] [CrossRef]
- Fu, C.; Zhen, D.; Yang, Y.; Gu, F.; Ball, A. Effects of Bounded Uncertainties on the Dynamic Characteristics of an Overhung Rotor System with Rubbing Fault. Energies 2019, 12, 4365. [Google Scholar] [CrossRef]
- Pennestrì, E.; Rossi, V.; Salvini, P.; Valentini, P.P. Review and Comparison of Dry Friction Force Models. Nonlinear Dyn. 2016, 83, 1785–1801. [Google Scholar] [CrossRef]
- Karimov, A.; Rybin, V.; Dautov, A.; Karimov, T.; Bobrova, Y.; Butusov, D. Mechanical Chaotic Duffing System with Magnetic Springs. Inventions 2023, 8, 19. [Google Scholar] [CrossRef]
- Ishida, Y.; Yamamoto, T. Linear and Nonlinear Rotordynamics: A Modern Treatment with Applications, 1st ed.; Wiley: Hoboken, NJ, USA, 2012; ISBN 978-3-527-40942-6. [Google Scholar]
- Gu, J. An Improved Transfer Matrix-Direct Integration Method for Rotor Dynamics. J. Vib. Acoust. 1986, 108, 182–188. [Google Scholar] [CrossRef]
- Fu, C.; Ren, X.; Yang, Y.; Xia, Y.; Deng, W. An Interval Precise Integration Method for Transient Unbalance Response Analysis of Rotor System with Uncertainty. Mech. Syst. Signal Process. 2018, 107, 137–148. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Dalir, M.; Bashour, M. Applications of Fractional Calculus. Appl. Math. Sci. 2010, 4, 1021–1032. [Google Scholar]
- Chen, Y.; Vinagre, B.M.; Podlubny, I. Continued Fraction Expansion Approaches to Discretizing Fractional Order Derivatives—An Expository Review. Nonlinear Dyn. 2004, 38, 155–170. [Google Scholar] [CrossRef]
- Hessami Pilehrood, K.; Hessami Pilehrood, T. On a Continued Fraction Expansion for Euler’s Constant. J. Number Theory 2013, 133, 769–786. [Google Scholar] [CrossRef]
- Xun, T.; Chen, P.; Wang, S.; Pi, Y.; Luo, Y. A Fractional Order Friction Model. ISA Trans. 2023, 142, 550–561. [Google Scholar] [CrossRef]
- Dadras, S.; Malek, H.; Chen, Y. Fractional Order Coulomb Friction Compensation: Convergence Analysis and Experimental Validation on a Fractional Horsepower Dynamometer. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Portland, OR, USA, 4–7 August 2013; American Society of Mechanical Engineers: New York, NY, USA, 2013; Volume 55911, p. V004T08A023. [Google Scholar]
- Wiener, N. The Homogeneous Chaos. Am. J. Math. 1938, 60, 897–936. [Google Scholar] [CrossRef]
- Xiu, D.; Karniadakis, G.E. The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations. SIAM J. Sci. Comput. 2002, 24, 619–644. [Google Scholar] [CrossRef]
- Xiu, D.; Lucor, D.; Su, C.-H.; Em Karniadakis, G. Performance Evaluation of Generalized Polynomial Chaos. In Proceedings of the Computational Science—ICCS 2003, Petersburg, Russia, 2–4 June 2003; Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J.J., Zomaya, A.Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 346–354. [Google Scholar]
- Son, J.; Du, Y. Comparison of Intrusive and Nonintrusive Polynomial Chaos Expansion-Based Approaches for High Dimensional Parametric Uncertainty Quantification and Propagation. Comput. Chem. Eng. 2020, 134, 106685. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, Y.; Zhu, W.; Fu, C.; Lu, K. A Comprehensive Study on Seismic Dynamic Responses of Stochastic Structures Using Sparse Grid-Based Polynomial Chaos Expansion. Eng. Struct. 2024, 306, 117753. [Google Scholar] [CrossRef]
- Blatman, G.; Sudret, B. Adaptive Sparse Polynomial Chaos Expansion Based on Least Angle Regression. J. Comput. Phys. 2011, 230, 2345–2367. [Google Scholar] [CrossRef]
Distribution | Density Function | Support | Orthogonal Polynomial |
---|---|---|---|
Normal | Hermite | ||
Uniform | Legendre | ||
Beta | Jacobi | ||
Gamma | Laguerre |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Wang, F.; Zhang, Y.; Zheng, Z.; Ma, J.; Fu, C. Fractional-Order Modeling and Stochastic Dynamics Analysis of a Nonlinear Rubbing Overhung Rotor System. Fractal Fract. 2024, 8, 643. https://doi.org/10.3390/fractalfract8110643
Zhao H, Wang F, Zhang Y, Zheng Z, Ma J, Fu C. Fractional-Order Modeling and Stochastic Dynamics Analysis of a Nonlinear Rubbing Overhung Rotor System. Fractal and Fractional. 2024; 8(11):643. https://doi.org/10.3390/fractalfract8110643
Chicago/Turabian StyleZhao, Heng, Fubin Wang, Yaqiong Zhang, Zhaoli Zheng, Jiaojiao Ma, and Chao Fu. 2024. "Fractional-Order Modeling and Stochastic Dynamics Analysis of a Nonlinear Rubbing Overhung Rotor System" Fractal and Fractional 8, no. 11: 643. https://doi.org/10.3390/fractalfract8110643
APA StyleZhao, H., Wang, F., Zhang, Y., Zheng, Z., Ma, J., & Fu, C. (2024). Fractional-Order Modeling and Stochastic Dynamics Analysis of a Nonlinear Rubbing Overhung Rotor System. Fractal and Fractional, 8(11), 643. https://doi.org/10.3390/fractalfract8110643