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Abstract: To study the nonlinear dynamic behavior and system stability of a rubbing overhung
rotor with viscoelastic and memory-effect damping and random uncertain parameters, this paper
introduces a fractional-order modeling and stochastic dynamic analysis method for the nonlinear
overhung rotor system with frictional impact faults. Firstly, the dynamic equations of the overhung
rotor considering friction effect and fractional damping effect are established based on the transfer
matrix method and fractional order derivative. Then, the time-domain response of the fractional-order
dynamic equations is solved by combining the Runge–Kutta method and the continuous fractional
expansion, and the steady-state response characteristics of different fractional damping are analyzed
in the deterministic case. Finally, to analyze the response of the system under the effect of stochastic
parameters, the sparse grid-based PCE metamodel of the system response is developed. Statistical
moments, probability distributions, and sensitivity indices of the response of stochastic systems are
revealed. The results of this paper provide a theoretical basis for efficient and accurate prediction of
the stochastic response of nonlinear rubbing overhung rotor systems.

Keywords: fractional order; stochastic analysis; overhung rotor; rubbing fault; nonlinear vibration

1. Introduction

Rotating machinery plays an important role in various engineering fields such as
aerospace, marine, and electric power [1,2]. The gap between the stator and rotor is
becoming smaller as rotating machinery becomes more compact. When the rotor is rotating
at high speeds, typical problems such as assembly errors and mass imbalance can cause
vibrations, and the amplitude can easily reach the critical value of the gap. At this point,
contact may occur between the rotor and stator, often referred to as a rub-impact fault.
Rub-impact faults in rotor systems can lead to system instability, blade breakage, and even
catastrophic consequences [3–5].

To ensure the reliability, stability, and performance of rotor systems and to promote the
development of rotor system design and optimization, many researchers have investigated
the friction mechanism and nonlinear behavior of rubbing rotor systems [6,7]. Ma et al. [6]
analyzed the dynamical characteristics of the rotor–stator system under different rubbing
forms. Guan et al. [8] investigated the nonlinear dynamic characteristics of an eccentric
rotor system with friction for different misalignment angles and speeds. Shang et al. [9]
studied the global response characteristics of a rotor–stator rubbing system considering dry
friction effects. Chipato et al. [10] studied the effect of friction coefficient and eccentricity
on the nonlinear dynamics of a rubbing-overhung rotor. I. C. Begg [11] analyzed a simple
flexible overhung rotor and investigated the stability of friction-induced rotor whirls. The
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above study provides insight into the dynamics and system stability of friction faults in
integer-order damped rotors.

In complex engineering environments, various uncertainties inevitably exist [12–15].
To achieve a robust assessment, their impact on the dynamics of rotating mechanical
systems should not be ignored. In recent years, several researchers have begun to focus on
uncertainty quantification in the field of rotor dynamics [16,17]. Probabilistic models [18,19]
have become the most widely used models based on known data describing the uncertainty
of parameters through probabilistic and statistical methods. Common approaches in the
quantification of probabilistic uncertainty include Monte Carlo simulation [20,21] and
surrogate modeling [22–24]. Zhang et al. [16] used non-intrusive generalized polynomial
chaos expansion (gPCE) with unknown deterministic coefficients for uncertainty and
sensitivity analysis of the Jeffcott rotor system with fixed-point frictional impact and
multiple uncertain parameters. Ma et al. [25] used an advanced Kriging surrogate model
for uncertainty quantification and reliability analysis of rotor–stator rub impacts. Kartheek
et al. [19] evaluated the effect of perturbations in key system parameters on the dynamic
characteristics of a flexible rotor with localized contact and analyzed the effect of uncertainty
on the stochastic response of the rotor–stator system using a gPCE method. Yang et al. [26]
investigated stochastic bifurcation and chaos in a rub-impact rotor system with random
stiffness under random excitation.

The behavior and properties of various linear and nonlinear systems have been ex-
plored in-depth in the traditional study of integer-order rotor systems. However, as the
research progressed, integer order calculus was found to have certain limitations in de-
scribing certain complex dynamical systems. To address these problems, researchers have
turned to the study of fractional dynamical systems [27–30]. Alhejaili et al. [31] conducted a
soliton approximation analysis of the fractional forced Korteweg-de Vries equation in fluids
and plasmas using two novel techniques. Meanwhile, Noor et al. [32] applied the Aboodh
transform framework to solve both linear and nonlinear time-fractional partial differential
equations, providing a comparative analysis. Fractional-order calculus not only describes
the memory effects and genetic properties of the system more accurately but also reveals
more about the dynamical behavior and complexity [33,34]. Cao et al. [35] discussed the
nonlinear dynamic characteristics of a rub-impact rotor system with fractional damping and
revealed the significant influence of a fractional order on the complex dynamical behavior
of the system. Smyth et al. [36] established the corresponding coupled dynamics model by
introducing the fractional viscoelastic support and analyzed, for the first time, the influence
of viscoelasticity on the global dynamics of rotor–stator rubbing. Yan et al. [37] presented a
fractional-order modeling and dynamic analysis of a bending–torsion coupled generator
rotor shaft system with multiple faults, including rubbing. Although there have been a
number of advances in the study of fractional-order rubbing rotors, most of the studies
have focused on deterministic analysis. As a result, there is still an obvious gap in the study
of uncertainty quantification in fractional-order rubbing rotor systems.

Given the shortcomings and challenges of existing stuiesy, we were motivated to
investigate the fractional-order modeling of friction-shock rotor systems with overhung
discs and to analyze the stochastic properties of the system by the non-intrusive PCE. The
main points of this study are as follows. First, a fractional-order model of the friction rotor
system is developed to capture the complexity of the system behavior more accurately
based on the rigid body assumption, ignoring the influence of the rotational axis. Second,
the sparse grid-based PCE (SGPCE) is used to explore the response characteristics, reliability,
and sensitivity metrics of the system under the effect of mutually independent stochastic
parameters. Third, the performance of the system under different cases is evaluated to
determine its robustness and stability.

This paper is structured as follows. Section 2 outlines the fractional-order dynamics
model and numerical approximation of the nonlinear rubbing overhung rotor. Section 3
describes the sparse grid-based PCE method that is used for uncertainty analysis. The dy-
namic response under deterministic and stochastic uncertainties is presented and discussed
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in Section 4. Section 5 summarizes the main findings and implications for future research,
and it concludes with the significance of this study.

2. Fractional-Order Modeling of the Rubbing Overhung Rotor
2.1. Equation of Motion for the Rubbing Rotor

This study investigates the dynamics of a hollow shaft rotor with a cantilevered
disk, as illustrated in Figure 1. Derived from the simplification of an oxygen pump, this
system epitomizes the typical cantilever configuration widely adopted in industry [38]. It is
supported by two isotropic linear bearings with identical stiffness in the x and y directions.
The disk has a mass of m, and its polar moment of inertia and diameter moment of inertia
are denoted as Ip and Id, respectively. Damping effects are integrated into viscous damping,
represented by c. The stator is mounted close to the mass disk, and the gap between the
rotor and stator is denoted by δ. They come into contact when the vibration amplitude of
the rotor reaches its limit. The reactive forces during contact are depicted in Figure 2.
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For a prescribed gap δ, if the radial deviation r =
√

x2 + y2 of the geometric center of
the disk is less than the clearance value, then Fx = Fy = 0, and the rotor system will be in
linear vibration. When r ≥ δ, the friction impact force can be expressed as{

Fn(x, y) = kc(r − δ)
Fτ = µFn

, (1)
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where kc is the contact stiffness, and µ is the friction coefficient associated with the tangential
force Fτ of impact Fn. There are other friction models apart from the one used in this work,
such as the Karnopp model and others [39,40]. Following a standardized approach, the
friction impact force on the rotor can be projected onto the coordinates as[

Fx
Fy

]
= −

(
1 − δ

r

)
kcH(r − δ)

[
1 −µ
µ 1

][
x
y

]
, (2)

where H(ν) is the Heaviside function

H(ν) =

{
0, ν < 0
1, ν ≥ 0

. (3)

In this study, to facilitate the derivation of the equations of motion (EOM) for the
collision-friction rotor system, the Transfer Matrix Method (TMM) [41–43] is employed to
calculate the stiffness parameters of the rigid disk. In the TMM, each characteristic cross-
section (node) has four degrees of freedom (DOFs), namely two translational displacements
and two rotational angles, as depicted in Figure 1. Its main advantage lies in the fact that
regardless of the number of DOFs in the rotor system, the dimensions of the calculation
matrix remain constant. The disk can be modeled by external increments of the motion
state vector. The displacement vector of the disk is represented as

[
x, θx, y, θy

]T , where x
and y are translational displacements, and θx and θy are rotational displacements about the
x and y axes, respectively. When considering the mass of the elastic shaft, the time-varying
EOM for the rotor system can be represented as

m
..
x + c

.
x + k11x + k12θx = meω2 cos(ωt) + Fx

Jd
..
θx + Jpω

.
θy + k21x + k22θx = 0

m
..
y + c

.
y + k11y + k12θy = meω2 sin(ωt) + Fy − mg

Jd
..
θy − Jpω

.
θx + k21y + k22θy = 0

(4)

where Fx and Fy are the nonlinear forces induced by friction, ω is the angular velocity, and
e is the eccentricity on the disk. The stiffness parameters kij(i, j = 1, 2) are elements derived
from the left to the right of the rotor using the TMM.

2.2. Fractional Calculus and Approximation Schemes

While the integer-order dynamic model is depicted in Equation (4) with mature
theoretical foundations, integer-order calculus may not accurately capture certain complex
behaviors and phenomena, especially those involving long-term memory or non-local
effects. Fractional calculus provides a more flexible framework capable of exhibiting the
complex frequency dependency of damping materials, with many successful applications
in mechanical engineering. First, it is necessary to introduce the definition, properties, and
computations of fractional calculus.

Commonly used definitions of fractional calculus in the mathematical community
include Riemann-Liouville (R-L) fractional calculus, Grünwald-Letnikov (G-L) fractional
calculus, Caputo fractional calculus, and Riesz fractional calculus [44,45]. Among the
various definitions of fractional calculus, the ones most frequently utilized by experts and
scholars are R-L and G-L.

According to the definition of G-L calculus, for any real number n − 1 < α < n, n ∈ N,
if the function has an (n + 1)-th order derivative on the interval [a, t], then the fractional
r-order derivative of the function f (t) is denoted as

aDα
t f (t) = lim

h→0
h−α

(t−a)/h

∑
j=0

(−1)j
(

α
j

)
f (t − jh), (5)
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where
(

α
j

)
= Γ(α+1)

Γ(j+1)Γ(α−j+1) =
α!

j!(α−j)! is a binomial coefficient. The other parameters are

as follows: α represents the fractional order, h is the calculation step size, and (t − a)/h
denotes the integer part during the computation process. Γ(·) represents the gamma
function. When α > 0, Equation (5) denotes a differentiation operation, and when α < 0,
Equation (5) denotes an integration operation.

The R-L definition of fractional calculus is an improvement on the G-L definition,
primarily simplifying the complex computations involved. The specific definition of
fractional differentiation is expressed as

aDα
t f (t) =

dn

dtn

[
aD−(n−α)

t f (t)
]
=

1
Γ(n − α)

dn

dtn

∫ t

a

f (τ)

(t − τ)α−n+1 dτ, t > a (6)

where n − 1 < α < n, n ∈ N. When 0 < α < 1, Equation (6) can be specially represented as

aDα
t f (t) =

1
Γ(1 − α)

d
dt

∫ t

a

f (τ)
(t − τ)α dτ, t > a (7)

As shown in the equation above, fractional calculus calculations in the time domain are
highly complex. Therefore, many researchers have continuously simplified the solutions to
fractional calculus, such as introducing the Laplace transform into the solution of fractional-
order equations. The Laplace transform of the fractional differentiation function aDα

t f (t) is
expressed as

L{aDα
t f (t)} = sαF(s)−

n−1

∑
k=1

sk
[

aDα−k−1
t f (0)

]
(8)

where f (t) is the function in the time domain, F(s) is the Laplace transform of f (t), and s
is a complex variable. If all initial conditions are zero, the Laplace transform of fractional
calculus can be simplified to

L{0Dα
t f (t)} = sαF(s) = sα

∫ ∞

0
f (t) · e−stdt (9)

It can be seen from Equation (9) that the numerical computation of the factor sα is
crucial in solving fractional calculus equations.

In the practical solution of fractional calculus, there are two main approaches: an-
alytical and numerical. However, due to the complexity and computational difficulty
of analytical methods, as well as their significant operational challenges, they are less
commonly used. The equations are usually solved numerically, and the first step is to
replace the fractional calculus operator sα with a generating function s = ω

(
z−1), and then

rationalize the generating function expansion.
Based on the Euler operator, direct discretization of the fractional calculus operator

sα yields

sα =

(
1 − z−1

T

)α

(10)

Then, using the continuous fractional expansion (CFE) transformation [46,47], the
discretized result is

Z{Dα f (t)} = CFE

{(
1 − z−1

T

)α
}

F(z) ≈
(

1
T

)α Pp(z−1)

Qq(z−1)
F(z) (11)

where CFE{u} denotes the CFE transformation of the function u, p and q represent the or-
ders of approximation, and Pp(·) and Qq(·) are polynomials of degree p and q, respectively.
Typically, values of p, q, and n can be set to be equal. In the numerical analysis below, the
values of p and q in the approximate equation are set to 10.
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When considering fractional-order damping in the dynamic analysis of a frictional
rotor, the damping forces Fdx and Fdy on the left-hand side of Equation (4) can be represented
using fractional derivative as

Fdx = c
.
x ⇒ Fdx = cDαx(t)

Fdy = c
.
y ⇒ Fdy = cDαy(t) (12)

where α is the order of the fractional damping. Combining Equations (4) and (12) yields
the state-space equation for the fractional-order nonlinear rubbing overhung rotor system
as follows: 

.
z1 = z2
.
z2 = eω2 cos(ωt) + Fx−cDαz1−k11z1−k12z3

m.
z3 = z4
.
z4 = − Jpωz8+k21z1+k22z3

Jd.
z5 = z6
.
z6 = eω2 sin(ωt)− g +

Fy−cDαz5−k11z5−k12z7
m.

z7 = z8
.
z8 =

Jpωz4−k21z5−k22z7
Jd

(13)

For the state-space equation in Equation (13) containing fractional-order derivatives,
we utilize the Euler generating function and the CFE method introduced in this section for
discrete approximation. First, the fractional calculus operator in Equation (10) is discretized
using the Euler generating function. Then, the CFE method is used to approximate the
discretized fractional calculus operator. Finally, the fourth-order Runge–Kutta method is
utilized to solve the transformed equations to obtain the response of the fractional-order
dynamical system.

Please note that the friction model during the contact in the rubbing process can also
be fractional, and the readers are referred to relevant studies [48,49].

3. Stochastic Analysis of the Fractional Nonlinear Vibrations

The rub-impact between the rotor and the casing involves three key parameters: clear-
ance, contact stiffness, and friction coefficient. They are fundamentally influenced by
uncertainties arising from rotor blade wear, material degradation, and assembly errors.
Additionally, the support stiffness and material characteristics of the rotor system are uncer-
tain. Considering these uncertain parameters in the motion equations of the rubbing rotor
system leads to the transformation of originally deterministic responses into uncertain ones.
The uncertainty in responses can have profound effects on system operation, especially
when considering the nonlinear rubbing rotor system with fractional-order damping. There-
fore, it is necessary to quantify the uncertainty in system response through appropriate
methods to enhance system stability and predictability. PCE is a widely used method for
probabilistic uncertainty modeling.

3.1. Polynomial Chaos Expansion

The concept of PCE was initially proposed by Wiener [50]. In Wiener’s chaos theory,
orthogonal polynomials were suggested to express second-order stochastic processes.
Some early studies utilized the Hermite PCE to solve stochastic differential equations
and demonstrated its effectiveness for Gaussian or certain non-Gaussian random inputs.
However, for general non-Gaussian random inputs, the convergence rate may not be
optimal. Xiu et al. [51,52] extended Hermite polynomials to the Wiener–Askey family of
polynomials, proposing the gPCE. They argue that the “optimal choice” can be made by
choosing a polynomial basis based on the random input distribution in Table 1. They further
proved that with this optimal selection, exponential convergence rates could be achieved.
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Table 1. Common distributions, corresponding terms, and orthogonal polynomials.

Distribution Density Function Support Orthogonal
Polynomial

Normal 1√
2π

e−
1
2 ξ2

(−∞, ∞) Hermite

Uniform b−a
2 [a, b] Legendre

Beta b−a
2 (1 − ξ)α(1 + ξ)β [a, b] Jacobi

Gamma e−ξ [0, ∞) Laguerre

Assuming that the response of the fractional-order dynamical system in Equation (13)
is given by y(t) = f (ξ, t), where ξ ∈ Rd is the model input, t is time, and y ∈ Rm is the
model output, f (ξ, t) maps the input ξ to the output y. If input parameters are uncertain,
the output y(ξ, t) will be stochastic. Generally, PCE can approximate the random output
y(ξ, t) as an orthogonal polynomial expression of predefined random variables

y(t) =
∞

∑
|p|=0

cp(t)Φp(ξ), (14)

where cp ∈ Rd is defined as the expansion coefficient vector with respect to time t, Φp(ξ)
is the Wiener–Askey polynomial of d-dimensional random variables ξ = (ξ1, ξ2, · · · , ξd),
and p = (p1, p2, · · · , pd) ∈ Nd

0 is the multi-index. The N-variable polynomial Φp(ξ) =
Φp1,p2,··· ,pd(ξ) is constructed as the product of these single-variable polynomials ϕpj

(
ξ j
)
,

that is,

Φp(ξ) =
d

∏
j=1

ϕpj

(
ξ j
)

(15)

where ϕpj

(
ξ j
)

is an orthogonal polynomial of order pj with respect to the j-th dimensional
parameter ξ j. The order of Φp(ξ) is defined as |p| = p1 + p2 + · · ·+ pd.

In practice, the approximate computation is performed in a finite-dimensional space
with a finite sum. Therefore, it is necessary to truncate the infinite expansion in Equation (14).
Common truncation strategies include tensor product, total degree, and hyperbolic cross,
as well as other sparse basis strategies. The total degree truncation strategy truncates the
expression in Equation (14) based on the total order |p| of the polynomial Φp(ξ) as

ŷ(t) =
P

∑
|p|=0

cp(t)Φp(ξ). (16)

The choice of truncation order is based on accuracy requirements. For a “P”-order (the
highest order of polynomial chaos) d-dimensional (the number of random variables) PCE,
the total number of polynomial basis terms is(

P + d
d

)
=

(P + d)!
P!d!

. (17)

3.2. Sparse Grid for Solving Coefficients

An important aspect of PCE is determining the expansion coefficients cp(t). Generally,
there are two types of methods for estimating coefficients: intrusive methods and non-
intrusive methods [53]. Intrusive methods involve transforming the original dynamic
model into a set of equations (often coupled) where the expansion coefficients are unknown.
The coefficients are then obtained by solving the resulting equations. This process is often
cumbersome and sometimes impractical, especially for highly complex nonlinear problems.
In contrast, non-intrusive methods do not require model transformation. When the dynamic
form is complex and deriving equations for expansion coefficients is difficult, the superiority
of non-intrusive methods becomes apparent. Non-intrusive methods include stochastic
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collocation methods [54] and regression-based methods [55]. This study uses the stochastic
collocation method with a rigorous mathematical proof.

The inner product of any basis function in the expansion with the approximate re-
sponse function can be expressed as

⟨y(ξ, t), Φk(ξ)⟩ =
〈

P

∑
|p|=0

cp(t)Φp(ξ), Φk(ξ)

〉
(18)

where notation ⟨•⟩ represents the inner product, which can be expressed as

⟨ f (ξ), g(ξ)⟩ =
∫

Ω
f (ξ)g(ξ)dξ (19)

According to the orthogonality property of PCE, Equation (18) can be expressed as

⟨y(ξ, t), Φk(ξ)⟩ = ck(t)Φ2
k(ξ) (20)

Therefore, the coefficients of each term of the polynomial basis function can be obtained
from the following equation:

ck(t) =
1

Φ2
k(ξ)

⟨y(ξ, t), Φk(ξ)⟩ (21)

Gaussian quadrature, as a standard tool for numerical integration, represents the
coefficients in a simple weighted sum form:

ck(t) =
∫

Ω
y(ξ, t)Φk(ξ) fξ(ξ)dξ ≈

N

∑
i=1

w(i)y
(

ξ(i), t
)

Φk

(
ξ(i)

)
(22)

where fξ(ξ) is the joint probability distribution of the vector ξ; the weights w(i) and the
set of quadrature points ξ(i) (experimental design) are derived from Lagrange polynomial
interpolation, ensuring the accuracy of the integration evaluation of polynomial complexity
functions. The quadrature weights w(i) and quadrature points ξ(i) are uniquely deter-
mined by the marginal independent components of the input random vector ξ(i) and they
correspond to the roots of the respective polynomial basis functions reported in Table 1.
Standard multivariate Gaussian quadrature is achieved through the tensor product of
univariate quadrature rules.

(Un1
1 ⊗ Un2

2 ⊗ · · · ⊗ Und
d ) f =

n1

∑
i1=1

n2

∑
i2=1

· · ·
nd

∑
id=1

w(i1)
1 w(i2)

2 · · ·w(id)
d · f

(
ξ
(i1)
1 , ξ

(i2)
2 , · · · , ξ

(id)
d

)
(23)

Un
i is a one-dimensional Gaussian quadrature rule obtained from the m interpolation points{
ξ
(j)
i

}
j=1,...,n

of the orthogonal polynomial and the corresponding weights
{

w(j)
i

}
j=1,...,n

,

which can be expressed as

Un
i ( f ) =

n

∑
j=1

w(j)
i f

(
ξ
(j)
i

)
(24)

The number of quadrature points rapidly increases with the number of input variables.
For instance, selecting the maximum polynomial degree P will require (P + 1) quadrature
points in each dimension, resulting in N = (P + 1)d in Equation (22). This is known as the
curse of dimensionality.

The Smolyak sparse grid interpolation is a novel tool for handling high-dimensional
integrals, serving as an alternative to the original tensor product multidimensional quadra-
ture. When constructing sparse interpolation points using the Smolyak algorithm, the
quadrature points on the one-dimensional axis (N = 1) are fully utilized, while as many
points as possible are retained in directions with N > 1. The method is essentially a linear
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combination of tensor product nodes. The number of sparse nodes is significantly reduced
compared to the tensor product quadrature, thus reducing the dependence on the number
of dimensions. Based on Smolyak’s sparse grid theory, the high-dimensional quadrature
based on the Smolyak algorithm can be defined as

UQ( f ) ≡ A(k, d) = ∑
k+1≤|i|≤k+d

(−1)k+d−|i|
(

d − 1
k + d − |i|

)
·
(

Ui1
1 ⊗ · · · ⊗ Uid

d

)
(25)

where i = (i1, · · · , id) ∈ Nd is the index of the multi-dimensional quadrature points; k
denotes the level of the sparse grid quadrature. Thus, all the quadrature points contained
in the classical Smolyak sparse grid are

Θsg ≡ H(k, d) = ∪
k+1≤|i|≤k+d

(
ξ
(i1)
1 , ξ

(i2)
2 , · · · , ξ

(id)
d

)
(26)

The number of points is

∣∣Θsg
∣∣ = (

2d + l
2d

)
−

(
2d + l − d

2d

)
(27)

where l = k + d and duplicate points are counted multiple times.
In the same dimension, sparse grid nodes are significantly fewer in number compared

to tensor product nodes. The SGPCE somewhat alleviates the curse of dimensionality faced
by the full grid-based PCE (FGPCE).

4. Results and Discussion

First, the deterministic response is illustrated by describing the rubbing rotor system
without uncertainty conditions, thus providing an initial impression of its dynamic behavior.
Then, based on the deterministic analysis, the effect of parameter uncertainty on the system
dynamics is investigated by stochastic analysis, thus providing a deeper understanding of
the robustness and reliability of the rotor system in practical applications.

4.1. Deterministic Analysis

In this subsection, we analyze the response of the fractional-order overhung rotor
in the deterministic case. The parameters of the rubbing overhung rotor system are as
follows: the contact stiffness, friction coefficient, and gap value between the rotor/stator are
kc = 1.25 × 107 N/m, µ = 0.2, and δ = 6 × 10−6 m, respectively; the lengths of shaft 1 and
shaft 2 are 0.3 m and 0.12 m, respectively; the outer radii of shaft 1 and shaft 2 are 0.02 m
and 0.03 m, respectively, while the inner radii are both 0.005 m; the mass of the disk is
8.4 kg, and the polar and diameter moments of inertia are 0.0695 kg/m2 and 0.0357 kg/m2,
respectively; the stiffnesses of bearing 1 and bearing 2 are 1 × 108 N/m and 1 × 106 N/m,
respectively; the viscous damping factor of the disk is 120.

Based on the deterministic model and numerical simulations, the steady-state orbit,
radial deflection, and spectrum of the geometric center of the disc at ω = 200 rad/s are
analyzed for different damping orders. In the steady-state analysis, the initial period is
ignored to eliminate transient effects. The steady-state deflection curves and axial orbits for
orders of α = 1, 0.8, and 0.6 are shown in Figure 3 and Figure 4, respectively. It degrades to
the integral order case for α = 1. The comparison between fractional calculations and those
of the integral order are incorporated throughout all the discussions.
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From Figures 3 and 4, the steady-state time-domain curves and the axial orbits show
significant nonlinearities. The time response curve becomes complex and is no longer a
simple sine or cosine wave, while the axial estimates are no longer circular or elliptical.
This indicates the presence of multiple frequency components in the response beyond the
fundamental frequency. The main reason for this is that the unbalance and asymmetry of
the system can lead to irregular forces in the rotor during rotation, and that rub and impact
forces introduce high-frequency components and transient responses. It is also evident
that after 500 cycles, the system responses of orders α = 1 and α = 0.8 have entered the
steady state, while the system of order α = 0.6 is still in the unsteady state. To explore
the steady-state response of the 0.6 order system, we analyzed the system response after a
longer time. Figure 5 shows the center orbit and spectrogram of radial deflection for the
0.6-order system for periods 1000–1020 and 2000–2020.

From Figures 3c, 4c and 5, we can draw the following phenomena and conclusions.
There are significant fluctuations in the system response during the 500–505 periods, which
may be attributed to the fact that the system is subjected to a large perturbation in the initial
stage, the internal energy distribution has not yet been stabilized, and the nonlinear effects
and frequency components have not yet been sufficiently attenuated. As the number of
periods increases, the system response enters a transition phase and gradually tends to a
steady state during the 1000–1020 periods. In the 2000–2020 periods, the system response
fully enters the steady state and exhibits a stable vibration mode. Multiple frequency
components are represented in the spectrum for both steady-state and non-steady-state
responses. In the steady state, the frequency components are all integer multiples of the
fundamental frequency, whereas in the non-steady state, there are non-integer multiples of
the components. By analyzing the rubbing overhung rotor system with 0.6-order fractional-
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order damping, we find that the system response exhibits different dynamic characteristics
in different period ranges. The system response is unstable in the initial stage, and the
system gradually converges to a steady state over time and eventually enters a steady state
over a long period.
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Figure 5. Orbit and spectrograms of deflection for 0.6-order systems in the period ranges 1000–1020
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To investigate the response characteristics of the 0.4-order system, numerical simula-
tions and analyses were run for a longer period. The radial deflection curves, orbit, and
spectrograms for the system with α = 0.4 after 20,000 periods are shown in Figure 6. It can
be seen from the figure that the response of the system fails to reach a steady state after
a long period of running. The time response curves, axial orbits, and spectrograms show
complex irregular characteristics. This indicates that low-order fractional-order damping
and rubbing impacts have a significant effect on the dynamic behavior of the rotor system,
especially in the case of low-order fractional damping, where the system exhibits a complex
chaotic behavior.

Based on the above deterministic analysis, it is clear that the response of the system
under the effect of a rub impact exhibits a significant nonlinearity, which contains high
harmonics and combined frequencies. Moreover, as the order of damping decreases, it
takes a longer time for the rub-impact rotor system to reach a steady state. Even when the
order is reduced to a certain degree, the system may enter into a chaotic state. The main
reason for these phenomena is due to the following:

(1) As the order decreases, the damping effect is weakened, resulting in less efficient
energy dissipation and allowing for more energy to be retained in the system. This
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energy accumulation effect may make it difficult for the system to reach a steady state
after a long period of operation.

(2) The lower fractional-order derivatives imply that the system has a strong memory
effect, allowing the system to maintain a large amplitude of vibration when it is
excited. This strong memory effect allows the system to maintain a complex dynamic
behavior over long periods.

(3) The introduction of fractional-order derivatives may change the dynamics of the
system, including its intrinsic frequency and damping ratio. When the damping effect
is weakened, the system is more likely to reach the resonance condition.
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4.2. Stochastic Uncertainty Quantification

In practical situations, uncertainties in the system parameters are inevitable. Errors
during manufacturing and installation, material aging, and changes in the operating
environment will lead to changes in the density, modulus of elasticity of the material, and
support stiffness. We select the support stiffness k1 and k2, the density ρ of the rotor shaft,
and Young’s modulus E of the rotor shaft as the stochastic uncertainty parameters. Each
parameter follows a normal distribution with an expectation value of the deterministic
value in Section 4.1 and a coefficient of variation of 1%.

We establish the sparse grid PCE metamodel for uncertainty analysis and compare the
results with MCS. Figure 7 gives the expectation and standard deviation of the steady-state
deflection obtained from the 4th-order SGPCE and MCS for the three cases α = 1, 0.8, 0.6.

As can be seen in Figure 7, the expectations of the responses of the three fractional
damping systems are almost the same for the same uncertainty, while the standard de-
viations are different. The standard deviation, in general, increases as the order of the
fractional order derivative decreases. This is consistent with the results of the deterministic
analysis, again indicating that the order of damping changes the characteristics of the
system response. Furthermore, the expectation and standard deviation obtained from the
4th-order SGPCE are almost identical to those obtained from the MCS when α = 1 and 0.8.
However, the 4th-order SGPCE requires only 494 sample points, the full grid PCE requires
625 sample points, and the MCS requires 3000 sample points. This indicates that SGPCE is
more efficient than traditional FGPCE and MCS and is accurate. As the order A decreases
to 0.6, the results of the 4th-order SGPCE are no longer accurate, so we use the 4th-order
FGPCE. The 99.97% confidence intervals for the radial deflections obtained by the 4th-order
FGPCE and MCS for a = 0.6 are shown in Figure 8.
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From Figure 8, the results obtained from the 4th-order FGPCE are almost identical to
those obtained with the MCS, both in terms of expectation and confidence intervals. This
indicates that the degree of nonlinearity and instability of the system response increases
as the order of the fractional-order derivatives decreases, and thus, the order of the PCE
must be increased or a full grid quadrature must be used to better capture the complex
dynamics of the system response. The width of the confidence interval for radial deflection
reflects the uncertainty of the system response under different parameter perturbations.
The wider the confidence interval, the greater the variability of the system response. From
the figure, we know that the variability of radial deflection is greater at the peaks and
valleys. Therefore, more attention should be paid to the response at peaks and valleys
during system analysis and optimization.

To quantify the volatility of the stochastic response of the rubbing overhung rotor
system in the three fractional damping cases, we present in Figure 9 the coefficient of
variation curves of the deflections obtained by MCS and PCE for the three cases. The
results of the MCS are in agreement with those of the PCE for all three cases. The maximum
coefficient of variation for all three cases occurs at the same moment, but the maximum
coefficient of variation increases as the order decreases and reaches almost 1.8% when
α = 0.6. The coefficient of variation can be used as an index of robustness, and the analysis
of the coefficient of variation shows that the robustness of the system decreases with the
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decrease in the order. This also explains the reason why it is difficult for the system to reach
a steady state as the order decreases.
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accuracy and effectiveness of the PCE metamodel in analyzing the steady-state response 
of the fractional-order rubbing rotor system. Regardless of the damping case, the PDF of 
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sides. The CDF exhibits a typical S-shaped curve. From the shapes of the PDF and CDF 
curves, it can be seen that the peaks of the steady-state responses for the three different 
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Figure 9. Coefficient of variation curves of deflections obtained from MCS and PCE for the three cases.

The probability density cloud of the radial deflection and the point cloud plot of
the axial orbit of the steady-state response when the order of damping is 0.6 are given
in Figure 10. The probability density cloud allows for a visualization of the probability
distribution characteristics of the radial deflection in the time domain and identifies the
high-probability regions as peaks and valleys. Figure 10b shows that the basic shape of
the axial orbit of the rotor in the uncertainty case is similar to the deterministic result.
However, the axial orbit in the uncertainty case has a width, and this width range indicates
the possible interval of the response. In summary, the vibration modes of the 0.6-order
damped system under 1% uncertainty are almost unchanged, except for some fluctuations
in the values of the response.
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To obtain a clearer insight into the probability distribution of the peak steady-state
response of the rubbing-impact rotor system for the three different damping cases, we
obtained the PDF curves and CDF curves shown in Figure 11 based on the 3000 sample
points from the PCE meta-model and the 3000 sample points from MCS. It can be seen
from the figure that the PDF and CDF curves obtained from the PCE metamodel for
the three different damping cases are almost identical to those obtained by solving the
fractional-order differential equations via the MCS method. This result demonstrates the
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accuracy and effectiveness of the PCE metamodel in analyzing the steady-state response
of the fractional-order rubbing rotor system. Regardless of the damping case, the PDF of
the steady-state response peaks exhibits a typical bell-shaped curve, indicating that the
system response peaks are concentrated in a certain range and gradually decrease to both
sides. The CDF exhibits a typical S-shaped curve. From the shapes of the PDF and CDF
curves, it can be seen that the peaks of the steady-state responses for the three different
damping cases approximately obey a normal distribution, despite the fact that the system
has complex fractional-order damping and rubbing effects.
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The sensitivity indices of the peak deflection with respect to the four random param-
eters for the three cases are shown in Figure 12. MCS-based Sobol sensitivity analysis is
difficult to implement due to the large number of analyses required and the long simula-
tion time required for each deterministic analysis to reach a steady state. The sensitivity
metrics given here are obtained directly using the coefficients of PCE. It is known from
the sensitivity analysis that the support stiffness k2 is the key parameter affecting the peak
deflection. Regardless of the damping case, the change in the support stiffness k2 has the
most pronounced effect on the system response because k2 is the closest support to the
mass disk. The Young’s modulus E of the rotor shaft has the next best effect on the system
response since the Young’s modulus of the shaft also affects the stiffness of the system. The
density ρ of the rotor shaft has a relatively small effect on the peak deflection of the system
because it only affects the mass and inertia characteristics of the rotor. The effect of the
support stiffness k1 is almost negligible, mainly because Support 1 is the furthest away
from the mass disk and the energy attenuation in the vibration transmission path.

The findings of the present study on fractal and uncertain dynamics of rubbing rotor
systems help to clarify unexplainable behaviors found in practice. On the one hand,
the effects of uncertain parameters are identified since the uncertainties are inevitable,
as explained in the introduction. The sensitivity studies reveal which parameters will
have the greater impact on the dynamics. That will help engineers to prioritize certain
design parameters in the design and optimization or maintenance of a rotor system. On
the other hand, the incorporation of fractal characteristics in the damping will benefit the
understanding of rotors composed of typical materials that have memory effects. To sum up,
this work can provide practical values to the industry for a more insightful understanding
of dynamics and more efficient design or maintenance of rotor systems.
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5. Conclusions

In this paper, the dynamic behavior and system stability of a nonlinear overhung rotor
with rubbing impact faults are systematically investigated by introducing fractional-order
modeling and stochastic dynamic analysis methods. The dynamic equations of the over-
hung rotor considering the rubbing effect and fractional damping effect are established. The
time-domain response of the fractional-order dynamic equations is solved by combining the
Runge–Kutta method and the continuous fractional expansion method. The steady-state
response properties of the system of different fractional orders under deterministic and
stochastic parameters are explored in depth through numerical simulations and analysis.
The study shows that the rubbing impact leads to a significant nonlinearity of the system
response containing the higher harmonics. As the damping order decreases, the time for
the system to reach the steady state is significantly prolonged due to the weakening of the
damping effect and the enhancement of the memory effect. At very low orders, the system
may even enter a chaotic state. It can be seen that fractional-order modeling, which is
necessary for materials possessing memory characteristics, reveals more complex behaviors
than the traditional integral-order modeling of rotor systems. In the stochastic uncertainty
analysis, the results show that PCE has higher efficiency. However, for low-order damped
systems, SGPCE may not be able to capture the system response characteristics accurately.
In addition, the analysis of statistical quantities such as statistical moments and proba-
bility distributions reflects the characteristics of the system response under the action of
stochastic parameters. The sensitivity analysis reveals the level of influence of the stochastic
parameters on the system response. The results of this paper provide a theoretical basis for
the prediction of the response of nonlinear rubbing overhung rotor systems and reveal the
laws of the system parameters and fractional order on the dynamic behavior. The findings
are of significance in the design and optimization of rotor systems.

In the future, experimental validations of the findings will be carried out. Moreover,
the nonlinear frequency responses and bifurcations of the rub-impact rotor with fractal
damping and uncertainties will be investigated.
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