Factors Controlling Differences in Morphology and Fractal Characteristics of Organic Pores of Longmaxi Shale in Southern Sichuan Basin, China
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Samples
3.2. MAPS
3.3. FIB-SEM
3.4. QEMSCAN
3.5. Low-Pressure N2/CO2 Adsorption-Desorption
3.6. Fractal Theory
3.6.1. Frenkel–Halsey–Hill (FHH) Model
3.6.2. Box Counting and Dilation Method
4. Results
4.1. Mineral Composition and Brittleness Index
4.2. SEM Observation and Statistics
4.3. Pore Structure Examined by Gas Adsorptions
4.4. Fractal Characterization
5. Discussion
5.1. Microscopic Deformation Characteristics
5.2. Influence of Reservoir Internal Stress
5.3. Influence of Tectonic Stress
5.4. Factors Influencing Fractal Dimensions
5.5. Storage and Permeability Performance of Different Pores
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vengosh, A.; Jackson, R.B.; Warner, N.; Darrah, T.H.; Kondash, A. A Critical Review of the Risks to Water Resources from Unconventional Shale Gas Development and Hydraulic Fracturing in the United States. Environ. Sci. Technol. 2014, 48, 8334–8348. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.N.; Yang, Z.; Cui, J.W.; Zhu, R.K.; Hou, L.H.; Tao, S.Z.; Yuan, X.J.; Wu, S.T.; Lin, S.H.; Wang, L.; et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China. Pet. Explor. Dev. 2013, 40, 15–27. [Google Scholar] [CrossRef]
- Wang, H.; Chen, L.; Qu, Z.; Yin, Y.; Kang, Q.; Yu, B.; Tao, W.-Q. Modeling of multi-scale transport phenomena in shale gas production—A critical review. Appl. Energy 2020, 262, 114575. [Google Scholar] [CrossRef]
- Hu, Q.; Ewing, R.P.; Rowe, H.D. Low nanopore connectivity limits gas production in Barnett formation. J. Geophys. Res. Solid Earth 2015, 120, 8073–8087. [Google Scholar] [CrossRef]
- Cardott, B.J.; Landis, C.R.; Curtis, M.E. Post-oil solid bitumen network in the Woodford Shale, USA—A potential primary migration pathway. Int. J. Coal Geol. 2015, 139, 106–113. [Google Scholar] [CrossRef]
- Gou, Q.; Xu, S. Quantitative evaluation of free gas and adsorbed gas content of Wufeng-Longmaxi shales in the Jiaoshiba area, Sichuan Basin, China. Adv. Geo-Energy Res. 2019, 3, 258–267. [Google Scholar] [CrossRef]
- Jia, Y.Q.; Han, D.L.; Zhang, J.Z.; Wang, C.C.; Lin, W.; Ren, X.H.; Yang, C.Y.; Chang, L.C. Differences in Pore-forming Efficiency among Organic Macerals and Its Restriction against Reservoir Quality: A Case Study Based on the Marine Shale Reservoir in the Longmaxi Formation, Southern Sichuan Basin, China. Lithosphere 2021, 2021, 2700912. [Google Scholar] [CrossRef]
- Tian, H.; Pan, L.; Zhang, T.; Xiao, X.; Meng, Z.; Huang, B. Pore characterization of organic-rich Lower Cambrian shales in Qiannan Depression of Guizhou Province, Southwestern China. Mar. Pet. Geol. 2015, 62, 28–43. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Jarvie, D.M. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef]
- Cao, T.; Song, Z.; Wang, S.; Cao, X.; Li, Y.; Xia, J. Characterizing the pore structure in the Silurian and Permian shales of the Sichuan Basin, China. Mar. Pet. Geol. 2015, 61, 140–150. [Google Scholar] [CrossRef]
- Curtis, M.E.; Cardott, B.J.; Sondergeld, C.H.; Rai, C.S. Development of organic porosity in the Woodford Shale with increasing thermal maturity. Int. J. Coal Geol. 2012, 103, 26–31. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Marc Bustin, R. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Dewers, T.A.; Heath, J.; Ewy, R.; Duranti, L. Three-dimensional pore networks and transport properties of a shale gas formation determined from focused ion beam serial imaging. Int. J. Oil Gas Coal Technol. 2012, 5, 229–248. [Google Scholar] [CrossRef]
- Jiang, T.; Jin, Z.; Hu, Z.; Du, W.; Liu, Z.; Zhao, J.; Zhang, K. Three-Dimensional Morphology and Connectivity of Organic Pores in Shale from the Wufeng and Longmaxi Formations at the Southeast Sichuan Basin in China. Geofluids 2021, 2021, 5579169. [Google Scholar] [CrossRef]
- Jiang, X.; Deng, S.; Li, H.; Zuo, H. Characterization of 3D pore nanostructure and stress-dependent permeability of organic-rich shales in northern Guizhou Depression, China. J. Rock Mech. Geotech. Eng. 2022, 14, 407–422. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. Stochastic models for the Earth’s relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands. Proc. Natl. Acad. Sci. USA 1975, 72, 3825–3828. [Google Scholar] [CrossRef]
- Sakhaee-Pour, A.; Li, W. Fractal dimensions of shale. J. Nat. Gas Sci. Eng. 2016, 30, 578–582. [Google Scholar] [CrossRef]
- Katz, A.J.; Thompson, A.H. Fractal sandstone pores: Implications for conductivity and pore formation. Phys. Rev. Lett. 1985, 54, 1325–1328. [Google Scholar] [CrossRef]
- Yuan, W.; Pan, Z.; Li, X.; Yang, Y.; Zhao, C.; Connell, L.D.; Li, S.; He, J. Experimental study and modelling of methane adsorption and diffusion in shale. Fuel 2014, 117, 509–519. [Google Scholar] [CrossRef]
- Zhan, H.M.; Li, X.Z.; Hu, Z.M.; Duan, X.G.; Wu, W.; Guo, W.; Lin, W. Fractal Characteristics of Deep Shales in Southern China by Small-Angle Neutron Scattering and Low-Pressure Nitrogen Adsorption. Fractal Fract. 2022, 6, 484. [Google Scholar] [CrossRef]
- Yang, R.; He, S.; Yi, J.; Hu, Q. Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations using FE-SEM, gas adsorption and helium pycnometry. Mar. Pet. Geol. 2016, 70, 27–45. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, D.; Tang, D.; Tang, S.; Huang, W. Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals. Int. J. Coal Geol. 2008, 73, 27–42. [Google Scholar] [CrossRef]
- Shao, X.; Pang, X.; Li, Q.; Wang, P.; Chen, D.; Shen, W.; Zhao, Z. Pore structure and fractal characteristics of organic-rich shales: A case study of the lower Silurian Longmaxi shales in the Sichuan Basin, SW China. Mar. Pet. Geol. 2017, 80, 192–202. [Google Scholar] [CrossRef]
- Tang, X.; Zheng, F.; Liang, G.; Ma, Z.; Zhang, J.; Wang, Y.; Zhang, T. Fractal characterization of pore structure in Cambrian Niutitang shale in northern Guizhou, southwestern China. Earth Sci. Front. 2023, 30, 110–123. [Google Scholar] [CrossRef]
- Zhang, Q.; Dong, Y.H.; Tong, S.Q. Pore-Type-Dependent Fractal Features of Shales and Implications on Permeability. Fractal Fract. 2023, 7, 803. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Xie, Z.; Li, J.; Zhang, X.; Sun, K.; Wang, F. Characterization of microscopic pore types and structures in marine shale: Examples from the Upper Permian Dalong formation, Northern Sichuan Basin, South China. J. Nat. Gas Sci. Eng. 2018, 59, 326–342. [Google Scholar] [CrossRef]
- Guan, Q.Z.; Dong, D.Z.; Wang, S.F.; Huang, J.L.; Wang, Y.M.; Lu, H.; Zhang, C.C. Preliminary study on shale gas microreservoir characteristics of the Lower Silurian Longmaxi Formation in the southern Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2016, 31, 382–395. [Google Scholar] [CrossRef]
- Wang, Y.L.; Jia, Y.Q.; Wang, C.C.; Lin, W.; Zhang, J.Z.; Han, D.L.; Ma, B.Y.; Wang, H.C. Characteristics and Geological Significance of Organic Matter Veins in Shale Reservoir: A Case Study of the Silurian Longmaxi Formation in Luzhou Area, Sichuan Basin. Minerals 2023, 13, 1080. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, Z.; Ren, X.; Zhou, Y.; Zheng, A.; Zhang, J.; Han, D. Organic Matter Type Differentiation Process and Main Control Mechanism: Case study of the Silurian Longmaxi Formation shale reservoir in Weiyuan area. Acta Sedimentol. Sin. 2021, 39, 341–352. [Google Scholar] [CrossRef]
- Teng, G.; Lu, L.; Yu, L.; Zhang, W.; Pan, A.; Shen, B.; Wang, Y.; Yang, Y.; Gao, Z. Formation, preservation and connectivity control of organic pores in shale. Pet. Explor. Dev. 2021, 48, 687–699. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, X. Evolution of nanoporosity in organic-rich shales during thermal maturation. Fuel 2014, 129, 173–181. [Google Scholar] [CrossRef]
- Gai, H.; Tian, H.; Cheng, P.; He, C.; Wu, Z.; Ji, S.; Xiao, X. Characteristics of molecular nitrogen generation from overmature black shales in South China: Preliminary implications from pyrolysis experiments. Mar. Pet. Geol. 2020, 120, 104527. [Google Scholar] [CrossRef]
- Shi, X.; Wu, W.; Xu, L.; Yin, Y.; Yang, Y.; Liu, J.; Yang, X.; Li, Y.; Wu, Q.; Zhong, K.; et al. Thermal Maturity Constraint Effect and Development Model of Shale Pore Structure: A Case Study of Longmaxi Formation Shale in Southern Sichuan Basin, China. Minerals 2024, 14, 163. [Google Scholar] [CrossRef]
- Yuan, G.; Jin, Z.; Cao, Y.; Schulz, H.M.; Gluyas, J.; Liu, K.; He, X.; Wang, Y. Microdroplets initiate organic-inorganic interactions and mass transfer in thermal hydrous geosystems. Nat. Commun. 2024, 15, 4960. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Fan, Y.; Xuan, Q.; Zheng, G. A review of shale pore structure evolution characteristics with increasing thermal maturities. Adv. Geo-Energy Res. 2020, 4, 247–259. [Google Scholar] [CrossRef]
- Liu, B.; Mastalerz, M.; Schieber, J. SEM petrography of dispersed organic matter in black shales: A review. Earth-Sci. Rev. 2022, 224, 103874. [Google Scholar] [CrossRef]
- Shan, C.a.; Shi, Y.; Liang, X.; Zhang, L.; Wang, G.; Jiang, L.; Zou, C.; He, F.; Mei, J. Diagenetic characteristics and microscopic pore evolution of deep shale gas reservoirs in Longmaxi Formation, Southeastern Sichuan basin, China. Unconv. Resour. 2024, 4, 100090. [Google Scholar] [CrossRef]
- Khitab, U.; Umar, M.; Jamil, M. Microfacies, diagenesis and hydrocarbon potential of Eocene carbonate strata in Pakistan. Carbonates Evaporites 2020, 35, 70. [Google Scholar] [CrossRef]
- Wang, R.Y.; Gu, Y.; Ding, W.L.; Gong, D.J.; Yin, S.; Wang, X.H.; Zhou, X.H.; Li, A.; Xiao, Z.K.; Cui, Z.X. Characteristics and dominant controlling factors of organic-rich marine shales with high thermal maturity: A case study of the Lower Cambrian Niutitang Formation in the Cen’gong block, southern China. J. Nat. Gas Sci. Eng. 2016, 33, 81–96. [Google Scholar] [CrossRef]
- Nie, H.; Jin, Z.; Zhang, J. Characteristics of three organic matter pore types in the Wufeng-Longmaxi Shale of the Sichuan Basin, Southwest China. Sci. Rep. 2018, 8, 7014. [Google Scholar] [CrossRef] [PubMed]
- Guo, T. Evaluation of Highly Thermally Mature Shale-Gas Reservoirs in Complex Structural Parts of the Sichuan Basin. J. Earth Sci. 2013, 24, 863–873. [Google Scholar] [CrossRef]
- Guo, X.; Hu, D.; Li, Y.; Wei, Z.; Wei, X.; Liu, Z. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field. Pet. Explor. Dev. 2017, 44, 513–523. [Google Scholar] [CrossRef]
- Li, X.; Zhu, H.; Zhang, K.; Li, Z.; Yu, Y.; Feng, X.; Wang, Z. Pore characteristics and pore structure deformation evolution of ductile deformed shales in the Wufeng-Longmaxi Formation, southern China. Mar. Pet. Geol. 2021, 127, 104992. [Google Scholar] [CrossRef]
- Liang, M.; Wang, Z.; Gao, L.; Li, C.; Li, H. Evolution of pore structure in gas shale related to structural deformation. Fuel 2017, 197, 310–319. [Google Scholar] [CrossRef]
- Ma, Y.; Zhong, N.; Li, D.; Pan, Z.; Cheng, L.; Liu, K. Organic matter/clay mineral intergranular pores in the Lower Cambrian Lujiaping Shale in the north-eastern part of the upper Yangtze area, China: A possible microscopic mechanism for gas preservation. Int. J. Coal Geol. 2015, 137, 38–54. [Google Scholar] [CrossRef]
- Zhu, H.; Ju, Y.; Huang, C.; Han, K.; Qi, Y.; Shi, M.; Yu, K.; Feng, H.; Li, W.; Ju, L.; et al. Pore structure variations across structural deformation of Silurian Longmaxi Shale: An example from the Chuandong Thrust-Fold Belt. Fuel 2019, 241, 914–932. [Google Scholar] [CrossRef]
- Fu, Y.; Jiang, Y.; Dong, D.; Hu, Q.; Lei, Z.; Peng, H.; Gu, Y.; Ma, S.; Wang, Z.; Yin, X.; et al. Microscopic pore-fracture configuration and gas-filled mechanism of shale reservoirs in the western Chongqing area, Sichuan Basin, China. Pet. Explor. Dev. 2021, 48, 916–927. [Google Scholar] [CrossRef]
- Cheng, G.; Jiang, B.; Li, F.; Li, M.; Wu, C. Evolution Mechanism of Pore Structures of Organic-Rich Shale Under Tectonic Deformation: A Comparative Study between Whole Rock and Kerogen Samples. Nat. Resour. Res. 2023, 33, 263–297. [Google Scholar] [CrossRef]
- Shang, F.; Zhu, Y.; Gao, H.; Wang, Y.; Liu, R. Relationship between Tectonism and Composition and Pore Characteristics of Shale Reservoirs. Geofluids 2020, 2020, 9426586. [Google Scholar] [CrossRef]
- Liu, S.G.; Deng, B.; Li, Z.W.; Sun, W. Architecture of basin-mountain systems and their influences on gas distribution: A case study from the Sichuan basin, South China. J. Asian Earth Sci. 2012, 47, 204–215. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, A.; Wang, Y.; Li, S.; Dong, Y.; Liu, S.; He, D.; Cheng, S.; Lu, R.; Yao, A. Tectonics of South China continent and its implications. Sci. China Earth Sci. 2013, 56, 1804–1828. [Google Scholar] [CrossRef]
- Liang, X.; Xu, J.; Wang, Y.; Fang, X.; Zhao, L.; Wu, Y.; Deng, B. The shale gas enrichment factors of Longmaxi Formation under gradient basin-mountain boundary in South Sichuan Basin: Tectono-depositional differentiation and discrepant evolution. Chin. J. Geol. 2021, 56, 60–81. [Google Scholar]
- Yang, R.; He, S.; Wang, X.; Hu, Q.; Hu, D.; Yi, J. Paleo-ocean redox environments of the Upper Ordovician Wufeng and the first member in lower Silurian Longmaxi formations in the Jiaoshiba area, Sichuan Basin. Can. J. Earth Sci. 2016, 53, 426–440. [Google Scholar] [CrossRef]
- Nie, H.K.; He, Z.L.; Wang, R.Y.; Zhang, G.R.; Chen, Q.; Li, D.H.; Lu, Z.Y.; Sun, C.X. Temperature and origin of fluid inclusions in shale veins of Wufeng?Longmaxi Formations, Sichuan Basin, south China: Implications for shale gas preservation and enrichment. J. Pet. Sci. Eng. 2020, 193, 18. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Liu, W.; Wu, W.; Gao, Y.; Luo, C.; Deng, B.; Zhou, Z. Fluid activity and pressure evolution process of Wufeng-Longmaxi shales, southern Sichuan Basin. Earth Sci. J. China Univ. Geosci. 2022, 47, 518–531. [Google Scholar] [CrossRef]
- Dong, M.; Guo, W.; Zhang, L.; Wu, Z.; Ma, L.; Dong, H.; Feng, X.; Yang, Y. Characteristics of paleotectonic stress field and fractures of Wufeng-Longmaxi formations in Luzhou area, southern Sichuan Basin. Lithol. Reserv. 2022, 34, 43–51. [Google Scholar] [CrossRef]
- Huang, H.Y.; He, D.F.; Li, Y.Q.; Li, J.; Zhang, L. Silurian tectonic-sedimentary setting and basin evolution in the Sichuan area, southwest China: Implications for palaeogeographic reconstructions. Mar. Pet. Geol. 2018, 92, 403–423. [Google Scholar] [CrossRef]
- Yan, H.; Peng, X.; Xia, Q.; Xu, W.; Luo, W.; Li, X.; Zhang, L.; Zhu, Q.; Zhu, X.; Liu, X. Distribution features of ancient karst landform in the fourth Member of the Dengying Formation in the Gaoshiti-Moxi region and its guiding significance for gas reservoir development. Acta Pet. Sin. 2020, 41, 658–670+752. [Google Scholar] [CrossRef]
- Ma, X.H.; Xie, J.; Yong, R.; Zhu, Y.Q. Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China. Pet. Explor. Dev. 2020, 47, 901–915. [Google Scholar] [CrossRef]
- Qiu, Z.; Tao, H.; Lu, B.; Chen, Z.; Wu, S.; Liu, H.; Qiu, J. Controlling Factors on Organic Matter Accumulation of Marine Shale across the Ordovician-Silurian Transition in South China: Constraints from Trace-Element Geochemistry. J. Earth Sci. 2021, 32, 887–900. [Google Scholar] [CrossRef]
- Yang, X.R.; Yan, D.T.; Zhang, B.; Zhang, L.W.; Wei, X.S.; Li, T.; Zhang, J.F.; She, X.H. The impact of volcanic activity on the deposition of organic-rich shales: Evidence from carbon isotope and geochemical compositions. Mar. Pet. Geol. 2021, 128, 14. [Google Scholar] [CrossRef]
- Nie, H.; Bao, S.; Gao, B.; Bian, R.; Zhang, P.; Wu, X.; Ye, X.; Chen, X. A study of shale gas preservation conditiongs for the Lower Paleozoic in Sichuan Basin and its periphery. Earth Sci. Front. 2012, 19, 280–294. [Google Scholar]
- Ma, Y.; Cai, X.; Zhao, P. China’s shale gas exploration and development: Understanding and practice. Pet. Explor. Dev. 2018, 45, 589–603. [Google Scholar] [CrossRef]
- Saif, T.; Lin, Q.; Butcher, A.R.; Bijeljic, B.; Blunt, M.J. Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography, automated ultra-high resolution SEM, MAPS Mineralogy and FIB-SEM. Appl. Energy 2017, 202, 628–647. [Google Scholar] [CrossRef]
- GB/T 20726-2015; Microbeam Analysis—Selected Instrumental Performance Parameters for the Specification and Checking of Energy Dispersive X-ray Spectrometers for Use in Electron Probe Microanalysis. Standardization Administration of China: Beijing, China, 2015.
- Ma, B.; Hu, Q.; Yang, S.; Zhang, T.; Qiao, H.; Meng, M.; Zhu, X.; Sun, X. Pore structure typing and fractal characteristics of lacustrine shale from Kongdian Formation in East China. J. Nat. Gas Sci. Eng. 2021, 85, 103709. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Wei, Q.; Sun, K.; Zhang, G.; Wang, F. Characterization of Full-Sized Pore Structure and Fractal Characteristics of Marine–Continental Transitional Longtan Formation Shale of Sichuan Basin, South China. Energy Fuels 2017, 31, 10490–10504. [Google Scholar] [CrossRef]
- Lin, W.; Zhao, X.; Li, M.; Zhuang, Y. Pore Structure Characterization and Fractal Characteristics of Tight Limestone Based on Low-Temperature Nitrogen Adsorption and Nuclear Magnetic Resonance. Fractal Fract. 2024, 8, 371. [Google Scholar] [CrossRef]
- Dathe, A.; Eins, S.; Niemeyer, J.; Gerold, G. The surface fractal dimension of the soil–pore interface as measured by image analysis. Geoderma 2001, 103, 203–229. [Google Scholar] [CrossRef]
- Peng, N.; He, S.; Hu, Q.; Zhang, B.; He, X.; Zhai, G.; He, C.; Yang, R. Organic nanopore structure and fractal characteristics of Wufeng and lower member of Longmaxi shales in southeastern Sichuan, China. Mar. Pet. Geol. 2019, 103, 456–472. [Google Scholar] [CrossRef]
- Zou, X.; Li, X.; Wang, Y.; Zhang, J.; Zhao, P. Reservoir characteristics and gas content of Wufeng-Longmaxi Formations deep shale in southern Sichuan Basin. Nat. Gas Geosci. 2022, 33, 654–665. [Google Scholar] [CrossRef]
- Wang, R.; Hu, Z.; Zhou, T.; Bao, H.; Wu, J.; Du, W.; He, J.; Wang, P.; Chen, Q. Characteristics of fractures and their significance for reservoirs in Wufeng-Longmaxi shale, Sichuan Basin and its periphery. Oil Gas Geol. 2021, 42, 1295–1306. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Labani, M.M.; Rezaee, R.; Saeedi, A.; Hinai, A.A. Evaluation of pore size spectrum of gas shale reservoirs using low pressure nitrogen adsorption, gas expansion and mercury porosimetry: A case study from the Perth and Canning Basins, Western Australia. J. Pet. Sci. Eng. 2013, 112, 7–16. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Klimakow, M.; Klobes, P.; Rademann, K.; Emmerling, F. Characterization of mechanochemically synthesized MOFs. Microporous Mesoporous Mater. 2012, 154, 113–118. [Google Scholar] [CrossRef]
- Hazra, B.; Wood, D.A.; Vishal, V.; Varma, A.K.; Sakha, D.; Singh, A.K. Porosity controls and fractal disposition of organic-rich Permian shales using low-pressure adsorption techniques. Fuel 2018, 220, 837–848. [Google Scholar] [CrossRef]
- Ning, S.; Xia, P.; Hao, F.; Tian, J.; Fu, Y.; Wang, K. Pore Fractal Characteristics between Marine and Marine–Continental Transitional Black Shales: A Case Study of Niutitang Formation and Longtan Formation. Fractal Fract. 2024, 8, 288. [Google Scholar] [CrossRef]
- Zou, J.; Chen, W.; Yang, D.; Yuan, J.; Jiao, Y.-Y. Fractal characteristics of the anisotropic microstructure and pore distribution of low-rank coal. AAPG Bull. 2019, 103, 1297–1320. [Google Scholar] [CrossRef]
- Milliken, K.L.; Curtis, M.E. Imaging pores in sedimentary rocks: Foundation of porosity prediction. Mar. Pet. Geol. 2016, 73, 590–608. [Google Scholar] [CrossRef]
- Wang, G. Deformation of organic matter and its effect on pores in mud rocks. AAPG Bull. 2020, 104, 21–36. [Google Scholar] [CrossRef]
- Yao, C.; Fu, H.; Ma, Y.; Yan, D.; Wang, H.; Li, Y.; Wang, J. Development characteristics of deep shale fractured veins and vein forming fluid activities in Luzhou block. Earth Sci. 2022, 47, 1684–1693. [Google Scholar]
- Shovkun, I.; Espinoza, D.N. Geomechanical implications of dissolution of mineralized natural fractures in shale formations. J. Pet. Sci. Eng. 2018, 160, 555–564. [Google Scholar] [CrossRef]
- Wu, Q.; Han, D.; Zhang, J.; Wang, C.; Ren, X.; Lin, Z.; Su, M.; Zhu, Y.; Zhang, J. Influence of particle size effect on microfracture development in shale reservoir: A case study of the Silurian Longmaxi Formation shale reservoir in Weiyuan area. J. Cent. South Univ. (Sci. Technol.) 2022, 53, 3603–3614. [Google Scholar]
- Pan, Z.; Liu, D.; Huang, Y.; Zhenxue, J.; Song, Y.; Guo, J.; Li, C. Paleotemperature and paleopressure of methane inclusions in fracture cements from the Wufeng-Longmaxi shales in the Luzhou area, southern Sichuan Basin. Pet. Sci. Bull. 2019, 4, 242–253. [Google Scholar]
- Ju, Y.; Sun, Y.; Tan, J.; Bu, H.; Han, K.; Li, X.; Fang, L. The composition, pore structure characterization and deformation mechanism of coal-bearing shales from tectonically altered coalfields in eastern China. Fuel 2018, 234, 626–642. [Google Scholar] [CrossRef]
- Wang, H.; Shi, Z.; Sun, S.; Zhao, Q.; Zhou, T.; Cheng, F.; Bai, W. Microfacies types and distribution of epicontinental shale: A case study of the Wufeng-Longmaxi shale in southern Sichuan Basin, China. Pet. Explor. Dev. 2023, 50, 57–71. [Google Scholar] [CrossRef]
- Hu, D.; Zhang, H.; Ni, K.; Yu, G. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin. Nat. Gas Ind. 2014, 34, 17–23. [Google Scholar]
- Zhang, K. Preservation Mechanism and Evaluation Method of Marine Shale Gas with Complex Tectonic Background. Ph.D. Dissertation, China University of Petroleum (Beijing), Beijing, China, 2019. [Google Scholar]
- Liu, S.; Deng, B.; Zhong, Y.; Ran, B.; Yong, Z.; Sun, W.; Yang, D.; Jiang, L.; Ye, Y. Unique geological featrures of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery. Earth Sci. Front. 2016, 23, 11–28. [Google Scholar] [CrossRef]
- Yang, Y. An unrecognized major collision of the Okhotomorsk Block with East Asia during the Late Cretaceous, constraints on the plate reorganization of the Northwest Pacific. Earth-Sci. Rev. 2013, 126, 96–115. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Z.; Lu, S.; Jiang, S.; Xiao, D.; Long, S.; Gao, B.; Du, W.; Zhao, J.; Chen, G.; et al. Characteristics of microorganisms and origin of organic matter in Wufeng Formation and Longmaxi Formation in Sichuan Basin, South China. Mar. Pet. Geol. 2020, 111, 363–374. [Google Scholar] [CrossRef]
- Chang, X.; Huang, Y.; Chen, Z.; Hou, M. The Microscopic Analysis of Pyrite Framboids and Application in Paleo⁃oceanography. Acta Sedimentol. Sin. 2020, 38, 150–165. [Google Scholar] [CrossRef]
- Shi, Z.; Yuan, Y.; Zhao, Q.; Sun, S.; Zhou, T.; Cheng, F. Paleogeomorphology and oil-bearing shale characteristics of the Wufeng-Longmaxi shale in southern Sichuan Basin, China. Nat. Gas Geosci. 2022, 33, 1969–1985. [Google Scholar]
- Shi, Z.; Zhao, S.; Zhou, T.; Ding, L.; Sun, S.; Cheng, F. Mineralogy and Geochemistry of the Upper Ordovician and Lower Silurian Wufeng-Longmaxi Shale on the Yangtze Platform, South China: Implications for Provenance Analysis and Shale Gas Sweet-Spot Interval. Minerals 2022, 12, 1190. [Google Scholar] [CrossRef]
- Qiu, Z.; Liu, B.; Dong, D.; Lu, B.; Yawar, Z.; Chen, Z.; Schieber, J. Silica diagenesis in the Lower Paleozoic Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for reservoir properties and paleoproductivity. Mar. Pet. Geol. 2020, 121, 104594. [Google Scholar] [CrossRef]
- Xiang-Rong, Y.; De-Tian, Y.; Xiao-Song, W.; Li-Wei, Z.; Bao, Z.; Han-Wen, X.; Yin, G.; Jie, H. Different formation mechanism of quartz in siliceous and argillaceous shales: A case study of Longmaxi Formation in South China. Mar. Pet. Geol. 2018, 94, 80–94. [Google Scholar] [CrossRef]
- Dong, T.; He, Q.; He, S.; Zhai, G.; Zhang, Y.; Wei, S.; Wei, C.; Hou, Y.; Guo, X. Quartz types, origins and organic matter-hosted pore systems in the lower cambrian Niutitang Formation, middle yangtze platform, China. Mar. Pet. Geol. 2021, 123, 104739. [Google Scholar] [CrossRef]
- Cao, T.; Song, Z.; Wang, S.; Xia, J. Characterization of pore structure and fractal dimension of Paleozoic shales from the northeastern Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2016, 35, 882–895. [Google Scholar] [CrossRef]
- Xie, X.; Deng, H.; Li, Y.; Hu, L.; Mao, J.; Li, R. Investigation of the Oriented Structure Characteristics of Shale Using Fractal and Structural Entropy Theory. Fractal Fract. 2022, 6, 734. [Google Scholar] [CrossRef]
- Ju, Y.-W.; Hou, X.-G.; Han, K.; Song, Y.; Xiao, L.; Huang, C.; Zhu, H.-J.; Tao, L.-R. Experimental deformation of shales at elevated temperature and pressure: Pore-crack system evolution and its effects on shale gas reservoirs. Pet. Sci. 2024, in press. [CrossRef]
- Ko, L.T.; Ruppel, S.C.; Loucks, R.G.; Hackley, P.C.; Zhang, T.; Shao, D. Pore-types and pore-network evolution in Upper Devonian-Lower Mississippian Woodford and Mississippian Barnett mudstones: Insights from laboratory thermal maturation and organic petrology. Int. J. Coal Geol. 2018, 190, 3–28. [Google Scholar] [CrossRef]
- Zeng, L.; Zhu, H.; Hao, Y.; Shi, E.; Lu, Y.; Qi, Y. Microstructures and Pore Structures of Naturally Deformed Shales: Significance for Shale Gas Exploration in the Complex Tectonic Areas of the Margin of the Sichuan Basin, South China. Energy Fuels 2023, 37, 10414–10425. [Google Scholar] [CrossRef]
- Ko, L.T.; Loucks, R.G.; Zhang, T.; Ruppel, S.C.; Shao, D. Pore and pore network evolution of Upper Cretaceous Boquillas (Eagle Ford-equivalent) mudrocks: Results from gold tube pyrolysis experiments. AAPG Bull. 2016, 100, 1693–1722. [Google Scholar] [CrossRef]
Sample ID | Layer | Depth/m | Mineralogy Composition/% | Brittleness Index/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Quartz | Feldspar | Illite | Chlorite | Calcite | Dolomite | Pyrite | ||||
L203H-1 | Long14 | 3730.7 | 48.04 | 5.65 | 17.68 | 4.8 | 6.87 | 2.46 | 2.49 | 70.6 |
L203H-2 | Long13 | 3733.2 | 64.28 | 2.65 | 5.83 | 0.12 | 0.93 | 12.46 | 2.52 | 92.2 |
L203H-3 | Long13 | 3734.9 | 64.70 | 4.84 | 14.33 | 0.94 | 3.33 | 2.37 | 4.92 | 80.2 |
L203H-4 | Long13 | 3735.6 | 49.99 | 6.85 | 25.85 | 1.29 | 0.92 | 2.56 | 4.53 | 72.1 |
L203H-5 | Long12 | 3737.6 | 58.85 | 1.52 | 3.86 | 0.14 | 3.28 | 25.18 | 2.88 | 94.6 |
L203H-6 | Long12 | 3740.6 | 59.58 | 1.33 | 3.59 | 0.06 | 10.71 | 8.91 | 9.55 | 94.1 |
L203H-7 | Long12 | 3741.8 | 76.44 | 1.31 | 1.68 | 0.05 | 4.46 | 11.2 | 1.52 | 97.6 |
L203H-8 | Long11 | 3742.9 | 69.66 | 2.44 | 5.36 | 0.09 | 13.55 | 9.07 | 3.68 | 94.9 |
L203H-9 | Long11 | 3743.8 | 73.52 | 2.16 | 3.45 | 0.09 | 7.99 | 5.7 | 2.62 | 94.4 |
W1-1 | Long12 | 2736.8 | 64.23 | 4.54 | 5.38 | 0.63 | 4.6 | 13.33 | 3.32 | 92.9 |
W1-2 | Long11 | 2747.2 | 75.0 | 0.81 | 2.21 | 0.18 | 5.93 | 3.62 | 1.47 | 96.1 |
W2-1 | Long11 | 2856.1 | 83.12 | 2.08 | 2.6 | 1.61 | 4.07 | 2.8 | 2.47 | 95.2 |
Sample ID | Organic Porosity | The Proportion of Different Morphology Pores/% | Suborbicular Pores/Long Strip Pores | Fine Scanning Region Selection | ||
---|---|---|---|---|---|---|
Suborbicular Pores | Long Strip Pores | Honeycomb Pores | ||||
L203H-1 | 0.48 | / | / | / | / | / |
L203H-2 | 1.26 | 41.3 | 17.4 | 41.3 | 2.37 | / |
L203H-3 | 0.76 | / | / | / | / | / |
L203H-4 | 0.67 | / | / | / | / | / |
L203H-5 | 2.12 | 47.5 | 22.2 | 30.3 | 2.13 | / |
L203H-6 | 1.25 | 35.0 | 27.1 | 38.0 | 1.29 | vein |
L203H-7 | 1.30 | 49.5 | 13.2 | 37.2 | 3.75 | / |
L203H-8 | 1.72 | 35.9 | 27.0 | 37.1 | 1.32 | vein |
L203H-9 | 1.59 | 35.9 | 26.2 | 37.9 | 1.37 | high-angle fracture |
W1-1 | 2.08 | 44.2 | 25.7 | 30.1 | 1.71 | / |
W1-2 | 2.25 | 42.5 | 29.4 | 28.1 | 1.44 | / |
W2-1 | 2.16 | 44.9 | 29.3 | 25.8 | 1.53 | / |
Sample ID | CO2 Adsorption | N2 Adsorption | ||
---|---|---|---|---|
VCO2 (10−3 cm3/g) | SCO2 (m2/g) | VBJH (10−3 cm3/g) | SBET (m2/g) | |
L203H-5 | 1.71 | 3.79 | 9.07 | 18.12 |
L203H-7 | 1.62 | 3.66 | 8.95 | 17.95 |
L203H-8 | 1.56 | 3.54 | 7.99 | 16.36 |
L203H-9 | 1.16 | 2.58 | 6.67 | 13.36 |
W1-1 | 2.07 | 3.02 | 13.62 | 25.04 |
W1-2 | 2.79 | 3.83 | 17.67 | 34.76 |
W2-1 | 2.00 | 4.47 | 11.83 | 22.64 |
Sample ID | P/P0 < 0.45 | P/P0 > 0.45 | ||
---|---|---|---|---|
R2 | D1 | R2 | D2 | |
L203H-5 | 0.971 | 2.629 | 0.933 | 2.855 |
L203H-7 | 0.975 | 2.625 | 0.924 | 2.863 |
L203H-8 | 0.977 | 2.641 | 0.953 | 2.874 |
L203H-9 | 0.976 | 2.625 | 0.930 | 2.881 |
W1-1 | 0.985 | 2.634 | 0.918 | 2.870 |
W1-2 | 0.982 | 2.646 | 0.901 | 2.883 |
W2-1 | 0.983 | 2.642 | 0.952 | 2.864 |
Sample ID | No. of Images | DS | |
---|---|---|---|
Range | Average | ||
L203H-5 | 10 | 2.867–2.937 | 2.907 |
L203H-7 | 10 | 2.858–2.944 | 2.912 |
L203H-8 | 10 | 2.954–2.989 | 2.971 |
L203H-9 | 10 | 2.963–2.991 | 2.973 |
W1-1 | 12 | 2.885–2.981 | 2.958 |
W1-2 | 12 | 2.901–2.979 | 2.951 |
W2-1 | 8 | 2.911–2.958 | 2.939 |
Tectonic Activities | Weiyuan | Luzhou |
---|---|---|
Period of entering the oil window | Triassic, relatively late | The end of the Silurian, relatively early |
Formation pressure coefficient | Relatively low | Relatively high, the reservoir sealing condition is better. |
Intensity of late Mesozoic deformation | The intensity of structural deformation is relatively weak | The intensity of structural deformation is relatively strong |
Intensity of Cenozoic tectonic deformation | The intensity of structural deformation is relatively strong | The intensity of structural deformation is relatively weak |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Han, D.; Lin, W.; Jia, Y.; Zhang, J.; Wang, C.; Ma, B. Factors Controlling Differences in Morphology and Fractal Characteristics of Organic Pores of Longmaxi Shale in Southern Sichuan Basin, China. Fractal Fract. 2024, 8, 555. https://doi.org/10.3390/fractalfract8100555
Wang Y, Han D, Lin W, Jia Y, Zhang J, Wang C, Ma B. Factors Controlling Differences in Morphology and Fractal Characteristics of Organic Pores of Longmaxi Shale in Southern Sichuan Basin, China. Fractal and Fractional. 2024; 8(10):555. https://doi.org/10.3390/fractalfract8100555
Chicago/Turabian StyleWang, Yuanlin, Denglin Han, Wei Lin, Yunqian Jia, Jizhen Zhang, Chenchen Wang, and Binyu Ma. 2024. "Factors Controlling Differences in Morphology and Fractal Characteristics of Organic Pores of Longmaxi Shale in Southern Sichuan Basin, China" Fractal and Fractional 8, no. 10: 555. https://doi.org/10.3390/fractalfract8100555
APA StyleWang, Y., Han, D., Lin, W., Jia, Y., Zhang, J., Wang, C., & Ma, B. (2024). Factors Controlling Differences in Morphology and Fractal Characteristics of Organic Pores of Longmaxi Shale in Southern Sichuan Basin, China. Fractal and Fractional, 8(10), 555. https://doi.org/10.3390/fractalfract8100555