Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (593)

Search Parameters:
Keywords = Sichuan Basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 30553 KiB  
Article
Optimizing Multi-Cluster Fracture Propagation and Mitigating Interference Through Advanced Non-Uniform Perforation Design in Shale Gas Horizontal Wells
by Guo Wen, Wentao Zhao, Hongjiang Zou, Yongbin Huang, Yanchi Liu, Yulong Liu, Zhongcong Zhao and Chenyang Wang
Processes 2025, 13(8), 2461; https://doi.org/10.3390/pr13082461 - 4 Aug 2025
Abstract
The persistent challenge of fracture-driven interference (FDI) during large-scale hydraulic fracturing in the southern Sichuan Basin has severely compromised shale gas productivity, while the existing research has inadequately addressed both FDI risk reductions and the optimization of reservoir stimulation. To bridge this gap, [...] Read more.
The persistent challenge of fracture-driven interference (FDI) during large-scale hydraulic fracturing in the southern Sichuan Basin has severely compromised shale gas productivity, while the existing research has inadequately addressed both FDI risk reductions and the optimization of reservoir stimulation. To bridge this gap, this study developed a mechanistic model of the competitive multi-cluster fracture propagation under non-uniform perforation conditions and established a perforation-based design methodology for the mitigation of horizontal well interference. The results demonstrate that spindle-shaped perforations enhance the uniformity of fracture propagation by 20.3% and 35.1% compared to that under uniform and trapezoidal perforations, respectively, with the perforation quantity (48) and diameter (10 mm) identified as the dominant control parameters for balancing multi-cluster growth. Through a systematic evaluation of the fracture communication mechanisms, three distinct inter-well types of FDI were identified: Type I (natural fracture–stress anisotropy synergy), Type II (natural-fracture-dominated), and Type III (stress-anisotropy-dominated). To mitigate these, customized perforation schemes coupled with geometry-optimized fracture layouts were developed. The surveillance data for the offset well show that the pressure interference decreased from 14.95 MPa and 6.23 MPa before its application to 0.7 MPa and 0 MPa, achieving an approximately 95.3% reduction in the pressure interference in the application wells. The expansion morphology of the inter-well fractures confirmed effective fluid redistribution across clusters and containment of the overextension of planar fractures, demonstrating this methodology’s dual capability to enhance the effectiveness of stimulation while resolving FDI challenges in deep shale reservoirs, thereby advancing both productivity and operational sustainability in complex fracturing operations. Full article
Show Figures

Figure 1

20 pages, 16139 KiB  
Article
XCH4 Spatiotemporal Variations in a Natural-Gas-Exploiting Basin with Intensive Agriculture Activities Using Multiple Remote Sensing Datasets: Case from Sichuan Basin, China
by Tengnan Wang and Yunpeng Wang
Remote Sens. 2025, 17(15), 2695; https://doi.org/10.3390/rs17152695 - 4 Aug 2025
Abstract
The Sichuan Basin is a natural-gas-exploiting area with intensive agriculture activities. However, the spatial and temporal distribution of atmospheric methane concentration and the relationships with intensive agriculture and natural gas extraction activities are not well investigated. In this study, a long-term (2003–2021) dataset [...] Read more.
The Sichuan Basin is a natural-gas-exploiting area with intensive agriculture activities. However, the spatial and temporal distribution of atmospheric methane concentration and the relationships with intensive agriculture and natural gas extraction activities are not well investigated. In this study, a long-term (2003–2021) dataset of column-averaged dry-air mole fraction of methane (XCH4) over the Sichuan Basin and adjacent regions was built by integrating multi-satellite remote sensing data (SCIAMACHY, GOSAT, Sentinel-5P), which was calibrated using ground station data. The results show a strong correlation and consistency (R = 0.88) between the ground station and satellite observations. The atmospheric CH4 concentration of the Sichuan Basin showed an overall higher level (around 20 ppb) than that of the whole of China and an increasing trend in the rates, from around 2.27 ppb to 10.44 ppb per year between 2003 and 2021. The atmospheric CH4 concentration of the Sichuan Basin also exhibits clear seasonal changes (higher in the summer and autumn and lower in the winter and spring) with a clustered geographical distribution. Agricultural activities and natural gas extraction contribute significantly to atmospheric methane concentrations in the study area, which should be considered in carbon emission management. This study provides an effective way to investigate the spatiotemporal distribution of atmospheric CH4 concentration and related factors at a regional scale with natural and human influences using multi-source satellite remote sensing data. Full article
Show Figures

Figure 1

17 pages, 13918 KiB  
Article
Occurrence State and Controlling Factors of Methane in Deep Marine Shale: A Case Study from Silurian Longmaxi Formation in Sichuan Basin, SW China
by Junwei Pu, Tongtong Luo, Yalan Li, Hongwei Jiang and Lin Qi
Minerals 2025, 15(8), 820; https://doi.org/10.3390/min15080820 (registering DOI) - 1 Aug 2025
Viewed by 123
Abstract
Deep marine shale is the primary carrier of shale gas resources in Southwestern China. Because the occurrence and gas content of methane vary with burial conditions, understanding the microscopic mechanism of methane occurrence in deep marine shale is critical for effective shale gas [...] Read more.
Deep marine shale is the primary carrier of shale gas resources in Southwestern China. Because the occurrence and gas content of methane vary with burial conditions, understanding the microscopic mechanism of methane occurrence in deep marine shale is critical for effective shale gas exploitation. The temperature and pressure conditions in deep shale exceed the operating limits of experimental equipment; thus, few studies have discussed the microscopic occurrence mechanism of shale gas in deep marine shale. This study applies molecular simulation technology to reveal the methane’s microscopic occurrence mechanism, particularly the main controlling factor of adsorbed methane in deep marine shale. Two types of simulation models are also proposed. The Grand Canonical Monte Carlo (GCMC) method is used to simulate the adsorption behavior of methane molecules in these two models. The results indicate that the isosteric adsorption heat of methane in both models is below 42 kJ/mol, suggesting that methane adsorption in deep shale is physical adsorption. Adsorbed methane concentrates on the pore wall surface and forms a double-layer adsorption. Furthermore, adsorbed methane can transition to single-layer adsorption if the pore size is less than 1.6 nm. The total adsorption capacity increases with rising pressure, although the growth rate decreases. Excess adsorption capacity is highly sensitive to pressure and can become negative at high pressures. Methane adsorption capacity is determined by pore size and adsorption potential, while accommodation space and adsorption potential are influenced by pore size and mineral type. Under deep marine shale reservoir burial conditions, with burial depth deepening, the effect of temperature on shale gas occurrence is weaker than pressure. Higher temperatures inhibit shale gas occurrence, and high pressure enhances shale gas preservation. Smaller pores facilitate the occurrence of adsorbed methane, and larger pores have larger total methane adsorption capacity. Deep marine shale with high formation pressure and high clay mineral content is conducive to the microscopic accumulation of shale gas in deep marine shale reservoirs. This study discusses the microscopic occurrence state of deep marine shale gas and provides a reference for the exploration and development of deep shale gas. Full article
(This article belongs to the Special Issue Element Enrichment and Gas Accumulation in Black Rock Series)
Show Figures

Figure 1

16 pages, 4272 KiB  
Article
Prediction Analysis of Integrative Quality Zones for Corydalis yanhusuo W. T. Wang Under Climate Change: A Rare Medicinal Plant Endemic to China
by Huiming Wang, Bin Huang, Lei Xu and Ting Chen
Biology 2025, 14(8), 972; https://doi.org/10.3390/biology14080972 (registering DOI) - 1 Aug 2025
Viewed by 176
Abstract
Corydalis yanhusuo W. T. Wang, commonly known as Yanhusuo, is an important and rare medicinal plant resource in China. Its habitat integrity is facing severe challenges due to climate change and human activities. Establishing an integrative quality zoning system for this species is [...] Read more.
Corydalis yanhusuo W. T. Wang, commonly known as Yanhusuo, is an important and rare medicinal plant resource in China. Its habitat integrity is facing severe challenges due to climate change and human activities. Establishing an integrative quality zoning system for this species is of significant practical importance for resource conservation and adaptive management. This study integrates multiple data sources, including 121 valid distribution points, 37 environmental factors, future climate scenarios (SSP126 and SSP585 pathways for the 2050s and 2090s), and measured content of tetrahydropalmatine (THP) from 22 sampling sites. A predictive framework for habitat suitability and spatial distribution of effective components was constructed using a multi-model coupling approach (MaxEnt, ArcGIS spatial analysis, and co-kriging method). The results indicate that the MaxEnt model exhibits high prediction accuracy (AUC > 0.9), with the dominant environmental factors being the precipitation of the wettest quarter (404.8~654.5 mm) and the annual average temperature (11.8~17.4 °C). Under current climatic conditions, areas of high suitability are concentrated in parts of Central and Eastern China, including the Sichuan Basin, the middle–lower Yangtze plains, and coastal areas of Shandong and Liaoning. In future climate scenarios, the center of suitable areas is predicted to shift northwestward. The content of THP is significantly correlated with the mean diurnal temperature range, temperature seasonality, and the mean temperature of the wettest quarter (p < 0.01). A comprehensive assessment identifies the Yangtze River Delta region, Central China, and parts of the Loess Plateau as the optimal integrative quality zones. This research provides a scientific basis and decision-making support for the sustainable utilization of C. yanhusuo and other rare medicinal plants in China. Full article
Show Figures

Figure 1

20 pages, 11478 KiB  
Article
Pore Evolution and Fractal Characteristics of Marine Shale: A Case Study of the Silurian Longmaxi Formation Shale in the Sichuan Basin
by Hongzhan Zhuang, Yuqiang Jiang, Quanzhong Guan, Xingping Yin and Yifan Gu
Fractal Fract. 2025, 9(8), 492; https://doi.org/10.3390/fractalfract9080492 - 28 Jul 2025
Viewed by 274
Abstract
The Silurian marine shale in the Sichuan Basin is currently the main reservoir for shale gas reserves and production in China. This study investigates the reservoir evolution of the Silurian marine shale based on fractal dimension, quantifying the complexity and heterogeneity of the [...] Read more.
The Silurian marine shale in the Sichuan Basin is currently the main reservoir for shale gas reserves and production in China. This study investigates the reservoir evolution of the Silurian marine shale based on fractal dimension, quantifying the complexity and heterogeneity of the shale’s pore structure. Physical simulation experiments were conducted on field-collected shale samples, revealing the evolution of total organic carbon, mineral composition, porosity, and micro-fractures. The fractal dimension of shale pore was characterized using the Frenkel–Halsey–Hill and capillary bundle models. The relationships among shale components, porosity, and fractal dimensions were investigated through a correlation analysis and a principal component analysis. A comprehensive evolution model for porosity and micro-fractures was established. The evolution of mineral composition indicates a gradual increase in quartz content, accompanied by a decline in clay, feldspar, and carbonate minerals. The thermal evolution of organic matter is characterized by the formation of organic pores and shrinkage fractures on the surface of kerogen. Retained hydrocarbons undergo cracking in the late stages of thermal evolution, resulting in the formation of numerous nanometer-scale organic pores. The evolution of inorganic minerals is represented by compaction, dissolution, and the transformation of clay minerals. Throughout the simulation, porosity evolution exhibited distinct stages of rapid decline, notable increase, and relative stabilization. Both pore volume and specific surface area exhibit a trend of decreasing initially and then increasing during thermal evolution. However, pore volume slowly decreases after reaching its peak in the late overmature stage. Fractal dimensions derived from the Frenkel–Halsey–Hill model indicate that the surface roughness of pores (D1) in organic-rich shale is generally lower than the complexity of their internal structures (D2) across different maturity levels. Additionally, the average fractal dimension calculated based on the capillary bundle model is higher, suggesting that larger pores exhibit more complex structures. The correlation matrix indicates a co-evolution relationship between shale components and pore structure. Principal component analysis results show a close relationship between the porosity of inorganic pores, microfractures, and fractal dimension D2. The porosity of organic pores, the pore volume and specific surface area of the main pore size are closely related to fractal dimension D1. D1 serves as an indicator of pore development extent and characterizes the changes in components that are “consumed” or “generated” during the evolution process. Based on mineral composition, fractal dimensions, and pore structure evolution, a comprehensive model describing the evolution of pores and fractal dimensions in organic-rich shale was established. Full article
Show Figures

Figure 1

21 pages, 18596 KiB  
Article
Thermal Accumulation Mechanisms of Deep Geothermal Reservoirs in the Moxi Area, Sichuan Basin, SW China: Evidence from Temperature Measurements and Structural Characteristics
by Wenbo Yang, Weiqi Luo, Simian Yang, Wei Zheng, Luquan Zhang, Fang Lai, Shuang Yang and Zhongquan Li
Energies 2025, 18(15), 3901; https://doi.org/10.3390/en18153901 - 22 Jul 2025
Viewed by 220
Abstract
The Moxi area in the Sichuan Basin hosts abundant deep geothermal resources, but their thermal regime and accumulation mechanisms remain poorly understood. Using 2D/3D seismic data, drilling records, and temperature measurements (DST), we analyze deep thermal fields, reservoir–caprock systems, and structural features. The [...] Read more.
The Moxi area in the Sichuan Basin hosts abundant deep geothermal resources, but their thermal regime and accumulation mechanisms remain poorly understood. Using 2D/3D seismic data, drilling records, and temperature measurements (DST), we analyze deep thermal fields, reservoir–caprock systems, and structural features. The following are our key findings: (1) Heat transfer is conduction-dominated, with thermal anomalies in Late Permian–Early Cambrian strata. Four mudstone/shale caprocks and three carbonate reservoirs occur, with the Longtan Formation as the key seal. Reservoir geothermal gradients (25.05–32.55 °C/km) exceed basin averages. (2) Transtensional strike-slip faults form E-W/NE/NW networks; most terminate at the Permian Longtan Formation, with few extending into the Lower Triassic while penetrating the Archean–Lower Proterozoic basement. (3) Structural highs positively correlate with higher geothermal gradients. (4) The deep geothermal reservoirs and thermal accumulation mechanisms in the Moxi area are jointly controlled by crustal thinning, basement uplift, and structural architecture. Mantle-derived heat converges at basement uplift cores, generating localized thermal anomalies. Fault networks connect these deep heat sources, facilitating upward fluid migration. Thick Longtan Formation shale seals these rising thermal fluids, causing anomalous heating in underlying strata and concentrated thermal accumulation in reservoirs—enhanced by thermal focusing effects from uplift structures. This study establishes a theoretical framework for target selection and industrial-scale geothermal exploitation in sedimentary basins, highlighting the potential for repurposing oil/gas infrastructure. Full article
Show Figures

Figure 1

27 pages, 15353 KiB  
Article
Drought Evolution in the Yangtze and Yellow River Basins and Its Dual Impact on Ecosystem Carbon Sequestration
by Yuanhe Yu, Huan Deng, Shupeng Gao and Jinliang Wang
Agriculture 2025, 15(14), 1552; https://doi.org/10.3390/agriculture15141552 - 19 Jul 2025
Viewed by 262
Abstract
As an extreme event driven by global climate change, drought poses a severe threat to terrestrial ecosystems. The Yangtze River Basin (YZRB) and Yellow River Basin (YRB) are key ecological barriers and economic zones in China, holding strategic importance for exploring the evolution [...] Read more.
As an extreme event driven by global climate change, drought poses a severe threat to terrestrial ecosystems. The Yangtze River Basin (YZRB) and Yellow River Basin (YRB) are key ecological barriers and economic zones in China, holding strategic importance for exploring the evolution of drought patterns and their ecological impacts. Using meteorological station data and Climatic Research Unit Gridded Time Series (CRU TS) data, this study analyzed the spatiotemporal characteristics of drought evolution in the YZRB and YRB from 1961 to 2021 using the standardized precipitation evapotranspiration index (SPEI) and run theory. Additionally, this study examined drought effects on ecosystem carbon sequestration (CS) at the city, county, and pixel scales. The results revealed the following: (1) the CRU data effectively captured precipitation (annual r = 0.94) and temperature (annual r = 0.95) trends in both basins, despite significantly underestimating winter temperatures, with the optimal SPEI calculation accuracy found at the monthly scale; (2) both basins experienced frequent autumn–winter droughts, with the YRB facing stronger droughts, including nine events which exceeded 10 months (the longest lasting 25 months), while the mild droughts increased in frequency and extreme intensity; and (3) the drought impacts on CS demonstrated a significant threshold effect, where the intensified drought unexpectedly enhanced CS in western regions, such as the Garzê Autonomous Prefecture in Sichuan Province and Changdu City in the Xizang Autonomous Region, but suppressed CS in the midstream and downstream plains. The CS responded positively under weak drought conditions but declined once the drought intensity surpassed the threshold. This study revealed a nonlinear relationship between drought and CS across climatic zones, thereby providing a scientific foundation for enhancing ecological resilience. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

19 pages, 7491 KiB  
Article
A Model and the Characteristics of Gas Generation of the Longmaxi Shale in the Sichuan Basin
by Xuewen Shi, Yi Li, Yuqiang Jiang, Ye Zhang, Wei Wu, Zhiping Zhang, Zhanlei Wang, Xingping Yin, Yonghong Fu and Yifan Gu
Processes 2025, 13(7), 2294; https://doi.org/10.3390/pr13072294 - 18 Jul 2025
Viewed by 280
Abstract
Currently, the Longmaxi shale in the Sichuan Basin is the most successful stratum of shale gas production in China. However, because Longmaxi shale mostly has high over-maturity, a low-maturity sample cannot be obtained for gas generation thermal simulations, and as a result, a [...] Read more.
Currently, the Longmaxi shale in the Sichuan Basin is the most successful stratum of shale gas production in China. However, because Longmaxi shale mostly has high over-maturity, a low-maturity sample cannot be obtained for gas generation thermal simulations, and as a result, a gas generation model has not yet been established for it. Therefore, models of other shales are usually used to calculate the amount of gas generated from Longmaxi shale, but they may produce inaccurate results. In this study, a Longmaxi shale sample with an equivalent vitrinite reflectance calculated from Raman spectroscopy (EqVRo) of 1.26% was obtained from Well Yucan 1 in the Chengkou area, northeast Sichuan Province. This Longmaxi shale may have the lowest maturity in nature. Pyrolysis simulations based on gold tubes were performed on this sample, and the gas generation line was obtained. The amount of gas generated during the low-maturity stage was compensated by referring to gas generation data obtained from Lower Silurian black shale in western Lithuania. Thus, a gas generation model of the Longmaxi shale was built. The model showed that the gas generation process of Longmaxi shale could be divided into three stages: (1) First, there is the quick generation stage (EqVRo 0.5–3.0%), where hydrocarbon gases were generated quickly and constantly, and the generation rate was steady. A maximum of 458 mL/g TOC was reached at a maturity of 3.0% EqVRo. (2) Second, there is the stable stage (EqVRo 3.0–3.25%), where the amount of generated gas reached a plateau of 453–458 mL/g TOC. (3) Third, there is the rapid descent stage (EqVRo > 3.25%), where the amount of generated gas started to decrease, and it was 393 mL/g TOC at an EqVRo of 3.34%. This model allows us to more accurately calculate the amount of gas generated from the Longmaxi shale in the Sichuan Basin. Full article
Show Figures

Figure 1

21 pages, 9917 KiB  
Article
Rock Exposure-Driven Ecological Evolution: Multidimensional Spatiotemporal Analysis and Driving Path Quantification in Karst Strategic Areas of Southwest China
by Yue Gong, Shuang Song and Xuanhe Zhang
Land 2025, 14(7), 1487; https://doi.org/10.3390/land14071487 - 18 Jul 2025
Viewed by 274
Abstract
Southwest China, with typical karst, is one of the 36 biodiversity hotspots in the world, facing extreme ecological fragility due to thin soils, limited water retention, and high bedrock exposure. This fragility intensifies under climate change and human pressures, threatening regional sustainable development. [...] Read more.
Southwest China, with typical karst, is one of the 36 biodiversity hotspots in the world, facing extreme ecological fragility due to thin soils, limited water retention, and high bedrock exposure. This fragility intensifies under climate change and human pressures, threatening regional sustainable development. Ecological strategic areas (ESAs) are critical safeguards for ecosystem resilience, yet their spatiotemporal dynamics and driving mechanisms remain poorly quantified. To address this gap, this study constructed a multidimensional ecological health assessment framework (pattern integrity–process efficiency–function diversity). By integrating Sen’s slope, a correlated Mann–Kendall (CMK) test, the Hurst index, and fuzzy C-means clustering, we systematically evaluated ecological health trends and identified ESA differentiation patterns for 2000–2024. Orthogonal partial least squares structural equation modeling (OPLS-SEM) quantified driving factor intensities and pathways. The results revealed that ecological health improved overall but exhibited significant spatial disparity: persistently high in southern Guangdong and most of Yunnan, and persistently low in the Sichuan Basin and eastern Hubei, with 41.47% of counties showing declining/slightly declining trends. ESAs were concentrated in the southwest/southeast, whereas high-EHI ESAs increased while low-EHI ESAs declined. Additionally, the natural environmental and human interference impacts decreased, while unique geographic factors (notably the rock exposure rate, with persistently significant negative effects) increased. This long-term, multidimensional assessment provides a scientific foundation for targeted conservation and sustainable development strategies in fragile karst ecosystems. Full article
Show Figures

Figure 1

17 pages, 2902 KiB  
Article
Analysis of Sand Production Mechanisms in Tight Gas Reservoirs: A Case Study from the Wenxing Gas Area, Northwestern Sichuan Basin
by Qilin Liu, Xinyao Zhang, Cheng Du, Kaixiang Di, Shiyi Xie, Huiying Tang, Jing Luo and Run Shu
Processes 2025, 13(7), 2278; https://doi.org/10.3390/pr13072278 - 17 Jul 2025
Viewed by 311
Abstract
In tight sandstone gas reservoirs, proppant flowback severely limits stable gas production. This study uses laboratory flowback experiments and field analyses of the ShaXimiao tight sandstone in the Wenxing gas area to investigate the mechanisms controlling sand production. The experiments show that displacing [...] Read more.
In tight sandstone gas reservoirs, proppant flowback severely limits stable gas production. This study uses laboratory flowback experiments and field analyses of the ShaXimiao tight sandstone in the Wenxing gas area to investigate the mechanisms controlling sand production. The experiments show that displacing fluid viscosity significantly affects the critical sand-flow velocity: with high-viscous slickwater (5 mPa·s), the critical velocity is 66% lower than with low-viscous formation water (1.15 mPa·s). The critical velocity for coated proppant is three times that of the mixed quartz sand and coated proppant. If the confining pressure is maintained, but the flow rate is further increased after the proppant flowback, a second instance of sand production can be observed. X-ray diffraction (XRD) tests were conducted for sand produced from practical wells to help find the sand production reasons. Based on experimental and field data analysis, sand production in Well X-1 primarily results from proppant detachment during rapid shut-in/open cycling operations, while in Well X-2, it originates from proppant crushing. The risk of formation sand production is low for both wells (the volumetric fraction of calcite tested from the produced sands is smaller than 0.5%). These findings highlight the importance of fluid viscosity, proppant consolidation, and pressure management in controlling sand production. Full article
(This article belongs to the Special Issue Advances in Enhancing Unconventional Oil/Gas Recovery, 2nd Edition)
Show Figures

Figure 1

17 pages, 5354 KiB  
Article
Deep-Water Traction Current Sedimentation in the Lower Silurian Longmaxi Formation Siliceous Shales, Weiyuan Area, Sichuan Basin, China, Using Nano-Resolution Petrological Evidence
by Xiaofeng Zhou, Jun Zhao, Baonian Yan, Zeyu Zhu, Nan Yang, Pingping Liang and Wei Guo
Minerals 2025, 15(7), 723; https://doi.org/10.3390/min15070723 - 10 Jul 2025
Viewed by 187
Abstract
Despite the shale revolution triggering global shale oil and gas exploration, our understanding of the sedimentary environments of deep-water organic-matter-rich shale remains unclear. The sedimentary environment and facies of some siliceous shales at the bottom of the Longmaxi Formation in the Weiyuan area [...] Read more.
Despite the shale revolution triggering global shale oil and gas exploration, our understanding of the sedimentary environments of deep-water organic-matter-rich shale remains unclear. The sedimentary environment and facies of some siliceous shales at the bottom of the Longmaxi Formation in the Weiyuan area of the Sichuan Basin, China, were therefore analyzed. Nano-resolution petrological characterization and genesis analysis of the siliceous shales studied were conducted using nano-resolution petrologic image datasets. We identified these siliceous shales as microbial mats formed by deep-water traction current sedimentation. The microbial mats’ formation and burial diagenesis processes were divided into seven stages. The silt-grade bioclastic carpet deposits initially, colonizing mud-grade siliceous microbes and forming the siliceous microbial mat. Subsequently, carbohydrate-rich microbes thrive in sediment voids, forming the carbohydrate-rich microbial mat. Additionally, SOM undergoes four stages of burial diagenesis process, progressing from kerogens to pre-oil bitumen generation and ultimately transforming into porous pyrobitumen and nonporous pyrobitumen. This study will improve the understanding of deep-water traction current sedimentation and has implications for guiding shale gas exploration and development. Full article
(This article belongs to the Special Issue Deep-Time Source-to-Sink in Continental Basins)
Show Figures

Graphical abstract

16 pages, 8865 KiB  
Article
Climate-Driven Range Shifts of the Endangered Cercidiphyllum japonicum in China: A MaxEnt Modeling Approach
by Yuanyuan Jiang, Honghua Zhang, Jun Cui, Lei Zheng, Bingqian Ning and Danping Xu
Diversity 2025, 17(7), 467; https://doi.org/10.3390/d17070467 - 5 Jul 2025
Viewed by 278
Abstract
The relict tree Cercidiphyllum japonicum, a Tertiary paleoendemic with significant ecological and timber value, prefers warm–cool humid climates and acidic soils. Using MaxEnt and ArcGIS, we modeled its distribution under current and future climate scenarios (SSP, Shared Socioeconomic Pathways). High-suitability areas (>0.6 [...] Read more.
The relict tree Cercidiphyllum japonicum, a Tertiary paleoendemic with significant ecological and timber value, prefers warm–cool humid climates and acidic soils. Using MaxEnt and ArcGIS, we modeled its distribution under current and future climate scenarios (SSP, Shared Socioeconomic Pathways). High-suitability areas (>0.6 probability) under current conditions are mainly concentrated in the Sichuan Basin and the Yellow–Yangtze transition zones. By 2050, projections show northwestward expansions (14.32–18.76% increase in area) and eastward movement toward Central China under both SSP1-2.6 and SSP5-8.5 scenarios. However, by 2090, habitat loss could exceed 22% under SSP5-8.5. The main environmental drivers of its distribution are minimum coldest-month temperature (bio6, 38.7%), annual precipitation (bio12, 29.1%), and temperature range (bio7, 18.5%). Precipitation seasonality and thermal extremes are expected to become more significant constraints in the future. Conservation strategies should focus on the following: (1) protecting refugia in the Daba–Wushan mountains, (2) facilitating assisted migration to northwestern high-latitude regions, and (3) preserving microclimates. This study offers a framework for evidence-based conservation of paleoendemic species under climate change. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

12 pages, 4432 KiB  
Article
Intelligent Parameter Fusion for Distributed Flood Modeling in Parallel Ridge–Valley Landscapes
by Lan Lan, Bingxing Tong, Hongwei Bi, Yinshan Xu and Li Zhang
Water 2025, 17(13), 1984; https://doi.org/10.3390/w17131984 - 1 Jul 2025
Viewed by 299
Abstract
The pronounced spatial heterogeneity of underlying surface characteristics within the parallel ridge–valley system of eastern Sichuan necessitated hydrological discretization of the watershed into nested subdomains comprising inter-ridge valley units and secondary slope cells. A distributed flood simulation framework specifically adapted to parallel ridge–valley [...] Read more.
The pronounced spatial heterogeneity of underlying surface characteristics within the parallel ridge–valley system of eastern Sichuan necessitated hydrological discretization of the watershed into nested subdomains comprising inter-ridge valley units and secondary slope cells. A distributed flood simulation framework specifically adapted to parallel ridge–valley topography was developed, coupled with a sequential intelligent parameter optimization algorithm. Model validation was conducted through the simulation of ninety flood events (2015–2023) in the Lishui watershed, a representative parallel ridge–valley basin. For parameter-calibrated sub-watersheds, mean relative errors of 13.8% (peak discharge) and 12.3% (runoff depth) were achieved, while non-calibrated watersheds exhibited marginally higher inaccuracies at 14.6% and 15.1%, respectively. Spatial parameter estimation was effectively implemented through the assimilation of limited hydrometeorological station data. The integrated modeling framework, incorporating terrain-adaptive parameterization and intelligent calibration protocols, demonstrated high-fidelity flood process simulation capabilities in complex parallel ridge–valley landscapes. Full article
Show Figures

Figure 1

19 pages, 2905 KiB  
Article
Temperature Regulates BVOCs-Induced O3 Formation Potential Across Various Vegetation Types in the Sichuan Basin, China
by Qi Zhang, Zhanpeng Xue, Lin Yi, Jiayuan Wang and Enqin Liu
Forests 2025, 16(7), 1091; https://doi.org/10.3390/f16071091 - 1 Jul 2025
Viewed by 311
Abstract
Ground-level ozone (O3) pollution is a problem when managing air quality in China, and biogenic volatile organic compounds (BVOCs) are key precursors of O3 formation. Vegetation type and temperature influence BVOC emissions, yet the differences in emissions across vegetation types [...] Read more.
Ground-level ozone (O3) pollution is a problem when managing air quality in China, and biogenic volatile organic compounds (BVOCs) are key precursors of O3 formation. Vegetation type and temperature influence BVOC emissions, yet the differences in emissions across vegetation types and their temperature responses still exhibit significant uncertainties. This study was focused on the Sichuan Basin in China. It used the G95 model to develop a high-resolution BVOC emission inventory, allowing the analysis of emission characteristics for different vegetation types. The study also used a temperature sensitivity algorithm to assess how temperature changes affect BVOC emissions. The impact of these emissions on regional O3 formation potential (OFP) was then quantified using the OFP method. The results show significant differences in BVOC emissions across vegetation types. Forests at the basin edges (mixed, broad-leaved, and coniferous) have much higher emission intensity (10.5 t/km2) than agricultural areas in the center of the basin (0.15 t/km2). In terms of composition, monoterpenes (MON) mainly dominate mixed and coniferous forests (42.28% and 58.37%, respectively), while isoprene (ISOP) dominates broad-leaved forests (64.02%). The study found that temperature generally increases BVOC emissions, which vary by vegetation type. Broad-leaved forests have the highest temperature sensitivity (3.94%), much higher than agricultural vegetation (0.03%). BVOC emissions exhibit a seasonal pattern of “high in summer, low in winter” and a spatial pattern of “high at the edges, low at the center”. Temperature also influences emission intensity and composition, thus driving variations in the potential for O3 formation. Seasonally, different vegetation types show structural changes in OFP contribution. Broad-leaved forests, dominated by ISOP, show a significant increase in summer contribution (+8.0%), becoming the main source of O3 precursors. In contrast, mixed forests, dominated by MON, show a clear decrease in summer contribution (−6.3%). Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

15 pages, 6065 KiB  
Article
Characteristics of Microorganisms and Origins of Organic Matter in Permian Shale in Northwestern Sichuan Basin, South China
by Yuying Zhang, Baojian Shen, Bo Gao, Dongjun Feng, Pengwei Wang, Min Li, Yifei Li and Yang Liu
Processes 2025, 13(7), 2080; https://doi.org/10.3390/pr13072080 - 1 Jul 2025
Viewed by 293
Abstract
Permian shale gas, a resource-rich energy source, has garnered significant attention in recent years regarding its organic matter enrichment characteristics. This study conducted detailed observations via scanning electron microscopy (SEM) and optical microscopy to clarify the differences in the types and assemblages of [...] Read more.
Permian shale gas, a resource-rich energy source, has garnered significant attention in recent years regarding its organic matter enrichment characteristics. This study conducted detailed observations via scanning electron microscopy (SEM) and optical microscopy to clarify the differences in the types and assemblages of hydrocarbon-generating organisms across Permian shale formations in Northwestern Sichuan, as well as to determine the characteristics of organic matter sources. The types and combinations of hydrocarbon-generating organisms in the Gufeng Formation, Wujiaping Formation, and Dalong Formation in Northwestern Sichuan are systematically summarized. Based on this information, the primary sources of organic matter in the Permian shale were analyzed. Hydrocarbon-generating organisms in the Permian shales of the study area are predominantly acritarchs (a type of planktonic algae), followed by higher plants and green algae. In the Gufeng Formation, acritarchs constituted the vast majority of hydrocarbon-generating organisms, with smaller amounts of higher plants and green algae. At the bottom of the Wujiaping Formation, the relative acritarch content decreases significantly, while that of higher plants substantially increases. In the Dalong Formation, acritarchs regain dominance, and higher plants decline, resembling the Gufeng Formation in microorganism composition. The relative content of green algae shows minimal variation across all layers. Overall, the organic matter sources of Permian shale in the study area were mainly acritarchs (derived from planktonic algae), followed by green algae, and terrestrial higher plants. During the Gufeng Formation period, the sea level was relatively high. The Kaijiang–Liangping Trough in Northwestern Sichuan was generally a siliceous deep shelf. The main source of organic matter was aquatic planktonic algae, containing a small amount of terrigenous input. At the bottom of the Wujiaping Formation, the sea level was relatively low, resulting in the overall coastal marsh environment of the Kaijiang–Liangping Trough, which was characterized by mixed organic matter sources, due to an increase in terrigenous organic matter content. The sedimentary environment and organic matter sources of the Dalong Formation were similar to those of the Gufeng Formation. This research can provide a theoretical basis for exploration and development of Permian shale gas. Full article
Show Figures

Figure 1

Back to TopTop