Sleep Quality in Greek Adolescent Swimmers
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Limitations, Strength, and Context
4.2. Practical Recommendations
- ○
- If you have trouble sleeping the night before, inform your coach so they can adjust your training load.
- ○
- If you are a long-distance swimmer, check your sleep quality often.
- ○
- For better sleep, keep hydrated.
- ○
- Improve respiratory muscle strength for better sleep.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fortes, L.S.; Nakamura, F.Y.; Lima-Junior, D.; Ferreira, M.E.C.; Fonseca, F.S. Does Social Media Use on Smartphones Influence Endurance, Power, and Swimming Performance in High-Level Swimmers? Res. Q. Exerc. Sport 2022, 93, 120–129. [Google Scholar] [CrossRef]
- Calleja-Gonzalez, J.; Marques-Jimenez, D.; Jones, M.; Huyghe, T.; Navarro, F.; Delextrat, A.; Jukic, I.; Ostojic, S.M.; Sampaio, J.E.; Schelling, X.; et al. What Are We Doing Wrong When Athletes Report Higher Levels of Fatigue From Travel-ing Than From Training or Competition? Front. Psychol. 2020, 11, 194. [Google Scholar]
- Surda, P.; Putala, M.; Siarnik, P.; Walker, A.; De Rome, K.; Amin, N.; Sangha, M.S.; Fokkens, W. Sleep in elite swimmers: Prevalence of sleepiness, obstructive sleep apnoea and poor sleep quality. BMJ Open Sport Exerc. Med. 2019, 5, e000673. [Google Scholar] [CrossRef]
- Slimani, M.; Znazen, H.; Miarka, B.; Bragazzi, N.L. Maximum Oxygen Uptake of Male Soccer Players According to their Competitive Level, Playing Position and Age Group: Implication from a Network Meta-Analysis. J. Hum. Kinet. 2019, 66, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Owens, J.; Adolescent Sleep Working Group; Committee on Adolescence. Insufficient sleep in adolescents and young adults: An update on causes and consequences. Pediatrics 2014, 134, e921–e932. [Google Scholar] [CrossRef]
- Sargent, C.; Halson, S.; Roach, G.D. Sleep or swim? Early-morning training severely restricts the amount of sleep obtained by elite swimmers. Eur. J. Sport Sci. 2014, 14 (Suppl. 1), S310–S315. [Google Scholar] [CrossRef] [PubMed]
- Andrade, A.; Bevilacqua, G.G.; Coimbra, D.R.; Pereira, F.S.; Brandt, R. Sleep Quality, Mood and Performance: A Study of Elite Brazilian Volleyball Athletes. J. Sports Sci. Med. 2016, 15, 601–605. [Google Scholar] [PubMed]
- Chen, Y.; Cui, Y.; Chen, S.; Wu, Z. Relationship between sleep and muscle strength among Chinese university students: A cross-sectional study. J. Musculoskelet. Neuronal Interact. 2017, 17, 327–333. [Google Scholar]
- Kim, S.E.; Hong, J.; Cha, J.Y.; Park, J.M.; Eun, D.; Yoo, J.; Jee, Y.S. Relative appendicular skeletal muscle mass is associated with isokinetic muscle strength and balance in healthy collegiate men. J. Sports Sci. 2016, 34, 2114–2120. [Google Scholar] [CrossRef]
- Nedelec, M.; Aloulou, A.; Duforez, F.; Meyer, T.; Dupont, G. The variability of sleep among elite athletes. Sports Med. Open 2018, 4, 34. [Google Scholar] [CrossRef]
- Toubekis, A.G.; Drosou, E.; Gourgoulis, V.; Thomaidis, S.; Douda, H.; Tokmakidis, S.P. Competitive performance, training load and physiological responses during tapering in young swimmers. J. Hum. Kinet. 2013, 38, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Pla, R.; Le Meur, Y.; Aubry, A.; Toussaint, J.F.; Hellard, P. Effects of a 6-Week Period of Polarized or Threshold Training on Performance and Fatigue in Elite Swimmers. Int. J. Sports Physiol. Perform. 2019, 14, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Bretonneau, Q.; Morales-Artacho, A.; Pla, R.; Bosquet, L. Effect of the pre-taper level of fatigue on the taper-induced changes in performance in elite swimmers. Front. Sports Act. Living 2024, 6, 1353817. [Google Scholar] [CrossRef] [PubMed]
- Stavrou, V.T.; Karetsi, E.; Gourgoulianis, K.I. The Effect of Growth and Body Surface Area on Cardiopulmonary Exercise Testing: A Cohort Study in Preadolescent Female Swimmers. Children 2023, 10, 1608. [Google Scholar] [CrossRef] [PubMed]
- Mosteller, R.D. Simplified calculation of body-surface area. N. Engl. J. Med. 1987, 317, 1098. [Google Scholar] [PubMed]
- Stavrou, V.; Vavougios, G.; Karetsi, E.; Adam, G.; Daniil, Z.; Gourgoulianis, K.I. Evaluation of respiratory parameters in finswimmers regarding gender, swimming style and distance. Respir. Physiol. Neurobiol. 2018, 254, 30–31. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.H.; Cooke, N.T.; Edwards, R.H.; Spiro, S.G. Predicted normal values for maximal respiratory pressures in caucasian adults and children. Thorax 1984, 39, 535–538. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [PubMed]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Stavrou, V.; Vavougios, G.D.; Bardaka, F.; Karetsi, E.; Daniil, Z.; Gourgoulianis, K.I. The effect of exercise training on the quality of sleep in national-level adolescent finswimmers. Sports Med. Open 2019, 5, 34. [Google Scholar] [CrossRef]
- Weger, M.; Diotel, N.; Dorsemans, A.C.; Dickmeis, T.; Weger, B.D. Stem cells and the circadian clock. Dev. Biol. 2017, 431, 111–123. [Google Scholar] [CrossRef]
- Stavrou, V.; Toubekis, A.G.; Karetsi, E. Changes in Respiratory Parameters and Fin-Swimming Performance Following a 16-Week Training Period with Intermittent Breath Holding. J. Hum. Kinet. 2015, 49, 89–98. [Google Scholar] [CrossRef]
- Woorons, X.; Mollard, P.; Pichon, A.; Duvallet, A.; Richalet, J.P.; Lamberto, C. Prolonged expiration down to residual volume leads to severe arterial hypoxemia in athletes during submaximal exercise. Respir. Physiol. Neurobiol. 2007, 158, 75–82. [Google Scholar] [CrossRef]
- Williams, T.B.; Badariotti, J.I.; Corbett, J.; Miller-Dicks, M.; Neupert, E.; McMorris, T.; Ando, S.; Parker, M.O.; Thelwell, R.C.; Causer, A.J.; et al. The effects of sleep deprivation, acute hypoxia, and exercise on cognitive performance: A multi-experiment combined stressors study. Physiol. Behav. 2024, 274, 114409. [Google Scholar] [CrossRef]
- Dolezal, B.A.; Neufeld, E.V.; Boland, D.M.; Martin, J.L.; Cooper, C.B. Interrelationship between Sleep and Exercise: A Systematic Review. Adv. Prev. Med. 2017, 2017, 1364387. [Google Scholar]
- Carskadon, M.A. Sleep in adolescents: The perfect storm. Pediatr. Clin. N. Am. 2011, 58, 637–647. [Google Scholar] [CrossRef] [PubMed]
- Slavich, G.M.; Irwin, M.R. From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychol. Bull. 2014, 140, 774–815. [Google Scholar] [CrossRef] [PubMed]
- Sejbuk, M.; Mirończuk-Chodakowska, I.; Witkowska, A.M. Sleep Quality: A Narrative Review on Nutrition, Stimulants, and Physical Activity as Important Factors. Nutrients 2022, 14, 1912. [Google Scholar] [CrossRef]
- Swinbourne, R.; Gill, N.; Vaile, J.; Smart, D. Prevalence of poor sleep quality, sleepiness and obstructive sleep apnoea risk factors in athletes. Eur. J. Sport Sci. 2016, 16, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Lastella, M.; Vincent, G.E.; Duffield, R.; Roach, G.D.; Halson, S.L.; Heales, L.J.; Sargent, C. Can sleep be used as an indicator of overreaching and overtraining in athletes? Front. Physiol. 2018, 9, 436. [Google Scholar] [CrossRef]
- Malina, R.; Rogol, A.; Cumming, S.; Coelho e Silva, M.; Figueiredo, A. Biological maturation of youth athletes: Assessment and implications. Br. J. Sports Med. 2015, 49, 852–859. [Google Scholar] [CrossRef] [PubMed]
Total | Range of Values | |||
---|---|---|---|---|
Variable | Unit | (n = 48) | Lower | Upper |
Age | years | 15.2 ± 0.9 | 14.0 | 17.0 |
Body mass index | kg/m2 | 20.6 ± 1.8 | 17.3 | 24.6 |
Body surface area | m2 | 1.4 ± 0.2 | 1.1 | 1.9 |
Lean body mass | % | 66.0 ± 4.6 | 58.6 | 74.6 |
Total body water | % | 58.4 ± 7.4 | 49.2 | 71.0 |
Δchest | cm | 7.8 ± 2.7 | 3.0 | 13.0 |
Handgrip | kg−1 | 35.5 ± 8.1 | 22.2 | 55.7 |
SpO2 resting | % | 98.7 ± 0.5 | 98.0 | 99.0 |
Heart rate resting | % of predicted | 39.7 ± 5.8 | 33.0 | 50.0 |
MIP | % of predicted | 109.1 ± 11.1 | 97.0 | 133.0 |
MEP | % of predicted | 105.5 ± 9.6 | 98.0 | 142.0 |
FEV1 | % of predicted | 111.5 ± 9.9 | 100.0 | 136.0 |
FVC | % of predicted | 113.0 ± 10.5 | 94.0 | 162.0 |
PEF | % of predicted | 142.3 ± 27.5 | 99.0 | 156.0 |
PSQI | score | 3.0 ± 1.7 | 0.0 | 7.0 |
Swimming style/distance | BK: 50 m (B, n = 4, G, n = 4), 100 m (B, n = 2), 200 m (B, n = 2); BR: 50 m (B, n = 2, G, n = 2), 100 m (G, n = 2), 200 m (B, n = 2, G, n = 2); BF: 100 m (G, n = 2), 200 m (B, n = 2, G, n = 2); FR: 50 m (G, n = 2), 100 m (B, n = 2, G, n = 2), 200 m (B, n = 2), 400 m (G, n = 2), 1500 m (B, n = 2, G, n = 2); IM: 400 m (B, n = 4, G, n = 2) | |||
Type of exercise/percent of each training | Aerobic = 15%; Anaerobic = 20%; Strength = 15%; Hypoxic = 35%; Technique and Skills = 15% |
Variable | Athletes | Gender | p Value | Swimming Distance | p Value | |||
---|---|---|---|---|---|---|---|---|
Unit | Total | Boys (n = 22) | Girls (n = 26) | ≤200 m (n = 24) | >200 m (n = 24) | |||
Age | years | 15.2 ± 0.9 | 15.7 ± 1.0 | 15.1 ± 0.8 | 0.661 | 15.3 ± 1.1 | 15.2 ± 0.7 | 0.758 |
Body mass index | kg/m2 | 20.6 ± 1.8 | 20.2 ± 1.7 | 20.9 ± 1.9 | 0.152 | 21.0 ± 1.9 | 20.2 ± 1.7 | 0.162 |
Body surface area | m2 | 1.4 ± 0.2 | 1.5 ± 0.2 | 1.4 ± 0.2 | 0.003 | 1.4 ± 0.2 | 1.4 ± 0.2 | 0.584 |
Lean body mass | % | 50.5 ± 3.3 | 68.6 ± 3.6 | 63.8 ± 4.2 | <0.001 | 65.3 ± 4.3 | 66.6 ± 4.7 | 0.319 |
Total body water | % | 58.3 ± 7.4 | 64.6 ± 4.9 | 53.0 ± 4.2 | <0.001 | 58.7 ± 7.9 | 57.9 ± 6.9 | 0.741 |
Δchest | cm | 7.8 ± 2.4 | 8.6 ± 2.7 | 7.0 ± 2.6 | 0.037 | 6.9 ± 2.4 | 8.5 ± 2.7 | 0.033 |
Handgrip | kg | 35.5 ± 8.1 | 41.3 ± 7.1 | 30.6 ± 5.1 | <0.001 | 36.0 ± 8.7 | 35.0 ± 7.6 | 0.678 |
MIP | % of predicted | 109.1 ± 11.0 | 103.7 ± 11.9 | 98.6 ± 11.8 | <0.001 | 97.3 ± 10.8 | 98.0 ± 9.8 | 0.803 |
MEP | % of predicted | 105.3 ± 9.6 | 98.6 ± 11.8 | 92.9 ± 4.5 | 0.027 | 94.3 ± 5.3 | 96.8 ± 11.6 | 0.359 |
FEV1 | % of predicted | 111.6 ± 9.8 | 108.8 ± 12.7 | 102.7 ± 4.5 | 0.026 | 104.1 ± 4.5 | 106.9 ± 12.8 | 0.313 |
FVC | % of predicted | 113.1 ± 20.5 | 115.5 ± 10.9 | 108.2 ± 10.7 | 0.008 | 112.0 ± 11.9 | 111.0 ± 7.5 | 0.751 |
PEF | % of predicted | 142.4 ± 27.5 | 146.0 ± 27.3 | 139.2 ± 27.7 | 0.400 | 143.1 ± 24.0 | 141.6 ± 30.8 | 0.852 |
PSQI | score | 2.9 ± 1.7 | 2.8 ± 1.8 | 3.1 ± 1.7 | 0.613 | 4.0 ± 1.8 | 1.9 ± 0.8 | <0.001 |
cannot get to sleep within 30 min | score | 0.9 ± 0.6 | 1.0 ± 0.6 | 0.8 ± 0.5 | 0.363 | 0.9 ± 0.6 | 0.9 ± 0.5 | 0.983 |
wake up in the middle of the night or early morning | score | 0.7 ± 0.7 | 0.8 ± 0.6 | 0.7 ± 0.7 | 0.798 | 0.8 ± 0.7 | 0.7 ± 0.6 | 0.662 |
have to get up to use the bathroom | score | 0.5 ± 0.8 | 0.7 ± 0.9 | 0.3 ± 0.4 | 0.060 | 0.6 ± 0.6 | 0.4 ± 0.8 | 0.460 |
cannot breathe comfortably | score | 0.1 ± 0.3 | 0.1 ± 0.3 | 0.1 ± 0.3 | 0.865 | 02 ± 0.4 | 0.0 ± / | 0.037 |
cough or snore loudly | score | 0.1 ± 0.4 | 0.3 ± 0.6 | 0.0 ± / | 0.032 | 02 ± 0.6 | 0.8 ± 0.3 | 0.521 |
feel too cold | score | 0.1 ± 0.2 | 0.1 ± 0.3 | 0.0 ± / | 0.121 | 0.0 ± / | 0.1 ± 0.3 | 0.155 |
feel too hot | score | 0.6 ± 0.9 | 0.7 ± 1.0 | 0.6 ± 0.7 | 0.675 | 1.1 ± 0.9 | 0.3 ± 0.6 | 0.001 |
have bad dreams | score | 0.3 ± 0.6 | 0.4 ± 0.7 | 0.3 ± 0.6 | 0.763 | 0.4 ± 0.6 | 0.3 ± 0.6 | 0.365 |
have pain | score | 0.2 ± 0.5 | 0.2 ± 0.4 | 0.2 ± 0.6 | 0.733 | 0.4 ± 0.7 | 0.0 ± / | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stavrou, V.T.; Vavougios, G.D.; Tsirimona, G.; Daniil, Z.; Gourgoulianis, K.I. Sleep Quality in Greek Adolescent Swimmers. J. Funct. Morphol. Kinesiol. 2024, 9, 87. https://doi.org/10.3390/jfmk9020087
Stavrou VT, Vavougios GD, Tsirimona G, Daniil Z, Gourgoulianis KI. Sleep Quality in Greek Adolescent Swimmers. Journal of Functional Morphology and Kinesiology. 2024; 9(2):87. https://doi.org/10.3390/jfmk9020087
Chicago/Turabian StyleStavrou, Vasileios T., George D. Vavougios, Glykeria Tsirimona, Zoe Daniil, and Konstantinos I. Gourgoulianis. 2024. "Sleep Quality in Greek Adolescent Swimmers" Journal of Functional Morphology and Kinesiology 9, no. 2: 87. https://doi.org/10.3390/jfmk9020087
APA StyleStavrou, V. T., Vavougios, G. D., Tsirimona, G., Daniil, Z., & Gourgoulianis, K. I. (2024). Sleep Quality in Greek Adolescent Swimmers. Journal of Functional Morphology and Kinesiology, 9(2), 87. https://doi.org/10.3390/jfmk9020087