An Open-Source 3D Bioprinter Using Direct Light Processing for Tissue Engineering Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Mechanical Components
2.1.2. Electronic and Optical Systems
2.2. Mechanical Design
2.3. Tolerance Allocation and Deviation Analysis
2.4. Fabrication Techniques
2.5. Dimensional and Geometrical Verification Protocols
2.6. System Control and Programming
2.7. Mechanical Assembly and System Calibration
2.8. Analysis of Accuracy and Repeatability
2.9. Bioprinting of DLP-Based Constructs
2.10. Inverted Optical Microscopy
2.11. Statistical Analysis
3. Results and Discussion
3.1. 3D Bioprinter Design and Prototyping
3.1.1. Detailed CAD Modeling and Final Prototype
3.1.2. Tolerance Allocation and Maximum Deviation Analysis
3.1.3. Prototype Fabrication and Verification of Compliance with Design Specifications
3.2. Graphical User Interface and Device Operation
3.3. Evaluation of Accuracy and Repeatability
3.4. Initial Printing Tests with PEGDA Hydrogel Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| TE | Tissue engineering |
| 3D | Three-dimensional |
| VP | Vat photopolymerization |
| UV | Ultraviolet |
| SLA | Stereolithography apparatus |
| DLP | Digital light processing |
| DMD | Digital micromirror device |
| DIY | Do-it-Yourself |
| ColMA | Collagen methacryloyl |
| PEGDA | Polyethylene glycol diacrylate |
| PLA | Polylactic acid |
| CPU | Central processing unit |
| LED | Light-emitting diode |
| FDM | Fused deposition modelling |
| SD | Standard deviation |
| VGA | Video graphics array |
| GUI | Graphical user interface |
| STL | Standard tessellation language |
| PDMS | Polydimethylsiloxane |
| CAD | Computer-aided design |
| HSM | High-speed machining |
| IT | Interval tolerance |
| GelMA | Gelatin methacrylate |
| LCD | Liquid crystal display |
References
- Israni, A.K.; Zaun, D.; Rosendale, J.D.; Schaffhausen, C.; Snyder, J.J.; Kasiske, B.L. OPTN/SRTR 2017 Annual Data Report: Deceased Organ Donation. Am. J. Transplant. 2019, 19, 485–516. [Google Scholar] [CrossRef]
- Lewis, A.; Koukoura, A.; Tsianos, G.I.; Gargavanis, A.A.; Nielsen, A.A.; Vassiliadis, E. Organ donation in the US and Europe: The supply vs demand imbalance. Transplant. Rev. 2021, 35, 100585. [Google Scholar] [CrossRef] [PubMed]
- Vacanti, C.A. The history of tissue engineering. J. Cell. Mol. Med. 2006, 10, 569–576. [Google Scholar] [CrossRef]
- Groll, J.; Burdick, J.A.; Cho, D.W.; Derby, B.; Gelinsky, M.; Heilshorn, S.C.; Jüngst, T.; Malda, J.; Mironov, V.A.; Nakayama, K.; et al. A definition of bioinks and their distinction from biomaterial inks. Biofabrication 2018, 11, 013001. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785. [Google Scholar] [CrossRef]
- Gungor-Ozkerim, P.S.; Inci, I.; Zhang, Y.S.; Khademhosseini, A.; Dokmeci, M.R. Bioinks for 3D bioprinting: An overview. Biomater. Sci. 2018, 6, 915–946. [Google Scholar] [CrossRef]
- Garciamendez-Mijares, C.E.; Agrawal, P.; García Martínez, G.; Cervantes Juarez, E.; Zhang, Y.S. State-of-art affordable bioprinters: A guide for the DiY community. Appl. Phys. Rev. 2021, 8, 031312. [Google Scholar] [CrossRef]
- Vanderburgh, J.; Sterling, J.A.; Guelcher, S.A. 3D Printing of Tissue Engineered Constructs for In Vitro Modeling of Disease Progression and Drug Screening. Ann. Biomed. Eng. 2017, 45, 164–179. [Google Scholar] [CrossRef] [PubMed]
- Goodarzi Hosseinabadi, H.; Dogan, E.; Miri, A.K.; Ionov, L. Digital Light Processing Bioprinting Advances for Microtissue Models. ACS Biomater. Sci. Eng. 2022, 8, 1381–1395. [Google Scholar] [CrossRef]
- Garciamendez-Mijares, C.E.; Aguilar, F.J.; Hernandez, P.; Kuang, X.; Gonzalez, M.; Ortiz, V.; Riesgo, R.A.; Ruiz, D.S.R.; Rivera, V.A.M.; Rodriguez, J.C.; et al. Design considerations for digital light processing bioprinters. Appl. Phys. Rev. 2024, 11, 031314. [Google Scholar] [CrossRef]
- Cui, X.; Li, J.; Hartanto, Y.; Durham, M.; Tang, J.; Zhang, H.; Hooper, G.; Lim, K.; Woodfield, T. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks. Adv. Healthc. Mater. 2020, 9, 1901648. [Google Scholar] [CrossRef]
- Vanaei, S.; Parizi, M.; Vanaei, S.; Salemizadehparizi, F.; Vanaei, H. An Overview on Materials and Techniques in 3D Bioprinting Toward Biomedical Application. Eng. Regen. 2021, 2, 1–18. [Google Scholar] [CrossRef]
- Wu, Y.; Su, H.; Li, M.; Xing, H. Digital light processing-based multi-material bioprinting: Processes, applications, and perspectives. J. Biomed. Mater. Res. Part A 2023, 111, 527–542. [Google Scholar] [CrossRef] [PubMed]
- Grigoryan, B.; Paulsen, S.J.; Corbett, D.C.; Sazer, D.W.; Fortin, C.L.; Zaita, A.J.; Greenfield, P.T.; Calafat, N.J.; Gounley, J.P.; Ta, A.H.; et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 2019, 364, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Kopyeva, I.; Brady, R.P.; DeForest, C.A. Light-based fabrication and 4D customization of hydrogel biomaterials. Nat. Rev. Bioeng. 2025, 3, 159–180. [Google Scholar] [CrossRef]
- Levato, R.; Dudaryeva, O.; Garciamendez-Mijares, C.E.; Kirkpatrick, B.E.; Rizzo, R.; Schimelman, J.; Anseth, K.S.; Chen, S.; Zenobi-Wong, M.; Zhang, Y.S. Light-based vat-polymerization bioprinting. Nat. Rev. Methods Prim. 2023, 3, 47. [Google Scholar] [CrossRef]
- Li, W.; Wang, M.; Ma, H.; Chapa-Villarreal, F.A.; Lobo, A.O.; Zhang, Y.S. Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication. iScience 2023, 26, 106039. [Google Scholar] [CrossRef]
- Ke, D.; Niu, C.; Yang, X. Evolution of 3D bioprinting-from the perspectives of bioprinting companies. Bioprinting 2022, 25, e00193. [Google Scholar] [CrossRef]
- Grigoryan, B.; Sazer, D.W.; Avila, A.; Albritton, J.L.; Padhye, A.; Ta, A.H.; Greenfield, P.T.; Gibbons, D.L.; Miller, J.S. Development, characterization, and applications of multi-material stereolithography bioprinting. Sci. Rep. 2021, 11, 3171. [Google Scholar] [CrossRef]
- Bhusal, A.; Dogan, E.; Nguyen, H.A.; Labutina, O.; Nieto, D.; Khademhosseini, A.; Miri, A.K. Multi-material digital light processing bioprinting of hydrogel-based microfluidic chips. Biofabrication 2021, 14, 014103. [Google Scholar] [CrossRef]
- Yang, X.; Yao, L.; Sun, X.; Wang, L.; Xiao, J. Low-temperature DLP 3D printing of low-concentration collagen methacryloyl for the fabrication of durable and bioactive personalized scaffolds. Chem. Eng. J. 2024, 497, 155650. [Google Scholar] [CrossRef]
- Pagac, M.; Hajnys, J.; Ma, Q.P.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers 2021, 13, 598. [Google Scholar] [CrossRef] [PubMed]
- Alparslan, C.; Bayraktar, S. Advances in Digital Light Processing (DLP) Bioprinting: A Review of Biomaterials and Its Applications, Innovations, Challenges, and Future Perspectives. Polymers 2025, 17, 1287. [Google Scholar] [CrossRef] [PubMed]
- Al Rashid, A.; Ahmed, W.; Khalid, M.Y.; Koç, M. Vat photopolymerization of polymers and polymer composites: Processes and applications. Addit. Manuf. 2021, 47, 102279. [Google Scholar] [CrossRef]
- Nieto, D.; Jorge de Mora, A.; Kalogeropoulou, M.; Bhusal, A.; Miri, A.K.; Moroni, L. Bottom-up and top-down VAT photopolymerization bioprinting for rapid fabrication of multi-material microtissues. Int. J. Bioprint. 2024, 10, 1017. [Google Scholar] [CrossRef]
- Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.H. Engineering Design: A Systematic Approach, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
- Green, P. (Ed.) The Geometrical Tolerancing Desk Reference; Newnes: Oxford, UK, 2005. [Google Scholar] [CrossRef]
- Community, P. Pygame-Python Game Development. Version 2.5.2. 2024. Available online: https://www.pygame.org (accessed on 7 August 2025).
- Schimansky, T. CustomTkinter: A Modern Themed Tkinter UI Library. Version 5.2.1. 2025. Available online: https://github.com/TomSchimansky/CustomTkinter (accessed on 7 August 2025).
- ISO 9283:1998; Manipulating Industrial Robots—Perfomance Criteria and Related Test Methods. International Organization for Standarization (ISO): Geneva, Switzerland, 1998.
- Krause, D.; Eilmus, S. A methodical approach for developing modular product families. In DS 68-4, Proceedings of the 18th International Conference on Engineering Design (ICED 11), Impacting Society Through Engineering Design, Lyngby/Copenhagen, Denmark, 15–19 August 2011; The Design Society: Glasgow, UK, 2011; Volume 4: Product and Systems Design; pp. 299–308. [Google Scholar]
- Wu, L.; Dong, Z.; Du, H.; Li, C.; Fang, N.X.; Song, Y. Bioinspired Ultra-Low Adhesive Energy Interface for Continuous 3D Printing: Reducing Curing Induced Adhesion. Research 2018, 2018, 4795604. [Google Scholar] [CrossRef]







| Parameter | Value |
|---|---|
| XY resolution | (LRS-20), 20 (LRS-WQm 3.6×) |
| XY dimension | 29.3 × (LRS-20), 54.3 × (LRS-WQm 3.6×) |
| Z resolution, | 1 |
| Z stroke, s | 50 |
| Light wavelength, | 405 , 465 |
| Light power |
| Component | Tolerance | IT | Min. | Max. | Interval | Average | SD |
|---|---|---|---|---|---|---|---|
| Upper base | Parallelism | 0.10 | −0.031 | 0.013 | 0.044 | 0.049 | 0.006 |
| −0.041 | 0.014 | 0.055 | |||||
| −0.040 | 0.009 | 0.049 | |||||
| Spacer braces | Perpendicularity | 0.05 | −0.002 | 0.009 | 0.011 | 0.012 | 0.002 |
| −0.017 | −0.003 | 0.014 | |||||
| −0.009 | 0.002 | 0.011 | |||||
| Upper frame | Parallelism | 0.10 | −0.012 | 0.003 | 0.015 | 0.016 | 0.001 |
| DLP | −0.017 | −0.001 | 0.016 | ||||
| −0.013 | 0.004 | 0.017 | |||||
| Lower frame | Parallelism | 0.10 | −0.029 | 0.022 | 0.051 | l0.048 | l0.003 |
| DLP | −0.024 | 0.025 | 0.049 | ||||
| −0.015 | 0.030 | 0.045 | |||||
| Z-axis seat | Parallelism | 0.05 | −0.005 | 0.006 | 0.011 | 0.011 | 0.001 |
| (Upper base) | −0.007 | 0.005 | 0.012 | ||||
| −0.007 | 0.004 | 0.011 | |||||
| Z-axis frame | Perpendicularity | 0.10 | −0.067 | 0.009 | 0.076 | 0.063 | 0.023 |
| Datum A | 0.000 | 0.036 | 0.036 | ||||
| −0.016 | 0.060 | 0.076 | |||||
| Z-axis frame | Perpendicularity | 0.10 | −0.012 | 0.023 | 0.035 | 0.038 | 0.003 |
| Datum B | −0.015 | 0.022 | 0.037 | ||||
| −0.014 | 0.027 | 0.041 |
| Dimension | Nominal | IT | Min. | Max. | Measured | Average | SD |
|---|---|---|---|---|---|---|---|
| Length | 131.5 | 0.05 | 131.45 | 131.55 | 131.51 | 131.523 | 0.012 |
| LRS-20 | 131.53 | ||||||
| 131.53 | |||||||
| Length | 115.2 | 0.05 | 115.15 | 115.25 | 115.2 | 115.190 | 0.010 |
| LRS-WQm 3.6× | 115.19 | ||||||
| 115.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Garcia, D.; Giménez-El-Amrani, A.; Gonzalez-Muñoz, A.; Sanz-Garcia, A. An Open-Source 3D Bioprinter Using Direct Light Processing for Tissue Engineering Applications. Inventions 2025, 10, 92. https://doi.org/10.3390/inventions10050092
Sanchez-Garcia D, Giménez-El-Amrani A, Gonzalez-Muñoz A, Sanz-Garcia A. An Open-Source 3D Bioprinter Using Direct Light Processing for Tissue Engineering Applications. Inventions. 2025; 10(5):92. https://doi.org/10.3390/inventions10050092
Chicago/Turabian StyleSanchez-Garcia, Daniel, Anuar Giménez-El-Amrani, Armando Gonzalez-Muñoz, and Andres Sanz-Garcia. 2025. "An Open-Source 3D Bioprinter Using Direct Light Processing for Tissue Engineering Applications" Inventions 10, no. 5: 92. https://doi.org/10.3390/inventions10050092
APA StyleSanchez-Garcia, D., Giménez-El-Amrani, A., Gonzalez-Muñoz, A., & Sanz-Garcia, A. (2025). An Open-Source 3D Bioprinter Using Direct Light Processing for Tissue Engineering Applications. Inventions, 10(5), 92. https://doi.org/10.3390/inventions10050092

