Previous Issue
Volume 11, November
 
 

Tomography, Volume 11, Issue 12 (December 2025) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
15 pages, 2873 KB  
Article
Evaluation of Projection Images for Visual Quality Control of Automated Left and Right Lung Segmentations on T1-Weighted MRI in Large-Scale Clinical Cohort Studies
by Tobias Norajitra, Christopher L. Schlett, Ricarda von Krüchten, Prerana Agarwal, Ashis Ravindran, Thuy Duong Do, Lisa Kausch, Stefan Karrasch, Hans-Ulrich Kauczor, Klaus Maier-Hein and Claudius Melzig
Tomography 2025, 11(12), 135; https://doi.org/10.3390/tomography11120135 - 29 Nov 2025
Abstract
Background/Objectives: To assess diagnostic accuracy of two-dimensional (2D) projection methods for rapid visual quality control of automated volumetric (3D) lung segmentations compared with slice-based 3D review of segmentation results for application in large-scale studies. Methods: Segmentation of right and left lungs [...] Read more.
Background/Objectives: To assess diagnostic accuracy of two-dimensional (2D) projection methods for rapid visual quality control of automated volumetric (3D) lung segmentations compared with slice-based 3D review of segmentation results for application in large-scale studies. Methods: Segmentation of right and left lungs on T1-weighted MRI of 300 participants of the German National Cohort (NAKO) study was performed using the nnU-NET framework. Three variants of 2D projection images of segmentation masks were created: maximum intensity projection (MIP) using pseudo-chromadepth encoding with different color spectra for right and left lung (Colored_MIP) and standard deviation projection of segmentation mask outlines, encoded in black-and-white (Gray_outline) or using color-encoding (Colored_outline). The worst of two ratings by two independent raters conducting slice-based review for segmentation errors on underlying imaging data and review for mislabeling errors served as the standard of reference. All variants were evaluated by five raters each for identification of segmentation errors and the majority rating was used as index test. The time required for review was recorded and diagnostic accuracies were calculated. Results: Sensitivities of Colored_MIP, Colored_outline and Gray_outline were 88.2% [95%-CI 78.7%; 94.4%], 89.5% [80.3%; 95.3%] and 78.9% [68.1%; 87.5%]; specificities were 98.7% [96.1%; 99.7%], 96.4% [93.1%; 98.5%] and 98.7% [96.1%; 99.7%]; and F1-scores were 0.918, 0.895 and 0.863, respectively. Mean time per case and rater required for evaluation was 2.8 ± 0.9 s for Colored_outline, 1.7 ± 0.1 s for Colored_MIP, and 2.0 ± 0.4 s for Gray_outline. Conclusions: The 2D segmentation mask projection images enabled the detection of segmentation errors of automated 3D segmentations of left and right lungs based on MRI with high diagnostic accuracy, especially when using color-encoding. The method enabled evaluation within a matter of seconds per case. Segmentation mask projection images may assist in visual quality control of automated segmentations in large-scale studies. Full article
Show Figures

Figure 1

11 pages, 1626 KB  
Article
A Question of Dose? Ultra-Low Dose Chest CT on Photon-Counting CT in People with Cystic Fibrosis
by Marcel Opitz, Matthias Welsner, Halil I. Tazeoglu, Florian Stehling, Sivagurunathan Sutharsan, Dirk Westhölter, Erik Büscher, Christian Taube, Nika Guberina, Denise Bos, Marcel Drews, Daniel Rosok, Sebastian Zensen, Johannes Haubold, Lale Umutlu, Michael Forsting and Marko Frings
Tomography 2025, 11(12), 134; https://doi.org/10.3390/tomography11120134 - 27 Nov 2025
Abstract
Objective: Chest computed tomography (CT) is a key component of the diagnostic assessment of people with cystic fibrosis (PwCF) and is increasingly replacing chest radiography. Due to improvements in life expectancy, radiation exposure has become a growing concern in PwCF. Photon-counting CT (PCCT) [...] Read more.
Objective: Chest computed tomography (CT) is a key component of the diagnostic assessment of people with cystic fibrosis (PwCF) and is increasingly replacing chest radiography. Due to improvements in life expectancy, radiation exposure has become a growing concern in PwCF. Photon-counting CT (PCCT) has the potential to reduce the risk of radiation-induced malignancies while maintaining diagnostic accuracy. This study aimed to compare the radiation dose and image quality of low-dose high-resolution (LD-HR) and ultra-low-dose high-resolution (ULD-HR) CT protocols using PCCT in PwCF. Methods: This retrospective study included 72 PwCF, with 36 undergoing a LD-HR chest CT protocol and 36 receiving an ULD-HR protocol on a PCCT. The radiation dose and image quality were assessed by comparing the effective dose and signal-to-noise ratio (SNR). Three blinded radiologists evaluated the overall image quality, sharpness, noise, and assessability of the bronchi, bronchial wall thickening, and bronchiolitis using a five-point Likert scale. Results: The ULD-HR PCCT protocol reduced radiation exposure by approximately 65% compared with the LD-HR PCCT protocol (median effective dose: 0.19 vs. 0.55 mSv, p < 0.001). While LD-HR images were consistently rated higher than ULD-HR images (p < 0.001), both protocols maintained diagnostic significance (median image quality rating of “4-good”). The average SNR of the lung parenchyma was significantly lower with ULD-HR PCCT compared to LD-HR PCCT (p < 0.001). Conclusions: ULD-HR PCCT significantly reduced radiation exposure while maintaining good diagnostic image quality in PwCF. The effective dose of ULD-HR PCCT is only twice that of a two-plane chest X-ray, making it a viable low-radiation alternative for routine imaging in PwCF. Full article
(This article belongs to the Special Issue Medical Image Analysis in CT Imaging)
Show Figures

Figure 1

14 pages, 1300 KB  
Article
Quantitative Ultrasound Grayscale Analysis and Size of Benign and Malignant Solid Thyroid Nodules
by Salahaden R. Sultan, Faisal Albin Hajji, Abdulrahman Alhazmi, Shahad Alamri, Abrar Alsulami, Ahmed Albukhari, Asseel Filimban, Bander Almutairi, Ahmad Albngali, Reham Kaifi, Mohammad Khayat, Mohammed Alkharaiji, Mohammad Khalil and Abrar Alfatni
Tomography 2025, 11(12), 133; https://doi.org/10.3390/tomography11120133 - 27 Nov 2025
Abstract
Background: Ultrasound is the primary imaging modality for evaluating thyroid nodules, with echogenicity and nodule size serving as parameters for malignancy risk stratification. Though the TI-RADS classification system is standardized, interpretation varies among observers due to subjectivity, and can affect diagnostic consistency. This [...] Read more.
Background: Ultrasound is the primary imaging modality for evaluating thyroid nodules, with echogenicity and nodule size serving as parameters for malignancy risk stratification. Though the TI-RADS classification system is standardized, interpretation varies among observers due to subjectivity, and can affect diagnostic consistency. This study aimed to evaluate the diagnostic and interobserver agreement of quantitative ultrasound gray-scale analysis and nodule area in differentiating benign from malignant solid thyroid nodules. Methods: This retrospective study reviewed 600 patients who underwent thyroid ultrasound at King Abdulaziz University Hospital, Jeddah, Saudi Arabia, in 2023 and 2024. Of these 600, 107 adult patients with 116 solid thyroid nodules (96 benign and 20 malignant) who subsequently underwent ultrasound-guided fine-needle aspiration were included in the final analysis. From B-mode ultrasound images, the grayscale median (GSM) values of each nodule and adjacent normal thyroid tissue were measured using Adobe Photoshop. The GSM ratio (GSMr) was calculated by dividing nodule GSM by normal tissue GSM. Nodule size, taken as cross-sectional area, was assessed using ImageJ software version 1.53. The Mann–Whitney U test was used to compare GSMr and the area between benign and malignant nodules. Inter-observer agreement was evaluated using the intraclass correlation coefficient (ICC). Results: Malignant nodules had significantly lower GSMr compared to benign nodules (malignant: median 0.76, IQR 0.27; benign: median 0.88, IQR 0.55, p = 0.02). Malignant nodules were also significantly larger than benign nodules (malignant: median 2.77 cm2, IQR: 5.08; benign: median 1.78 cm2, IQR 1.65, p = 0.02). Inter-observer reproducibility was excellent for both GSMr (ICC = 0.998) and area (ICC = 0.997). Conclusions: Quantitative ultrasound assessment of grayscale echogenicity and nodule area provides valuable diagnostic information for differentiating benign from malignant solid thyroid nodules. These objective measures may enhance diagnostic confidence and support more precise clinical decision-making in thyroid nodule evaluation. Full article
(This article belongs to the Special Issue Imaging in Cancer Diagnosis)
Show Figures

Figure 1

15 pages, 6666 KB  
Article
Accuracy of Ultra-Fast Low-Field MRI (0.55 T) for Lung Nodule Detection with Ultra-Short Echo Time Sequences
by Maximilian Hinsen, Armin Michael Nagel, Nadine Bayerl, Hans-Peter Fautz, Thomas Benkert, Matthias Stefan May, Michael Uder and Rafael Heiss
Tomography 2025, 11(12), 132; https://doi.org/10.3390/tomography11120132 - 26 Nov 2025
Abstract
Lung nodules are a common radiological finding that can be caused by a variety of reasons, ranging from benign granulomas and scarring to the early stages of primary lung malignancies and metastases [...] Full article
Show Figures

Figure 1

17 pages, 11795 KB  
Article
3D Imaging of Proton FLASH Radiation Using a Multi-Detector Small Animal PET System
by Wen Li, Yuncheng Zhong, Youfang Lai, Lingshu Yin, Daniel Sforza, Devin Miles, Heng Li and Xun Jia
Tomography 2025, 11(12), 131; https://doi.org/10.3390/tomography11120131 - 26 Nov 2025
Abstract
Objectives: Ultra-high dose-rate FLASH radiotherapy has demonstrated strong potential in reducing normal tissue toxicity while maintaining effective tumor control. However, its underlying radiobiological mechanisms remain unclear, highlighting the need for novel approaches to probe the effects of radiation during and immediately after delivery. [...] Read more.
Objectives: Ultra-high dose-rate FLASH radiotherapy has demonstrated strong potential in reducing normal tissue toxicity while maintaining effective tumor control. However, its underlying radiobiological mechanisms remain unclear, highlighting the need for novel approaches to probe the effects of radiation during and immediately after delivery. This study presents the first exploration of 3D PET imaging of positron-emitting nuclei (PENs) generated by a FLASH proton beam. Methods: A home-built 12-panel preclinical small-animal PET system was employed for recording coincidence events. A 142.4 MeV FLASH proton beam with a 100 ms delivery time was directed into a solid water phantom. PET coincidence signals were recorded during the first 1 s and up to 11 min. The system’s capability for 3D localization was also assessed, and Monte Carlo simulations were performed for validation. Results: The PET system successfully recorded coincidence data within the first second, including the 100 ms beam delivery interval. Detector dead-time effects under the high beam flux were observed, leading to underestimated event counts. Following irradiation, the measured activity and decay behavior were consistent with simulations. The PET system accurately reconstructed the spatial distribution of PEN activities, with discrepancies in measured versus calculated line profiles ranging from 3.35–6.85%. Reconstructed PET images enabled reliable 3D localization with sub-millimeter accuracy in both lateral and depth dimensions. Conclusions: Our findings demonstrate that a multi-detector PET system is a promising tool for investigating the radiation effects of FLASH beams. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop