Previous Issue
Volume 11, July
 
 

J. Imaging, Volume 11, Issue 8 (August 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 33092 KiB  
Article
Yarn Color Measurement Method Based on Digital Photography
by Jinxing Liang, Guanghao Wu, Ke Yang, Jiangxiaotian Ma, Jihao Wang, Hang Luo, Xinrong Hu and Yong Liu
J. Imaging 2025, 11(8), 248; https://doi.org/10.3390/jimaging11080248 - 22 Jul 2025
Abstract
To overcome the complexity of yarn color measurement using spectrophotometry with yarn winding techniques and to enhance consistency with human visual perception, a yarn color measurement method based on digital photography is proposed. This study employs a photographic colorimetry system to capture digital [...] Read more.
To overcome the complexity of yarn color measurement using spectrophotometry with yarn winding techniques and to enhance consistency with human visual perception, a yarn color measurement method based on digital photography is proposed. This study employs a photographic colorimetry system to capture digital images of single yarns. The yarn and background are segmented using the K-means clustering algorithm, and the centerline of the yarn is extracted using a skeletonization algorithm. Spectral reconstruction and colorimetric principles are then applied to calculate the color values of pixels along the centerline. Considering the nonlinear characteristics of human brightness perception, the final yarn color is obtained through a nonlinear texture-adaptive weighted computation. The method is validated through psychophysical experiments using six yarns of different colors and compared with spectrophotometry and five other photographic measurement methods. Results indicate that among the seven yarn color measurement methods, including spectrophotometry, the proposed method—based on centerline extraction and nonlinear texture-adaptive weighting—yields results that more closely align with actual visual perception. Furthermore, among the six photographic measurement methods, the proposed method produces most similar to those obtained using spectrophotometry. This study demonstrates the inconsistency between spectrophotometric measurements and human visual perception of yarn color and provides methodological support for developing visually consistent color measurement methods for textured textiles. Full article
(This article belongs to the Section Color, Multi-spectral, and Hyperspectral Imaging)
Show Figures

Figure 1

24 pages, 8015 KiB  
Article
Innovative Multi-View Strategies for AI-Assisted Breast Cancer Detection in Mammography
by Beibit Abdikenov, Tomiris Zhaksylyk, Aruzhan Imasheva, Yerzhan Orazayev and Temirlan Karibekov
J. Imaging 2025, 11(8), 247; https://doi.org/10.3390/jimaging11080247 - 22 Jul 2025
Abstract
Mammography is the main method for early detection of breast cancer, which is still a major global health concern. However, inter-reader variability and the inherent difficulty of interpreting subtle radiographic features frequently limit the accuracy of diagnosis. A thorough assessment of deep convolutional [...] Read more.
Mammography is the main method for early detection of breast cancer, which is still a major global health concern. However, inter-reader variability and the inherent difficulty of interpreting subtle radiographic features frequently limit the accuracy of diagnosis. A thorough assessment of deep convolutional neural networks (CNNs) for automated mammogram classification is presented in this work, along with the introduction of two innovative multi-view integration techniques: Dual-Branch Ensemble (DBE) and Merged Dual-View (MDV). By setting aside two datasets for out-of-sample testing, we evaluate the generalizability of the model using six different mammography datasets that represent various populations and imaging systems. We compare a number of cutting-edge architectures on both individual and combined datasets, including ResNet, DenseNet, EfficientNet, MobileNet, Vision Transformers, and VGG19. Both MDV and DBE strategies improve classification performance, according to experimental results. VGG19 and DenseNet both obtained high ROC AUC scores of 0.9051 and 0.7960 under the MDV approach. DenseNet demonstrated strong performance in the DBE setting, achieving a ROC AUC of 0.8033, while ResNet50 recorded a ROC AUC of 0.8042. These enhancements demonstrate how beneficial multi-view fusion is for boosting model robustness. The impact of domain shift is further highlighted by generalization tests, which emphasize the need for diverse datasets in training. These results offer practical advice for improving CNN architectures and integration tactics, which will aid in the creation of trustworthy, broadly applicable AI-assisted breast cancer screening tools. Full article
(This article belongs to the Section Medical Imaging)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop