Open AccessArticle
Evaluation of Transfer Learning Efficacy for Surgical Suture Quality Classification on Limited Datasets
by
Roman Ishchenko, Maksim Solopov, Andrey Popandopulo, Elizaveta Chechekhina, Viktor Turchin, Fedor Popivnenko, Aleksandr Ermak, Konstantyn Ladyk, Anton Konyashin, Kirill Golubitskiy, Aleksei Burtsev and Dmitry Filimonov
Viewed by 177
Abstract
This study evaluates the effectiveness of transfer learning with pre-trained convolutional neural networks (CNNs) for the automated binary classification of surgical suture quality (high-quality/low-quality) using photographs of three suture types: interrupted open vascular sutures (IOVS), continuous over-and-over open sutures (COOS), and interrupted laparoscopic
[...] Read more.
This study evaluates the effectiveness of transfer learning with pre-trained convolutional neural networks (CNNs) for the automated binary classification of surgical suture quality (high-quality/low-quality) using photographs of three suture types: interrupted open vascular sutures (IOVS), continuous over-and-over open sutures (COOS), and interrupted laparoscopic sutures (ILS). To address the challenge of limited medical data, eight state-of-the-art CNN architectures—EfficientNetB0, ResNet50V2, MobileNetV3Large, VGG16, VGG19, InceptionV3, Xception, and DenseNet121—were trained and validated on small datasets (100–190 images per type) using 5-fold cross-validation. Performance was assessed using the F1-score, AUC-ROC, and a custom weighted stability-aware score (Score
adj). The results demonstrate that transfer learning achieves robust classification (F1 > 0.90 for IOVS/ILS, 0.79 for COOS) despite data scarcity. ResNet50V2, DenseNet121, and Xception were more stable by Score
adj, with ResNet50V2 achieving the highest AUC-ROC (0.959 ± 0.008) for IOVS internal view classification. GradCAM visualizations confirmed model focus on clinically relevant features (e.g., stitch uniformity, tissue apposition). These findings validate transfer learning as a powerful approach for developing objective, automated surgical skill assessment tools, reducing reliance on subjective expert evaluations while maintaining accuracy in resource-constrained settings.
Full article
►▼
Show Figures