Valorization of Agro-Food Plant Wastes: Bioactive Compound Profiles and Biotechnological Potential of Twenty Crops
Abstract
1. Introduction
2. Bioactive Materials in Food Waste
2.1. Overview of Bioactive Compounds
2.2. Functional Groups and Chemical Constituents
2.3. Mechanisms of Action and Biotechnological Applications Used for Phenolic Compounds
3. Analysis of Agro-Food Wastes
3.1. Introduction to Edible Plant Waste Valorization
3.1.1. Selection of Plant Species and Botanical Classification
3.1.2. Scientific and Cultural Justification for Crop Selection
3.2. Bioactive Compounds in Fruit and Vegetable Residues
3.2.1. Botanical Definition and Agro-Industrial Relevance
3.2.2. Composition, Functional Groups, and Bioactive Compounds
| Residue/Waste | Family | Bioactive Compound | Quantity/Range | Ref. |
|---|---|---|---|---|
| Bananas | Musaceae | phenolic acids | 21.7 mg/100 g DW | [30] |
| flavanols | 26.8 mg/100 g DW | [30] | ||
| Total Polyphenols | 73.4 mg/100 g DW | [30] | ||
| Oranges/lemons | Rutaceae | hesperidin naringin | 28.5 mg/g DW 0.5 mg/g DW | [72] [72] |
| phenolic acids | 147.6 mg GAE/g DW | [72] | ||
| essential oils | 7.8 mg/g DW | [76] | ||
| Cucumbers | Cucurbitaceae | phenolic acids | 23.8 mg GAE/g | [77] |
| Eggplants | Solanaceae | TAC | 570.1 mg C3G/g DW Extract | [78] |
| phenolic acids | 39.4 ± 4.7 mg GAE/g Peel Extract | [24,79] | ||
| flavanoids | 17.1 ± 2.9 mg CE/g Peel Extract | [76] | ||
| Pumpkins | Cucurbitaceae | phenolic acids | 2.5 mg GAE/g DW | [68] |
| flavanoids | 63.8 mg QAE/g DW | [68] | ||
| Raspberries | Rosaceae | phenolic acids | 23.9 mg GAE/g DW | [26,36] |
| TAC | 7.1 mg C3G/L DW | [36] | ||
| flavanoids | 8.0 mg QE/g DW | [36] | ||
| Tomatoes | Solanaceae | phenolic acids | 2.6 mg de GAE/g DW | [44] |
| quercetin | 1.0 mg GAE/g DW | [31] | ||
| β-Carotene | 23.8% Dry Extract | [34] | ||
| Lycopene | 0.05966 mg/g DW Extract | [34] | ||
| flavonoids | 66.8 mg/L Extract | [45] | ||
| Watermelons | Cucurbitaceae | phenolic acids | 6.1 mg GAE/g DW | [80] |
| flavanoids | 3.4 mg Rutin/g DW | [80] | ||
| Asparagus | Asparagaceae | phenolic acids | 11.6 mg GAE/g DW | [43,81] |
| Cabbages | Brassicaceae | phenolic acids | 43.1–66.0 mg/100 g FW | [82] |
| glucosinolates | 10.9 mmol/g | [71] | ||
| Lettuce | Asteraceae | phenolic acids | 1.8–55.1 (mg/g DW) | [83] |
| flavonoids | 0.9–22.1 (mg/g DW) | [83] | ||
| Broccoli | Brassicaceae | phenolic acids | 53.2 (mg/100 g FW) | [84,85] |
| glucosinolates | 162 (µmol/g DW) | [71] | ||
| Carrots | Apiaceae | phenolic acids | 8.6 (g GAE/100 g DW) | [75] |
| flavonoids | 39.6 mg/100 g fresh weight | [86] | ||
| Green garlic | Maryllidaceae | Flavonols (quercetin, kaempferol derivatives) | 12.5 (mg/mL) | [87] |
| Onions (raw) | Amaryllidaceae | phenolic acids | 348.7 mg GAE/g | [73] |
| quercetin (raw waste) | 14.5–5110 µg/g DW | [86] | ||
| quercetin (fermented) | 14.9–48.5 mg/g DW | [87] | ||
| kaempferol (raw waste) | 3.2–481 µg/g DW | [86] | ||
| Potatoes | Solanaceae | phenolic acids | 10–40 GAE mg/g DW | [38,88] |
| hydroxycinnamates | 25–60 mg/g (DW) | [38] | ||
| β-carotene | 0.6 μg/g (DW) | [89] | ||
| Sweet potatoes | Convolvulaceae | phenolic acids | 179.8 mg GAE/100 g tuber 262.3 mg GAE/100 g peel | [69] |
| total carotenoids (β-carotene) | 12.7 (mg/100 g) peel 19.6 (mg/100 g) tuber | [74] | ||
| Spinach | Amaranthaceae | total polyphenols | 0.4–0.7 mg GAE/g dry residue | [42] |
| chlorophylls | 112.8 mg/100 g | [57] |
4. Extraction and Characterization Methods
4.1. Extraction Methods
4.1.1. Conventional Methods
4.1.2. Advanced Techniques
4.1.3. Comparative Overview and Outlook of Extraction Methods
4.2. Characterization Methods
4.2.1. Spectroscopic Methods
4.2.2. Chromatographic Methods
4.2.3. Highlight and Visual Summary of Characterization Methods
5. Biotechnology Applications
5.1. Environmental Remediation
5.1.1. Wastewater Treatment and Soil Remediation
| Contaminant | Banana-Based Adsorbent | Maximum Adsorption Capacity (mg/g) | Ref. |
|---|---|---|---|
| Cu(II) | Banana peel (unmodified) | 3.2 | [111] |
| Zn(II) | Banana peel (unmodified) | 2.8 | [111] |
| Cr(VI) | Banana peel (acid-treated) | 161 | [112] |
| Cr(VI) | Fe3O4/banana peel/alginate composite (MAB) | 370.4 (≈94% removal) | [113] |
| Pb(II) | Banana peel activated carbon–Al2O3–chitosan composite | 57.1 | [118] |
| Cd(II) | Banana peel + MgO composite beads (BPMB) | 454.5 | [114] |
| Ni(II) | Banana peel (DTPA-modified) | 29.2 | [119] |
| Methylene blue (dye) | Banana peel powder (no chemical treatment) | ~33 | [116] |
| Fluoride (F−) | Banana peel dust (modified) | 39.5 | [115] |
| Atrazine (herbicide) | Banana peel (H3PO4-pretreated) | 14 | [116] |
5.1.2. Bioenergy Production and Air Pollution Control
5.1.3. Economical Snapshot
5.2. Healthcare and Medical Biotechnology
5.2.1. Biotechnological Innovations in Diagnostics
5.2.2. Biotechnology-Based Materials and Therapies
5.2.3. Economical Snapshot
5.3. Industrial and Food Biotechnology
5.3.1. Bioprocessing for Sustainable Production
5.3.2. Fermentation Technology in Food Production
5.3.3. Use of Genetically Modified Microorganisms in Manufacturing
5.3.4. Industrial and Food Biotechnology Applications Framework
5.3.5. Economical Snapshot
6. Discussion and Conclusions
6.1. Key Findings
6.2. Overview of Comparative Diagrams
6.3. Future Directions
6.3.1. Research Gaps
6.3.2. Emerging Opportunities
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AD | Anaerobic Digestion |
| AFW | Agro-Food Waste |
| AOAC | Association of Official Analytical Chemists |
| CAGR | Compound Annual Growth Rate |
| CE | Circular Economy |
| C3G | Cyanidin-3-glucoside |
| DES | Deep Eutectic Solvents |
| DW | Dry Weight |
| EAE | Enzyme-Assisted Extraction |
| EO | Essential Oil |
| FAO | Food and Agriculture Organization |
| FW | Fresh Weight |
| FTIR | Fourier Transform Infrared Spectroscopy |
| GAE | Gallic Acid Equivalents |
| GC-MS | Gas Chromatography–Mass Spectrometry |
| HAT | Hydrogen Atom Transfer |
| HPLC | High-Performance Liquid Chromatography |
| HPLC-MS | High-Performance Liquid Chromatography–Mass Spectrometry |
| HRT | Hydraulic Retention Time |
| MAE | Microwave-Assisted Extraction |
| MS | Mass Spectrometry |
| NF | Nanofiltration |
| NMR | Nuclear Magnetic Resonance |
| OECD | Organisation for Economic Co-operation and Development |
| SFE | Supercritical CO2 Extraction |
| TAC | Total Anthocyanin Content |
| TFC | Total Flavonoid Content |
| TPC | Total Phenolic Content |
| UAE | Ultrasound-Assisted Extraction |
| UB | Ultrasonic Bath |
| UF | Ultrafiltration |
| UNEP | United Nations Environment Programme |
| UV-Vis | Ultraviolet-Visible Spectroscopy |
| WHO | World Health Organization |
References
- United Nations Environment Programme. We Are All in This Together—Annual Report 2024; United Nations Environment Programme: Nairobi, Kenya, 2025. [Google Scholar]
- De Laurentiis, V.; Corrado, S.; Sala, S. Quantifying Household Waste of Fresh Fruit and Vegetables in the EU. Waste Manag. 2018, 77, 238–251. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2023; FAO: Rome, Italy, 2023; ISBN 978-92-5-138167-0. [Google Scholar]
- United Nations Environment Programme. Food Waste Index Report 2024. Think Eat Save: Tracking Progress to Halve Global Food Waste; United Nations Environment Programme: Nairobi, Kenya, 2024. [Google Scholar]
- Sorrenti, V.; Burò, I.; Consoli, V.; Vanella, L. Recent Advances in Health Benefits of Bioactive Compounds from Food Wastes and By-Products: Biochemical Aspects. Int. J. Mol. Sci. 2023, 24, 2019. [Google Scholar] [CrossRef]
- Kandemir, K.; Piskin, E.; Xiao, J.; Tomas, M.; Capanoglu, E. Fruit Juice Industry Wastes as a Source of Bioactives. J. Agric. Food Chem. 2022, 70, 6805–6832. [Google Scholar] [CrossRef]
- Abidi, S.; Trabelsi, A.B.H.; Mihoubi, N.B. Pyrolysis of Lemon Peel Waste in a Fixed-Bed Reactor and Characterization of Innovative Pyrolytic Products. J. Mater. Cycles Waste Manag. 2023, 25, 235–248. [Google Scholar] [CrossRef]
- Abduwhab, W.M.; Hasan, W.A.; AL-Bayati, M.A. Burned Wound Healing Effect of Prepared Pumpkin Seed Oil Nano Phytosome Loaded Lidocaine in Rabbit. AAVS 2024, 12. [Google Scholar] [CrossRef]
- Aguilar-Guadarrama, A.B.; Yáñez-Ibarra, G.; Cancino-Marentes, M.E.; González-Ibarra, P.; Ortiz-Andrade, R.; Sánchez-Recillas, A.; Rodríguez-Carpena, J.-G.; Aguirre-Vidal, Y.; Medina-Diaz, I.-M.; Ávila-Villarreal, G. Chromatographic Techniques and Pharmacological Analysis as a Quality Control Strategy for Serjania Triquetra a Traditional Medicinal Plant. Pharmaceuticals 2022, 15, 1289. [Google Scholar] [CrossRef]
- Shinali, T.S.; Zhang, Y.; Altaf, M.; Nsabiyeze, A.; Han, Z.; Shi, S.; Shang, N. The Valorization of Wastes and Byproducts from Cruciferous Vegetables: A Review on the Potential Utilization of Cabbage, Cauliflower, and Broccoli Byproducts. Foods 2024, 13, 1163. [Google Scholar] [CrossRef]
- Onyango, C.; Nyairo, W.; Tchieta, G.P.; Shikuku, V.O. Watermelon Rind Based Adsorbents for the Removal of Water Pollutants: A Critical Review. Front. Environ. Chem. 2025, 6, 1568695. [Google Scholar] [CrossRef]
- Kainat, S.; Arshad, M.S.; Khalid, W.; Zubair Khalid, M.; Koraqi, H.; Afzal, M.F.; Noreen, S.; Aziz, Z.; Al-Farga, A. Sustainable Novel Extraction of Bioactive Compounds from Fruits and Vegetables Waste for Functional Foods: A Review. Int. J. Food Prop. 2022, 25, 2457–2476. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Akpomie, K.G.; Conradie, J. Banana Peel as a Biosorbent for the Decontamination of Water Pollutants. A Review. Environ. Chem. Lett. 2020, 18, 1085–1112. [Google Scholar] [CrossRef]
- Bishnoi, S.; Sharma, S.; Agrawal, H. Exploration of the Potential Application of Banana Peel for Its Effective Valorization: A Review. Indian J. Microbiol. 2023, 63, 398–409. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Comp. Rev. Food Sci. Food Safe 2018, 17, 512–531. [Google Scholar] [CrossRef]
- Maqbool, Z.; Khalid, W.; Atiq, H.T.; Koraqi, H.; Javaid, Z.; Alhag, S.K.; Al-Shuraym, L.A.; Bader, D.M.D.; Almarzuq, M.; Afifi, M.; et al. Citrus Waste as Source of Bioactive Compounds: Extraction and Utilization in Health and Food Industry. Molecules 2023, 28, 1636. [Google Scholar] [CrossRef]
- Kumar, M.; Barbhai, M.D.; Hasan, M.; Punia, S.; Dhumal, S.; Radha; Rais, N.; Chandran, D.; Pandiselvam, R.; Kothakota, A.; et al. Onion (Allium cepa L.) Peels: A Review on Bioactive Compounds and Biomedical Activities. Biomed. Pharmacother. 2022, 146, 112498. [Google Scholar] [CrossRef]
- Das, T.; Sahoo, R.; Rathode, N.; Kala, A.; Dharavath, R.; Saha, S. Bioactive Compounds in Cabbage and Cauliflower Waste: Glucosinolates, Total Flavonoids, and Total Antioxidants. Int. J. Adv. Biochem. Res. 2024, 8, 836–839. [Google Scholar] [CrossRef]
- Kozukue, N.; Kim, D.-S.; Choi, S.-H.; Mizuno, M.; Friedman, M. Isomers of the Tomato Glycoalkaloids α-Tomatine and Dehydrotomatine: Relationship to Health Benefits. Molecules 2023, 28, 3621. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 00. [Google Scholar] [CrossRef]
- Liao, J.; Xue, H.; Li, J. Extraction of Phenolics and Anthocyanins from Purple Eggplant Peels by Multi-Frequency Ultrasound: Effects of Different Extraction Factors and Optimization Using Uniform Design. Ultrason. Sonochemistry 2022, 90, 106174. [Google Scholar] [CrossRef]
- Anjani; Srivastava, N.; Mathur, J. Isolation, Purification and Characterization of Quercetin from Cucumis Sativus Peels; Its Antimicrobial, Antioxidant and Cytotoxicity Evaluations. 3 Biotech 2023, 13, 46. [Google Scholar] [CrossRef]
- Różyło, R.; Amarowicz, R.; Janiak, M.A.; Domin, M.; Gawłowski, S.; Kulig, R.; Łysiak, G.; Rząd, K.; Matwijczuk, A. Micronized Powder of Raspberry Pomace as a Source of Bioactive Compounds. Molecules 2023, 28, 4871. [Google Scholar] [CrossRef]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colometric Methods. J. Food Drug Anal. 2020, 10. [Google Scholar] [CrossRef]
- Marković, K.; Krbavčić, I.; Krpan, M.; Bicanic, D.; Vahčić, N. The Lycopene Content in Pulp and Peel of Five Fresh Tomato Cultivars. Acta Aliment. 2010, 39, 90–98. [Google Scholar] [CrossRef]
- Friedman, M. Potato Glycoalkaloids and Metabolites: Roles in the Plant and in the Diet. J. Agric. Food Chem. 2006, 54, 8655–8681. [Google Scholar] [CrossRef]
- Cegledi, E.; Dobroslavić, E.; Pedisić, S.; Magnabosca, I.; Zorić, M.; Pavić, R.; Šuto, M.; Štargl, O.; Repajić, M.; Elez Garofulić, I. Green Approaches for the Extraction of Banana Peel Phenolics Using Deep Eutectic Solvents. Molecules 2024, 29, 3672. [Google Scholar] [CrossRef]
- López-Téllez, J.M.; Del Pilar Cañizares-Macías, M. Evaluation of Tomato (Lycopersicon esculentum P. Mill.) By-Product Extracts Obtained by Different Extraction Methods as Exploitation Strategy of High-Value Polyphenols. Food Bioprocess Technol. 2024, 17, 3217–3235. [Google Scholar] [CrossRef]
- Wani, K.M.; Dhanya, M. Unlocking the Potential of Banana Peel Bioactives: Extraction Methods, Benefits, and Industrial Applications. Discov. Food 2025, 5, 8. [Google Scholar] [CrossRef]
- Yang, J.; Chen, X.; Rao, S.; Li, Y.; Zang, Y.; Zhu, B. Identification and Quantification of Flavonoids in Okra (Abelmoschus esculentus L. Moench) and Antiproliferative Activity In Vitro of Four Main Components Identified. Metabolites 2022, 12, 483. [Google Scholar] [CrossRef]
- Chada, P.S.N.; Santos, P.H.; Rodrigues, L.G.G.; Goulart, G.A.S.; Azevedo Dos Santos, J.D.; Maraschin, M.; Lanza, M. Non-Conventional Techniques for the Extraction of Antioxidant Compounds and Lycopene from Industrial Tomato Pomace (Solanum lycopersicum L.) Using Spouted Bed Drying as a Pre-Treatment. Food Chem. X 2022, 13, 100237. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, F.; Ma, R.; Yang, T.; Liu, C.; Shen, W.; Jin, W.; Tian, Y. Advances in Valorization of Sweet Potato Peels: A Comprehensive Review on the Nutritional Compositions, Phytochemical Profiles, Nutraceutical Properties, and Potential Industrial Applications. Comp. Rev. Food Sci. Food Safe 2024, 23, e13400. [Google Scholar] [CrossRef]
- Krivokapić, S.; Vlaović, M.; Damjanović Vratnica, B.; Perović, A.; Perović, S. Biowaste as a Potential Source of Bioactive Compounds—A Case Study of Raspberry Fruit Pomace. Foods 2021, 10, 706. [Google Scholar] [CrossRef]
- Mahato, N.; Sharma, K.; Sinha, M.; Baral, E.R.; Koteswararao, R.; Dhyani, A.; Hwan Cho, M.; Cho, S. Bio-Sorbents, Industrially Important Chemicals and Novel Materials from Citrus Processing Waste as a Sustainable and Renewable Bioresource: A Review. J. Adv. Res. 2020, 23, 61–82. [Google Scholar] [CrossRef]
- Odunayo Olabinjo, O. Citrus Peels an Effective Sources of Bioactive Compounds. In Waste Management for a Sustainable Future—Technologies, Strategies and Global Perspectives; Saleh, H.M., Hassan, A.I., Eds.; IntechOpen: London, UK, 2025; ISBN 978-0-85014 778-0. [Google Scholar]
- Khalid, W.; Benmebarek, I.E.; Saeed, K.; Koraqi, H.; Moreno, A.; Mugabi, R.; Nayik, G.A.; Esatbeyoglu, T. Influence of Ultrasound-Assisted Extraction of Bioactives from Garlic (Allium sativum) Sprouts Using Response Surface Methodology. Ultrason. Sonochemistry 2025, 115, 107286. [Google Scholar] [CrossRef]
- Di Sotto, A.; Di Giacomo, S.; Amatore, D.; Locatelli, M.; Vitalone, A.; Toniolo, C.; Rotino, G.L.; Lo Scalzo, R.; Palamara, A.T.; Marcocci, M.E.; et al. A Polyphenol Rich Extract from Solanum melongena L. DR2 Peel Exhibits Antioxidant Properties and Anti-Herpes Simplex Virus Type 1 Activity In Vitro. Molecules 2018, 23, 2066. [Google Scholar] [CrossRef]
- Makris, D.P. Potato Processing Waste as a Reservoir of Bioactive Hydroxycinnamates: A Critical Review. Biomass 2024, 5, 2. [Google Scholar] [CrossRef]
- Montenegro-Landívar, M.F.; Tapia-Quirós, P.; Vecino, X.; Reig, M.; Granados, M.; Farran, A.; Cortina, J.L.; Saurina, J.; Valderrama, C. Recovery of Natural Polyphenols from Spinach and Orange By-Products by Pressure-Driven Membrane Processes. Membranes 2022, 12, 669. [Google Scholar] [CrossRef]
- Montone, C.M.; Zenezini Chiozzi, R.; Marchetti, N.; Cerrato, A.; Antonelli, M.; Capriotti, A.L.; Cavaliere, C.; Piovesana, S.; Laganà, A. Peptidomic Approach for the Identification of Peptides with Potential Antioxidant and Anti-Hyperthensive Effects Derived From Asparagus By-Products. Molecules 2019, 24, 3627. [Google Scholar] [CrossRef]
- Mavridis, K.; Todas, N.; Kalompatsios, D.; Athanasiadis, V.; Lalas, S.I. Lycopene and Other Bioactive Compounds’ Extraction from Tomato Processing Industry Waste: A Comparison of Ultrasonication Versus a Conventional Stirring Method. Horticulturae 2025, 11, 71. [Google Scholar] [CrossRef]
- Flaiș, D.; Oroian, M. Extraction of Bioactive Compounds from Oxheart Tomato Pomace (Lycopersicon esculentum L.) Using Different Solvents: Characterization of Extracts. Appl. Sci. 2024, 14, 7143. [Google Scholar] [CrossRef]
- Scaglia, B.; Squillace, P.; Abbasi-Parizad, P.; Papa, G.; De Nisi, P.; Tambone, F. Valorization of the Tomato Pomace to Obtain Lycopene, Carbohydrates-Rich Fraction and Oil by Applying a Hydrolytic Enzyme-Based Approach. Bioresour. Technol. Rep. 2023, 24, 101693. [Google Scholar] [CrossRef]
- Radić, K.; Galić, E.; Vinković, T.; Golub, N.; Vitali Čepo, D. Tomato Waste as a Sustainable Source of Antioxidants and Pectins: Processing, Pretreatment and Extraction Challenges. Sustainability 2024, 16, 9158. [Google Scholar] [CrossRef]
- Valanciene, E.; Jonuskiene, I.; Syrpas, M.; Augustiniene, E.; Matulis, P.; Simonavicius, A.; Malys, N. Advances and Prospects of Phenolic Acids Production, Biorefinery and Analysis. Biomolecules 2020, 10, 874. [Google Scholar] [CrossRef] [PubMed]
- Cosme, P.; Rodríguez, A.B.; Espino, J.; Garrido, M. Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications. Antioxidants 2020, 9, 1263. [Google Scholar] [CrossRef]
- Dey, P.; Kundu, A.; Chakraborty, H.J.; Kar, B.; Choi, W.S.; Lee, B.M.; Bhakta, T.; Atanasov, A.G.; Kim, H.S. Therapeutic Value of Steroidal Alkaloids in Cancer: Current Trends and Future Perspectives. Int. J. Cancer 2019, 145, 1731–1744. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Yusoff, K.; Lim, S.-H.E.; Chong, C.-M.; Lai, K.-S. Membrane Disruption Properties of Essential Oils—A Double-Edged Sword? Processes 2021, 9, 595. [Google Scholar] [CrossRef]
- Yoon, W.-J.; Lee, N.H.; Hyun, C.-G. Limonene Suppresses Lipopolysaccharide-Induced Production of Nitric Oxide, Prostaglandin E2, and Pro-Inflammatory Cytokines in RAW 264.7 Macrophages. J. Oleo Sci. 2010, 59, 415–421. [Google Scholar] [CrossRef]
- Swapnil, P.; Meena, M.; Singh, S.K.; Dhuldhaj, U.P.; Harish; Marwal, A. Vital Roles of Carotenoids in Plants and Humans to Deteriorate Stress with Its Structure, Biosynthesis, Metabolic Engineering and Functional Aspects. Curr. Plant Biol. 2021, 26, 100203. [Google Scholar] [CrossRef]
- Kaulmann, A.; Bohn, T. Carotenoids, Inflammation, and Oxidative Stress—Implications of Cellular Signaling Pathways and Relation to Chronic Disease Prevention. Nutr. Res. 2014, 34, 907–929. [Google Scholar] [CrossRef]
- Tarar, A.; Peng, S.; Cheema, S.; Peng, C.-A. Anticancer Activity, Mechanism, and Delivery of Allyl Isothiocyanate. Bioengineering 2022, 9, 470. [Google Scholar] [CrossRef]
- Bhullar, K.S.; Rupasinghe, H.P.V. Polyphenols: Multipotent Therapeutic Agents in Neurodegenerative Diseases. Oxidative Med. Cell. Longev. 2013, 2013, 1–18. [Google Scholar] [CrossRef]
- Carrillo, C.; Nieto, G.; Martínez-Zamora, L.; Ros, G.; Kamiloglu, S.; Munekata, P.E.S.; Pateiro, M.; Lorenzo, J.M.; Fernández-López, J.; Viuda-Martos, M.; et al. Novel Approaches for the Recovery of Natural Pigments with Potential Health Effects. J. Agric. Food Chem. 2022, 70, 6864–6883. [Google Scholar] [CrossRef] [PubMed]
- Dev, S.; Khamkhash, A.; Ghosh, T.; Aggarwal, S. Adsorptive Removal of Se(IV) by Citrus Peels: Effect of Adsorbent Entrapment in Calcium Alginate Beads. ACS Omega 2020, 5, 17215–17222. [Google Scholar] [CrossRef]
- Truong, V.; Jun, M.; Jeong, W. Role of Resveratrol in Regulation of Cellular Defense Systems against Oxidative Stress. BioFactors 2018, 44, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Kejík, Z.; Kaplánek, R.; Masařík, M.; Babula, P.; Matkowski, A.; Filipenský, P.; Veselá, K.; Gburek, J.; Sýkora, D.; Martásek, P.; et al. Iron Complexes of Flavonoids-Antioxidant Capacity and Beyond. IJMS 2021, 22, 646. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. IJMS 2021, 22, 3380. [Google Scholar] [CrossRef]
- McGivern, B.B.; Tfaily, M.M.; Borton, M.A.; Kosina, S.M.; Daly, R.A.; Nicora, C.D.; Purvine, S.O.; Wong, A.R.; Lipton, M.S.; Hoyt, D.W.; et al. Decrypting Bacterial Polyphenol Metabolism in an Anoxic Wetland Soil. Nat. Commun. 2021, 12, 2466. [Google Scholar] [CrossRef] [PubMed]
- Jain, H.; Dhingra, N.; Narsinghani, T.; Sharma, R. Insights into the Mechanism of Natural Terpenoids as NF-κB Inhibitors: An Overview on Their Anticancer Potential. Exp. Oncol. 2016, 38, 158–168. [Google Scholar] [CrossRef]
- Mathews, S.L.; Smithson, C.E.; Grunden, A.M. Purification and Characterization of a Recombinant Laccase-like Multi-Copper Oxidase from Paenibacillus glucanolyticus SLM1. J. Appl. Microbiol. 2016, 121, 1335–1345. [Google Scholar] [CrossRef]
- Keuter, L.; Wolbeck, A.; Kasimir, M.; Schürmann, L.; Behrens, M.; Humpf, H. Structural Impact of Steroidal Glycoalkaloids: Barrier Integrity, Permeability, Metabolism, and Uptake in Intestinal Cells. Mol. Nutr. Food Res. 2024, 68, 2300639. [Google Scholar] [CrossRef]
- Ikram, A.; Rasheed, A.; Ahmad Khan, A.; Khan, R.; Ahmad, M.; Bashir, R.; Hassan Mohamed, M. Exploring the Health Benefits and Utility of Carrots and Carrot Pomace: A Systematic Review. Int. J. Food Prop. 2024, 27, 180–193. [Google Scholar] [CrossRef]
- You, Y.; Van Kan, J.A.L. Bitter and Sweet Make Tomato Hard to (b)Eat. New Phytol. 2021, 230, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.; Dutta, S.; Yasmin, R. A Comparative Study on Phytochemicals and Antioxidant Activity of Different Parts of Pumpkin (Cucurbita maxima). Food Chem. Adv. 2023, 3, 100505. [Google Scholar] [CrossRef]
- Austin, D.F. A Systematic Treatment of Fruit Types: Richard W. Spjut. 1994. Memoirs of the New York Botanical Garden, Bronx, NY 10458. 182 Pp. (Paperback). Econ. Bot 1995, 49, 39. [Google Scholar] [CrossRef]
- Ramzan, K.; Zehra, S.H.; Balciunaitiene, A.; Viskelis, P.; Viskelis, J. Valorization of Fruit and Vegetable Waste: An Approach to Focusing on Extraction of Natural Pigments. Foods 2025, 14, 1402. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, S.; Jo, J.; Lee, J. Comparison of Glucosinolate Profiles in Different Tissues of Nine Brassica Crops. Molecules 2015, 20, 15827–15841. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Mahato, N.; Cho, M.H.; Lee, Y.R. Converting Citrus Wastes into Value-Added Products: Economic and Environmently Friendly Approaches. Nutrition 2017, 34, 29–46. [Google Scholar] [CrossRef]
- Bozinou, E.; Pappas, I.S.; Patergiannakis, I.-S.; Chatzimitakos, T.; Palaiogiannis, D.; Athanasiadis, V.; Lalas, S.I.; Chatzilazarou, A.; Makris, D.P. Evaluation of Antioxidant, Antimicrobial, and Anticancer Properties of Onion Skin Extracts. Sustainability 2023, 15, 11599. [Google Scholar] [CrossRef]
- Šeregelj, V.; Ćetković, G.; Čanadanović-Brunet, J.; Tumbas Šaponjac, V.; Vulić, J.; Stajčić, S. Encapsulation and Degradation Kinetics of Bioactive Compounds from Sweet Potato Peel During Storage. Food Technol. Biotechnol. 2020, 58, 314–324. [Google Scholar] [CrossRef]
- Kaur, P.; Subramanian, J.; Singh, A. Green Extraction of Bioactive Components from Carrot Industry Waste and Evaluation of Spent Residue as an Energy Source. Sci. Rep. 2022, 12, 16607. [Google Scholar] [CrossRef]
- Dikmetas, D.N.; Devecioglu, D.; Karbancioglu-Guler, F.; Kahveci, D. Sequential Extraction and Characterization of Essential Oil, Flavonoids, and Pectin from Industrial Orange Waste. ACS Omega 2024, 9, 14442–14454. [Google Scholar] [CrossRef]
- Yunusa, A.K.; Dandago, M.A.; Ibrahim, S.M.; Abdullahi, N.; Rilwan, A.; Barde, A. Total Phenolic Content and Antioxidant Capacity of Different Parts of Cucumber (Cucumis sativus L.). Acta Univ. Cibiniensis. Ser. E Food Technol. 2018, 22, 13–20. [Google Scholar] [CrossRef]
- Amulya, P.R.; Ul Islam, R. Optimization of Enzyme-Assisted Extraction of Anthocyanins from Eggplant (Solanum melongena L.) Peel. Food Chem. X 2023, 18, 100643. [Google Scholar] [CrossRef] [PubMed]
- Horincar, G.; Enachi, E.; Bolea, C.; Râpeanu, G.; Aprodu, I. Value-Added Lager Beer Enriched with Eggplant (Solanum melongena L.) Peel Extract. Molecules 2020, 25, 731. [Google Scholar] [CrossRef]
- Vo, T.P.; Nguyen, L.N.H.; Le, N.P.T.; Mai, T.P.; Nguyen, D.Q. Optimization of the Ultrasonic-Assisted Extraction Process to Obtain Total Phenolic and Flavonoid Compounds from Watermelon (Citrullus lanatus) Rind. Curr. Res. Food Sci. 2022, 5, 2013–2021. [Google Scholar] [CrossRef]
- Fan, R.; Yuan, F.; Wang, N.; Gao, Y.; Huang, Y. Extraction and Analysis of Antioxidant Compounds from the Residues of Asparagus officinalis L. J. Food Sci. Technol. 2015, 52, 2690–2700. [Google Scholar] [CrossRef] [PubMed]
- Leja, M.; Kamińska, I.; Kołton, A. Phenolic Compounds as the Major Antioxidants in Red Cabbage. Folia Hortic. 2010, 22, 19–24. [Google Scholar] [CrossRef]
- Sytar, O.; Zivcak, M.; Bruckova, K.; Brestic, M.; Hemmerich, I.; Rauh, C.; Simko, I. Shift in Accumulation of Flavonoids and Phenolic Acids in Lettuce Attributable to Changes in Ultraviolet Radiation and Temperature. Sci. Hortic. 2018, 239, 193–204. [Google Scholar] [CrossRef]
- Koh, E.; Wimalasiri, K.M.S.; Chassy, A.W.; Mitchell, A.E. Content of Ascorbic Acid, Quercetin, Kaempferol and Total Phenolics in Commercial Broccoli. J. Food Compos. Anal. 2009, 22, 637–643. [Google Scholar] [CrossRef]
- Martínez-Zamora, L.; Hashemi, S.; Cano-Lamadrid, M.; Bueso, M.C.; Aguayo, E.; Kessler, M.; Artés-Hernández, F. Ultrasound-Assisted Extraction of Bioactive Compounds from Broccoli By-Products. Foods 2024, 13, 1441. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.D.; Karki, S.; Thakur, N.S.; Attri, S. Chemical Composition, Functional Properties and Processing of Carrot—a Review. J. Food Sci. Technol. 2012, 49, 22–32. [Google Scholar] [CrossRef]
- Oravetz, K.; Diaconeasa, Z.; Carpa, R.; Rakosy-Tican, E.; Cruceriu, D. The Antioxidant, Antimicrobial, and Antitumor Proprieties of Flavonol-Rich Extracts from Allium ursinum (Wild Garlic) Leaves: A Comparison of Conventional Maceration and Ultrasound-Assisted Extraction Techniques. Int. J. Mol. Sci. 2024, 25, 12799. [Google Scholar] [CrossRef]
- Galanakis, C.M. Recovery of High Added-Value Components from Food Wastes: Conventional, Emerging Technologies and Commercialized Applications. Trends Food Sci. Technol. 2012, 26, 68–87. [Google Scholar] [CrossRef]
- Herzyk, F.; Piłakowska-Pietras, D.; Korzeniowska, M. Supercritical Extraction Techniques for Obtaining Biologically Active Substances from a Variety of Plant Byproducts. Foods 2024, 13, 1713. [Google Scholar] [CrossRef]
- Che, H.; Zhang, R.; Wang, X.; Yu, H.; Shi, X.; Yi, J.; Li, J.; Qi, Q.; Dong, R.; Li, Q. Ultrasound-Assisted Extraction of Polyphenols from Phyllanthi fructus: Comprehensive Insights from Extraction Optimization and Antioxidant Activity. Ultrason. Sonochemistry 2024, 111, 107083. [Google Scholar] [CrossRef]
- Osorio-Tobón, J.F. Recent Advances and Comparisons of Conventional and Alternative Extraction Techniques of Phenolic Compounds. J. Food Sci. Technol. 2020, 57, 4299–4315. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Elboughdiri, N. Effect of Time, Solvent-Solid Ratio, Ethanol Concentration and Temperature on Extraction Yield of Phenolic Compounds From Olive Leaves. Eng. Technol. Appl. Sci. Res. 2018, 8, 2805–2808. [Google Scholar] [CrossRef]
- Sridhar, A.; Ponnuchamy, M.; Kumar, P.S.; Kapoor, A.; Vo, D.-V.N.; Prabhakar, S. Techniques and Modeling of Polyphenol Extraction from Food: A Review. Environ. Chem. Lett. 2021, 19, 3409–3443. [Google Scholar] [CrossRef]
- Kivelä, R.; Sontag-Strohm, T.; Loponen, J.; Tuomainen, P.; Nyström, L. Oxidative and Radical Mediated Cleavage of β-Glucan in Thermal Treatments. Carbohydr. Polym. 2011, 85, 645–652. [Google Scholar] [CrossRef]
- Nguyen, X.H.; Vu, D.N.; Bui, Q.M.; Nguyen, Q.T.; Nguyen, A.T. Comparative Efficiency of Soxhlet and Accelerated Solvent Extraction (ASE) Methods for Dioxin/Furan Analysis in Ash Samples: A Green Chemistry Perspective. Green Anal. Chem. 2025, 12, 100227. [Google Scholar] [CrossRef]
- Ninga, K.A.; Carly Desobgo, Z.S.; De, S.; Nso, E.J. Pectinase Hydrolysis of Guava Pulp: Effect on the Physicochemical Characteristics of Its Juice. Heliyon 2021, 7, e08141. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.P.; Nguyen, N.T.U.; Le, V.H.; Phan, T.H.; Nguyen, T.H.Y.; Nguyen, D.Q. Optimizing Ultrasonic-Assisted and Microwave-Assisted Extraction Processes to Recover Phenolics and Flavonoids from Passion Fruit Peels. ACS Omega 2023, 8, 33870–33882. [Google Scholar] [CrossRef] [PubMed]
- Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural Deep Eutectic Solvents—Solvents for the 21st Century. ACS Sustain. Chem. Eng. 2014, 2, 1063–1071. [Google Scholar] [CrossRef]
- Lim, W.Y.C.; Yusof, N.L.; M.R., I.-F.; Suleiman, N. Volarization of Valuable Compound from Watermelon By-Product Using Ultrasound-Assisted Extraction. Food Res. 2020, 4, 1995–2002. [Google Scholar] [CrossRef]
- Prakash, D.; Singh, B.N.; Upadhyay, G. Antioxidant and Free Radical Scavenging Activities of Phenols from Onion (Allium cepa). Food Chem. 2007, 102, 1389–1393. [Google Scholar] [CrossRef]
- Joković, N.; Matejić, J.; Zvezdanović, J.; Stojanović-Radić, Z.; Stanković, N.; Mihajilov-Krstev, T.; Bernstein, N. Onion Peel as a Potential Source of Antioxidants and Antimicrobial Agents. Agronomy 2014, 14, 453. [Google Scholar] [CrossRef]
- Liang, X.; Lee, H.W.; Li, Z.; Lu, Y.; Zou, L.; Ong, C.N. Simultaneous Quantification of 22 Glucosinolates in 12 Brassicaceae Vegetables by Hydrophilic Interaction Chromatography–Tandem Mass Spectrometry. ACS Omega 2018, 3, 15546–15553. [Google Scholar] [CrossRef]
- Langston, F.; Redha, A.A.; Nash, G.R.; Bows, J.R.; Torquati, L.; Gidley, M.J.; Cozzolino, D. Qualitative Analysis of Broccoli (Brassica oleracea var. italica) Glucosinolates: Investigating the Use of Mid-Infrared Spectroscopy Combined with Chemometrics. J. Food Compos. Anal. 2023, 123, 105532. [Google Scholar] [CrossRef]
- Suleria, H.A.R.; Barrow, C.J.; Dunshea, F.R. Screening and Characterization of Phenolic Compounds and Their Antioxidant Capacity in Different Fruit Peels. Foods 2020, 9, 1206. [Google Scholar] [CrossRef]
- Kucha, C.; Liu, L.; Ngadi, M. Non-Destructive Spectroscopic Techniques and Multivariate Analysis for Assessment of Fat Quality in Pork and Pork Products: A Review. Sensors 2018, 18, 377. [Google Scholar] [CrossRef]
- Stoenescu, A.-M.; Trandafir, I.; Cosmulescu, S. Determination of Phenolic Compounds Using HPLC-UV Method in Wild Fruit Species. Horticulturae 2022, 8, 84. [Google Scholar] [CrossRef]
- Sirikhet, J.; Chanmahasathien, W.; Raiwa, A.; Kiattisin, K. Stability Enhancement of Lycopene in Citrullus lanatus Extract via Nanostructured Lipid Carriers. Food Sci. Nutr. 2021, 9, 1750–1760. [Google Scholar] [CrossRef]
- Singh, A.; Sabally, K.; Kubow, S.; Donnelly, D.J.; Gariepy, Y.; Orsat, V.; Raghavan, G.S.V. Microwave-Assisted Extraction of Phenolic Antioxidants from Potato Peels. Molecules 2011, 16, 2218–2232. [Google Scholar] [CrossRef]
- Castañeda-Aude, J.E.; Díaz Barriga-Castro, E.; Díaz-Muñoz, L.L.; Garza-Cervantes, J.A.; Rodríguez-Mirasol, J.; Morones-Ramírez, J.R.; Amézquita-García, H.J.; De Haro-Del Río, D.A.; León-Buitimea, A.; Macias-Segura, N.; et al. Steam Distillation of Citrus Waste Extract for Antimicrobial Metal Nanoparticle Synthesis. Technologies 2025, 13, 303. [Google Scholar] [CrossRef]
- Jahin, H.S.; Khedr, A.I.; Ghannam, H.E. Banana Peels as a Green Bioadsorbent for Removing Metals Ions from Wastewater. Discov Water 2024, 4, 36. [Google Scholar] [CrossRef]
- Huang, Z.; Campbell, R.; Mangwandi, C. Kinetics and Thermodynamics Study on Removal of Cr(VI) from Aqueous Solutions Using Acid-Modified Banana Peel (ABP) Adsorbents. Molecules 2024, 29, 990. [Google Scholar] [CrossRef]
- Parlayıcı, Ş.; Baran, Y. Removal of Hexavalent Chromium from Aqueous Solutions Using Nano-Fe3O4/Waste Banana Peel/Alginate Hydrogel Biobeads as Adsorbent. Biomass Conv. Bioref. 2025, 15, 18695–18721. [Google Scholar] [CrossRef]
- Praipipat, P.; Ngamsurach, P.; Khamenthong, Y.; Himlee, N. The High Adsorption Performance of Banana (Musa ABB Cv. Kluai ‘Namwa’) Beaded Materials Modified with Zinc and Magnesium Oxides for Cadmium Removal. Sci. Rep. 2024, 14, 24082. [Google Scholar] [CrossRef]
- Bhaumik, R.; Mondal, N.K. Optimizing Adsorption of Fluoride from Water by Modified Banana Peel Dust Using Response Surface Modelling Approach. Appl. Water Sci. 2016, 6, 115–135. [Google Scholar] [CrossRef]
- Farias, K.C.S.; Guimarães, R.C.A.; Oliveira, K.R.W.; Nazário, C.E.D.; Ferencz, J.A.P.; Wender, H. Banana Peel Powder Biosorbent for Removal of Hazardous Organic Pollutants from Wastewater. Toxics 2023, 11, 664. [Google Scholar] [CrossRef]
- Tran, H.N.; Chao, H.-P. Adsorption and Desorption of Potentially Toxic Metals on Modified Biosorbents through New Green Grafting Process. Environ. Sci. Pollut. Res. 2018, 25, 12808–12820. [Google Scholar] [CrossRef] [PubMed]
- Ramutshatsha-Makhwedzha, D.; Mbaya, R.; Mavhungu, M.L. Application of Activated Carbon Banana Peel Coated with Al2O3-Chitosan for the Adsorptive Removal of Lead and Cadmium from Wastewater. Materials 2022, 15, 860. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wu, P.; Shu, L.; Guo, Q.; Huang, D.; Liu, H. Isotherm, Kinetics, and Adsorption Mechanism Studies of Diethylenetriaminepentaacetic Acid—Modified Banana/Pomegranate Peels as Efficient Adsorbents for Removing Cd(II) and Ni(II) from Aqueous Solution. Environ. Sci. Pollut. Res. 2022, 29, 3051–3061. [Google Scholar] [CrossRef]
- Soltaninejad, A.; Jazini, M.; Karimi, K. Sustainable Bioconversion of Potato Peel Wastes into Ethanol and Biogas Using Organosolv Pretreatment. Chemosphere 2022, 291, 133003. [Google Scholar] [CrossRef]
- Mahato, N.; Sharma, K.; Sinha, M.; Dhyani, A.; Pathak, B.; Jang, H.; Park, S.; Pashikanti, S.; Cho, S. Biotransformation of Citrus Waste-I: Production of Biofuel and Valuable Compounds by Fermentation. Processes 2021, 9, 220. [Google Scholar] [CrossRef]
- Pilarska, A.A.; Kulupa, T.; Kubiak, A.; Wolna-Maruwka, A.; Pilarski, K.; Niewiadomska, A. Anaerobic Digestion of Food Waste—A Short Review. Energies 2023, 16, 5742. [Google Scholar] [CrossRef]
- Morales-Polo, C.; Cledera-Castro, M.D.M.; Moratilla Soria, B.Y. Biogas Production from Vegetable and Fruit Markets Waste—Compositional and Batch Characterizations. Sustainability 2019, 11, 6790. [Google Scholar] [CrossRef]
- AlNouss, A.; Parthasarathy, P.; Mackey, H.R.; Al-Ansari, T.; McKay, G. Pyrolysis Study of Different Fruit Wastes Using an Aspen Plus Model. Front. Sustain. Food Syst. 2021, 5, 604001. [Google Scholar] [CrossRef]
- Li, S.; Tasnady, D. Biochar for Soil Carbon Sequestration: Current Knowledge, Mechanisms, and Future Perspectives. C 2023, 9, 67. [Google Scholar] [CrossRef]
- Bekavac, N.; Krog, K.; Stanić, A.; Šamec, D.; Šalić, A.; Benković, M.; Jurina, T.; Gajdoš Kljusurić, J.; Valinger, D.; Jurinjak Tušek, A. Valorization of Food Waste: Extracting Bioactive Compounds for Sustainable Health and Environmental Solutions. Antioxidants 2025, 14, 714. [Google Scholar] [CrossRef]
- Mahato, N.; Sinha, M.; Sharma, K.; Koteswararao, R.; Cho, M.H. Modern Extraction and Purification Techniques for Obtaining High Purity Food-Grade Bioactive Compounds and Value-Added Co-Products from Citrus Wastes. Foods 2019, 8, 523. [Google Scholar] [CrossRef] [PubMed]
- Grand View Research. Biochar Market Size, Share & Growth Analysis Report, 2030; Grand View Research: San Francisco, CA, USA, 2024. [Google Scholar]
- Grand View Research. Global Biogas Market Size & Outlook, 2023–2030; Grand View Research: San Francisco, CA, USA, 2024. [Google Scholar]
- Sharma, A.; Jyoti, A.; More, A.; Gunjal, M.; Rasane, P.; Kumar, M.; Kaur, S.; Ercisli, S.; Gurumayum, S.; Singh, J. Harnessing Fruit and Vegetable Waste for Biofuel Production: Advances and Scope for Future Development. eFood 2025, 6, e70051. [Google Scholar] [CrossRef]
- Morales-Polo, C.; Cledera-Castro, M.D.M.; Revuelta-Aramburu, M.; Hueso-Kortekaas, K. Enhancing Energy Recovery in Form of Biogas, from Vegetable and Fruit Wholesale Markets By-Products and Wastes, with Pretreatments. Plants 2021, 10, 1298. [Google Scholar] [CrossRef]
- Song, R.; Chen, Z.; Xiao, H.; Wang, H. The CRISPR-Cas System in Molecular Diagnostics. Clin. Chim. Acta 2024, 561, 119820. [Google Scholar] [CrossRef]
- Hu, K.; Yin, W.; Bai, Y.; Zhang, J.; Yin, J.; Zhu, Q.; Mu, Y. CRISPR-Based Biosensors for Medical Diagnosis: Readout from Detector-Dependence Detection Toward Naked Eye Detection. Biosensors 2024, 14, 367. [Google Scholar] [CrossRef] [PubMed]
- Kumaran, A.; Jude Serpes, N.; Gupta, T.; James, A.; Sharma, A.; Kumar, D.; Nagraik, R.; Kumar, V.; Pandey, S. Advancements in CRISPR-Based Biosensing for Next-Gen Point of Care Diagnostic Application. Biosensors 2023, 13, 202. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Lin, K.; Han, Y.; Gu, Z.; Wei, H.; Mu, K.; Wang, D.; Liu, L.; Jin, R.; et al. Ultrasensitive Single-Step CRISPR Detection of Monkeypox Virus in Minutes with a Vest-Pocket Diagnostic Device. Nat. Commun. 2024, 15, 3279. [Google Scholar] [CrossRef]
- Idesa, G.; Getachew, B. Extraction and Partial Purification of Peroxidase Enzyme from Plant Sources for Antibody Labeling. Int. J. Vet. Sci. Technol. 2018, 2, 6–12. [Google Scholar]
- Pulit, J.; Banach, M.; Zielina, M.; Laskowska, B.; Kurleto, K. Raspberry Extract as Both a Stabilizer and a Reducing Agent in Environmentally Friendly Process of Receiving Colloidal Silver. J. Nanomater. 2013, 2013, 563826. [Google Scholar] [CrossRef]
- Çakıroğlu, B.; Jabiyeva, N.; Holzinger, M. Photosystem II as a Chemiluminescence-Induced Photosensitizer for Photoelectrochemical Biofuel Cell-Type Biosensing System. Biosens. Bioelectron. 2023, 226, 115133. [Google Scholar] [CrossRef] [PubMed]
- Borlinghaus, J.; Albrecht, F.; Gruhlke, M.; Nwachukwu, I.; Slusarenko, A. Allicin: Chemistry and Biological Properties. Molecules 2014, 19, 12591–12618. [Google Scholar] [CrossRef]
- Grand View Research. In Vitro Diagnostics Market Size, Share & Trends Analysis Report by Product, by Application, by Technology, by Region, and Segment Forecasts, 2025–2030; Grand View Research: San Francisco, CA, USA, 2024. [Google Scholar]
- Bhoopathy, J. Plant Extract–Derived Nanomaterials for Wound Healing: A Mini Review. Regen. Eng. Transl. Med. 2023, 9, 22–28. [Google Scholar] [CrossRef]
- Mirsky, N.A.; Ehlen, Q.T.; Greenfield, J.A.; Antonietti, M.; Slavin, B.V.; Nayak, V.V.; Pelaez, D.; Tse, D.T.; Witek, L.; Daunert, S.; et al. Three-Dimensional Bioprinting: A Comprehensive Review for Applications in Tissue Engineering and Regenerative Medicine. Bioengineering 2024, 11, 777. [Google Scholar] [CrossRef]
- Golebiowska, A.A.; Intravaia, J.T.; Sathe, V.M.; Kumbar, S.G.; Nukavarapu, S.P. Decellularized Extracellular Matrix Biomaterials for Regenerative Therapies: Advances, Challenges and Clinical Prospects. Bioact. Mater. 2024, 32, 98–123. [Google Scholar] [CrossRef]
- Benam, K.H.; Dauth, S.; Hassell, B.; Herland, A.; Jain, A.; Jang, K.-J.; Karalis, K.; Kim, H.J.; MacQueen, L.; Mahmoodian, R.; et al. Engineered In Vitro Disease Models. Annu. Rev. Pathol. Mech. Dis. 2015, 10, 195–262. [Google Scholar] [CrossRef] [PubMed]
- Fareed, N.; Nisa, S.; Bibi, Y.; Fareed, A.; Ahmed, W.; Sabir, M.; Alam, S.; Sajjad, A.; Kumar, S.; Hussain, M.; et al. Green Synthesized Silver Nanoparticles Using Carrot Extract Exhibited Strong Antibacterial Activity against Multidrug Resistant Bacteria. J. King Saud Univ. Sci. 2023, 35, 102477. [Google Scholar] [CrossRef]
- Gershlak, J.R.; Burgess, C.K.; Fontana, G.; Perreault, L.R.; Thyden, R.; Shrem, L.A.; Dos Santos, A.C.F.; Weathers, P.J.; Dominko, T.; Murphy, W.L.; et al. Biocompatibility of Decellularized Spinach Leaves. npj Biomed. Innov. 2025, 2, 23. [Google Scholar] [CrossRef]
- Gershlak, J.R.; Hernandez, S.; Fontana, G.; Perreault, L.R.; Hansen, K.J.; Larson, S.A.; Binder, B.Y.K.; Dolivo, D.M.; Yang, T.; Dominko, T.; et al. Crossing Kingdoms: Using Decellularized Plants as Perfusable Tissue Engineering Scaffolds. Biomaterials 2017, 125, 13–22. [Google Scholar] [CrossRef]
- Barman, M.; Rahman, S.; Joshi, N.; Sarma, N.; Bharadwaj, P.; Thakur, D.; Devi, R.; Chowdhury, D.; Hurren, C.; Rajkhowa, R. Banana Fibre-Chitosan-Guar Gum Composite as an Alternative Wound Healing Material. Int. J. Biol. Macromol. 2024, 259, 129653. [Google Scholar] [CrossRef]
- Kalita, H.; Hazarika, A.; Kandimalla, R.; Kalita, S.; Devi, R. Development of Banana (Musa balbisiana) Pseudo Stem Fiber as a Surgical Bio-Tool to Avert Post-Operative Wound Infections. RSC Adv. 2018, 8, 36791–36801. [Google Scholar] [CrossRef] [PubMed]
- Aniceto, J.P.S.; Rodrigues, V.H.; Portugal, I.; Silva, C.M. Valorization of Tomato Residues by Supercritical Fluid Extraction. Processes 2021, 10, 28. [Google Scholar] [CrossRef]
- Benito-Román, Ó.; Blanco, B.; Sanz, M.T.; Beltrán, S. Subcritical Water Extraction of Phenolic Compounds from Onion Skin Wastes (Allium cepa cv. Horcal): Effect of Temperature and Solvent Properties. Antioxidants 2020, 9, 1233. [Google Scholar] [CrossRef]
- Fadimu, G.J.; Ghafoor, K.; Babiker, E.E.; Al-Juhaimi, F.; Abdulraheem, R.A.; Adenekan, M.K. Ultrasound-Assisted Process for Optimal Recovery of Phenolic Compounds from Watermelon (Citrullus lanatus) Seed and Peel. Food Meas. 2020, 14, 1784–1793. [Google Scholar] [CrossRef]
- Figueira, O.; Pereira, V.; Castilho, P.C. A Two-Step Approach to Orange Peel Waste Valorization: Consecutive Extraction of Pectin and Hesperidin. Foods 2023, 12, 3834. [Google Scholar] [CrossRef] [PubMed]
- Zou, F.; Tan, C.; Zhang, B.; Wu, W.; Shang, N. The Valorization of Banana By-Products: Nutritional Composition, Bioactivities, Applications, and Future Development. Foods 2022, 11, 3170. [Google Scholar] [CrossRef]
- Srinivasan, L.V.; Rana, S.S. Anthocyanins: A Promising Source of Natural Colorants and Nutraceuticals. Discov. Appl. Sci. 2025, 7, 694. [Google Scholar] [CrossRef]
- Grand View Research. Nutraceuticals Market Size, Share & Trends Analysis Report by Product, by Form, by Sales Channel, by Region, and Segment Forecasts, 2024–2030; Grand View Research: San Francisco, CA, USA, 2024. [Google Scholar]
- FAO. Food Outlook—Biannual Report on Global Food Markets; FAO: Rome, Italy, 2022; ISBN 978-92-5-136028-6. [Google Scholar]
- Du, X.; Davila, M.; Ramirez, J.; Williams, C. Free Amino Acids and Volatile Aroma Compounds in Watermelon Rind, Flesh, and Three Rind-Flesh Juices. Molecules 2022, 27, 2536. [Google Scholar] [CrossRef]

















| Fruits | Non-Fruits | ||||
|---|---|---|---|---|---|
| Sample | Scientific Name | Family | Sample | Scientific Name | Family |
| Banana | Musa spp. | Musaceae | Asparagus | Asparagus officinalis | Asparagaceae |
| Cucumber | Cucumis sativus | Cucurbitaceae | Broccoli | B. oleracea var. italica | Brassicaceae |
| Eggplant | Solanum melongena | Solanaceae | Cabbage | Brassica oleracea var. capitata | Brassicaceae |
| Lemon | Citrus limon | Rutaceae | Carrot | Daucus carota | Apiaceae |
| Orange | Citrus sinensis | Rutaceae | Green garlic | Allium sativum | Amaryllidaceae |
| Pumpkin | Cucurbita spp. | Cucurbitaceae | Lettuce | Lactuca sativa | Asteraceae |
| Raspberries | Rubus idaeus | Rosaceae | Okra | Abelmoschus esculentus | Malvaceae |
| Tomato | Solanum lycopersicum | Solanaceae | Onion | Allium cepa | Amaryllidaceae |
| Watermelon | Citrullus lanatus | Cucurbitaceae | Potato | Solanum tuberosum | Solanaceae |
| Spinach | Spinacia oleracea | Amaranthaceae | |||
| Sweet potato | Ipomoea batatas | Convolvulaceae | |||
| Compound Class/Bioactive Group | Functional Group(s) | Description and Typical Uses | Examples of Compounds | Family/Classification | Chemical Structure | Refs. |
|---|---|---|---|---|---|---|
| phenolic acids | Carboxylic acid, Phenol (-OH) | Potent antioxidants; reduce oxidative stress, anti-inflammatory; nutraceuticals, food preservation | gallic acid, ferulic acid, chlorogenic acid | Nightshades, cucurbits, brassicas, roots, leafy greens, alliums | ![]() chlorogenic acid | [17,30,31,32] |
| flavonoids | Hydroxyl (-OH), Aromatic rings | Antioxidants; cardiovascular & immune support, anti-inflammatory, antiviral; supplements and cosmetics | hesperidin, naringin, quercetin, rutin, dopamine | Citrus, nightshades, cucurbits, berries, roots, leafy greens, alliums | ![]() quercetin | [25,26,33] |
| carotenoids & lycopene | Conjugated double bonds (polyenes) | Natural pigments; antioxidant, promote eye/skin health; colorants and supplements | beta-carotene, lycopene | Nightshades, cucurbits, citrus, leafy greens, roots | ![]() β-Carotene | [34,35] |
| tannins | Polyphenolic structures | Antioxidant, Antimicrobial, Anti-inflammatory | ellagitannins | Berries Nightshades | ![]() procyanidin B1 | [24,36] |
| anthocyanins | Polyphenolic structures | Antioxidant, Antimicrobial, Anti-inflammatory | anthocyanins | Berries Nightshades | ![]() anthocyanins | [24,36] |
| terpenes/essential oils | Methyl groups (-CH3), Double bonds | Volatile compounds; antimicrobial, antifungal, flavor/aroma; cosmetics, aromatherapy | limonene, Citrus essential oils | Citrus | ![]() limonene | [37,38] |
| sulfur compounds | Thiosulfinate (-S(=O)-S-) | Antimicrobial, flavor compounds; heart health; food preservation | allicin | Alliums | ![]() allicin | [19,39] |
| glucosinolates | Thioglucoside (-S-glucose), Nitrogen | Antioxidants; anticancer potential; used in functional foods | sinigrin | Cruciferous vegetables | ![]() sinigrin | [10,20] |
| alkaloids | Nitrogen-containing ring | Toxic in excess; defense compounds; pharmacological uses | solanine | Tuber and nightshade | ![]() solanine | [40,41] |
| saponins | Steroid nucleus, Sugar moieties | Foam-forming, cholesterol-lowering; immune modulation; used in nutraceuticals | diosgenin | Asparagus, Spinach | ![]() diosgenin | [42,43] |
| Crop | Global Production (Mt/y) | Main Waste Type | Estimated Waste (%) | Waste Generated (Mt/y) |
|---|---|---|---|---|
| Banana | 125 | Peel, pulp | ~35 | 43.8 |
| Cucumber | 91 | Peel, stems | 20 | 18.2 |
| Eggplant | 60 | Peel, stems | 25 | 15 |
| Lemon/Lime | 20 | Peel, pulp | 30–35 | 6–7 |
| Orange | 78 | Peel, pulp | 30–35 | 23.4–27.3 |
| Pumpkin | 28 | Peel, seeds | 25 | 7 |
| Raspberry | 1.2 | Pulp, seeds | 30 | 0.36 |
| Tomato | 190 | Peel, pulp | 20 | 38 |
| Watermelon | 100 | Rind | 40 | 40 |
| Asparagus | 8 | Woody stems | 25 | 2 |
| Cabbage | 71 | Outer leaves | 30 | 21.3 |
| Carrot | 45 | Peels, tops | 20 | 9 |
| Broccoli | 27 | Stems, leaves | 30 | 8.1 |
| Lettuce | 27 | Outer leaves | 35 | 9.5 |
| Onion | 106 | Peels, stems | 20 | 21.2 |
| Potato | 376 | Peels, rejects | 25 | 94 |
| Spinach | 30 | Wilted leaves | 30 | 9 |
| Sweet potato | 92 | Peels, deformed roots | 25 | 23 |
| Sum (t/y) | 1.46 × 109 | 388.78 × 106 |
| Method | Principle/Technique | Advantages | Limitations | Ref. |
|---|---|---|---|---|
| Maceration (soaking) | Solid sample is mixed with an organic solvent (commonly ethanol) at room or mild temperatures for extended periods (up to 12 h); solvent-to-solid ratio > 20:1. | Simple and low-cost; suitable for heat-sensitive bioactives like polyphenols and flavonoids; no specialized equipment needed. | Excessive extraction times; inefficient for large-scale use; requires large solvent volumes; low selectivity; may co-extract undesired compounds. | [13] |
| Soxhlet extraction | Continuous hot solvent refluxes through the solid sample for 6–24 h, typically using 150–500 mL of solvent per 10 g of dry biomass. | Higher yields than maceration; exhaustive extraction; well-suited for thermally stable phenolic compounds. | High energy input due to prolonged heating; solvent-intensive; uses potentially toxic solvents; not ideal for heat-sensitive molecules. | [13] |
| Hot aqueous extraction | Plant material is heated with water at elevated temperatures (>80 °C), often used for extracting hydrophilic bioactive compounds such as polysaccharides and flavonoids. | Water is non-toxic and inexpensive, efficient for polar compounds, and scalable for certain food industry applications. | Risk of thermal degradation for sensitive compounds; moderate energy requirements; limited to water-soluble constituents. | [16] |
| Hydrodistillation (steam distillation) | Plant biomass is boiled with water; steam carries volatiles, which are then condensed and separated. Used for essential oil recovery. | No organic solvents; effective for volatile and thermostable compounds; commonly used for citrus and aromatic plant-based residue. | Long distillation time; high energy demand (continuous boiling); restricted to volatile, heat-stable compounds; ineffective for non-volatile bioactives. | [77,88] |
| Alkaline extraction | Solubilization of proteins and other compounds using aqueous alkaline solution (pH > 10), often at temperatures > 80 °C. | Facilitates protein recovery by breaking down cell walls; effective for protein-rich residues. | Harsh conditions can degrade thermolabile molecules; strong pH levels may alter the functional properties of bioactives; corrosive reagents can be hazardous. | [16] |
| Technique | Action | Compounds | Advantages | Limitations | Reference |
|---|---|---|---|---|---|
| UAE | Cavitation disrupts plant cells and enhances mass transfer | Polyphenols, flavonoids, anthocyanins | Fast, low-temperature, low solvent use | Limited to small/medium scale; compound degradation | [80,100] |
| SFE | CO2 under high pressure acts as a solvent for non-polar compounds | Essential oils, carotenoids, lipophilic molecules | Solvent-free, selective, residue-free | High cost, not ideal for polar compounds | [16] |
| DES | Tunable green solvents dissolve polar bioactives | Phenolic acids, flavonoids | Biodegradable, low toxicity | High viscosity, difficult recovery | [99] |
| MAE | Rapid heating disrupts cells and enhances diffusion | Polar phenolics, alkaloids | High yield, fast, minimal solvent | Uneven heating in large volumes, energy cost | [16] |
| EE | Enzymes degrade cell walls to release intracellular content | Phenolics | Mild conditions, high specificity | Enzyme cost, longer process time | [13] |
| MP | Physical separation by size or molecular weight (e.g., UF, NF) | Extracts post-processing | Solvent-free, gentle on compounds | Fouling, membrane replacement cost | [88] |
| UAM | Ultrasound reduces particle size to improve solubility/bioavailability | Extracted compounds for formulations | Increases bioavailability, compatible with other methods | Emerging, limited scalability | [5] |
| Plant-Based Residue | Extraction Method | Conditions (Solvent, Concentration, Temperature, pH) | Energy Usage | Solvent-to-Solid Ratio | Time | Bioactive Yield (Representative) | Ref. |
|---|---|---|---|---|---|---|---|
| Conventional Extraction Methods | |||||||
| Orange peels (Citrus sinensis) | Hydrodistillation (EO)—steam | Water (distilled), ~5.5 mL/g peel; ~100 °C; ~pH 7; 180 min | High (prolonged heating) | 5.5:1 (mL/g) water-to-peel | 3 h | ~0.4–0.7% essential oil yield (d-limonene ~20% of oil) | [77] |
| Orange peels (Citrus waste) | Solvent maceration (Flavonoids) | 70% ethanol in water; ~25 °C; stirred at 200 rpm | Low | 20:1 (mL/g) | 2 × 30 min | Hesperidin ~1.41 mg/g peel | [72] |
| Onion dry skins (red) | Solvent extraction (Flavonols) | 80% methanol; 60–80 °C | Moderate | ~20:1 (mL/g) | 1–2 h | Quercetin ~14.5–5110 µg/g DW; kaempferol ~3.2–481 µg/g DW | [101] |
| Lettuce, cabbage leaves | Aqueous organic extraction | 50–80% ethanol or methanol; ambient or 50 °C | Low–Moderate | 10–30:1 (mL/g) | 1–24 h | Lettuce TPC ~1.8–55 mg GAE/g DW; flavonoids 0.9–22 mg/g DW; cabbage TPC 43–66 mg/100 g FW | [82,83] |
| Advanced Extraction Methods | |||||||
| Banana peels (Musaceae) | MAE with DES | ChCl–glycerol DES (1:3) + 30% water; 60 °C; 400 W; ~pH neutral | Moderate–High | 50:1 (mL/g) | 10 min | HCA 765.9 mg/100 g DW; flavonoids 531.1 mg/100 g DW | [30] |
| Banana peels (Musaceae) | UAE with DES | ChCl–glycerol DES + 30% H2O; 75% amplitude; 26 kHz; ≤30 °C | Moderate | 60:1 (mL/g) | 5 min | HCA 765.9 mg/100 g DW; flavonoids 531.1 mg/100 g DW | [30] |
| Orange peels (Citrus waste) | UAE | 70% ethanol–water; ultrasonic bath 40 kHz; 40 °C | Low–Moderate | 20:1 (mL/g) | 2 × 30 min | Hesperidin ~3.6 mg/g | [72] |
| Eggplant peels (Solanum melongena) | EAE | Cellulase 5% w/w; 37 °C; pH 5 | Low | 20:1 (v/w) | 1 h | TAC 578.7 mg/L (C3G) | [78] |
| Eggplant peels (Solanum melongena) | UAE | 70% ethanol; ultrasonic bath 40 kHz; 40 °C | Moderate | 20:1 (mL/g) | 1.5 h | TPC 39.4 mg GAE/g; TFC 17.1 mg CE/g | [76] |
| Tomato pomace | UBAE | Hexane/EtOH mixture; 300 W; 40 °C | Moderate | 10–20:1 (v/w) | 40 min | Lycopene 420.8 µg/g DW; TPC 2.6 mg GAE/g | [34] |
| Onion peels (fermented) | Microbial fermentation + extraction | Lactobacillus fermentation 30 °C; 48 h; then EtOH extraction | Low | – | 48 h + 1 h extraction | Quercetin 14.9–48.5 mg/g DW | [102] |
| Factor | Description | Preferred Techniques | Refs. |
|---|---|---|---|
| Target compound | Refers to the physicochemical properties of the analyte (e.g., polarity, size). | FTIR (for functional groups: OH, C=O, etc.) UV-Vis (for phenolic compounds (flavonoids, phenolic acids, tannins) and other compounds with chromophoric groups) NMR (for pure compounds, full structural elucidation) HPLC (for polar and non-volatile compounds) GC-MS (for volatile compounds like essential oils) | [45,92] |
| Matrix complexity | Indicates how many other substances are present in the sample. | UV-Vis (moderate sensitivity for abundant chromophores) HPLC-MS/GC-MS (high sensitivity, can detect trace-level analytes) NMR (lower sensitivity, but powerful for structure) | [13,92] |
| Required sensitivity | Minimum amount of compound that must be detected or quantified. | HPLC-MS or GC-MS (for high precision) | [13] |
| Fruit | Compound | Method | Image | Ref. |
|---|---|---|---|---|
| Watermelon (Citrullus lanatus) | lycopene | Isocratic HPLC-UV/Vis (λ ≈ 470–475 nm); C18 column; methanol:tetrahydrofuran:water mobile phase | ![]() The figure is used under the Creative Commons Attribution License. | [108] |
| Potato peels (Solanum tuberosum) | total phenolics | HPLC-UV (λ = 280 nm) Output: HPLC separated. 1: Ascorbic acid, 2: chlorogenic acid, 3: caffeic acid, 4: ferulic acid, and 5: rutin. | ![]() The figure is used under MDPI open access CC BY 3.0 license. | [109] |
| Orange (Citrus sinensis) | hesperidin | HPLC (UV detector at 280 nm) Output: hesperidin peak ~12.4 min. | ![]() The figure is used under MDPI open access CC BY 4.0 license. | [110] |
| Broccoli (Brassica oleracea) | glucosinolates | HILIC−MS/MS chromatogram of 22 glucosinolates (e.g., glucoraphanin, glucobrassicin, neoglucobrassicin, progoitrin, and sinigrin). | ![]() The figure is used under ACS AuthorChoice License for DOI: 10.1021/acsomega.8b01668. | [104] |
| Bioactive | Plant Source | Family | Spectroscopic and Chromatographic Techniques | Key Analytical Parameters | Ref. |
|---|---|---|---|---|---|
| Lycopene | Tomato pomace (skin and seed) | Solanaceae | Conventional Soxhlet extraction (ethanol and ethyl acetate, 6 h, AOAC 922.06); solvent removal by rotary evaporator; storage at −18 °C; HPLC-UV | Column: C18 Vydac 218TP54 (250 × 4.6 mm, 5 µm), 30 °C; mobile phase: methanol:acetonitrile (90:10 v/v); flow rate: 0.8 mL/min; injection volume: 10 µL; detection: UV–Vis at 470 nm; identification by retention time vs. analytical standard; quantification via calibration curve (μg lycopene/g extract ± SD, triplicate) | [34] |
| Flavonoids | Banana pulp and peel | Musaceae | HPLC-DAD | Reversed-phase C18 column; mobile phase: acidified water and acetonitrile (gradient elution); flow rate: 1 mL/min; detection at 360 nm | [30] |
| Phenolic compounds | Banana pulp and peel | Musaceae | UV–Vis spectrophotometry (Folin–Ciocalteu assay) | Absorbance at 765 nm using a spectrophotometer, quartz cuvette; calibration with gallic acid | [30] |
| Anthocyanins | Raspberry fruit | Rosaceae | UV–Vis spectrophotometry (pH differential method) | Absorbance at 520 and 700 nm in buffers at pH 1.0 and 4.5; cyanidin-3-glucoside standard | [36] |
| Flavonoids | Raspberry fruit | Rosaceae | UV–Vis spectrophotometry (AlCl3 colorimetric method) | Absorbance at 510 nm; quartz cuvette; calibration with quercetin | [36] |
| Vegetable Waste Source | Applied Process | Environmental Application | Environmental Benefit | Ref. |
|---|---|---|---|---|
| Banana peel | Raw or chemically treated biosorbent | Wastewater treatment (Cu, Zn, Pb, dyes, etc.) | Low-cost pollutant removal; metal adsorption; eco-friendly reuse | [11,111] |
| Citrus peel (orange, lemon) | Entrapped in calcium alginate beads | Selenium removal from wastewater | High-capacity Se(IV) capture; reusable and efficient | [58] |
| Watermelon rind | Pyrolysis/chemical activation | Soil and water remediation (Cr, Pb, dyes) | Efficient pollutant adsorption; valorization of rind biomass | [11] |
| Tropical fruit residues | Enzymatic hydrolysis + fermentation | Bioethanol production | Renewable liquid fuel; reduced GHG emissions | [130] |
| Vegetable market waste | Anaerobic digestion | Biogas production | Renewable thermal energy; CH4 emission avoidance | [122,131] |
| Pumpkin shells, banana peels | Fast pyrolysis | Bio-oil production | Fuel oil replacement; lower emissions | [130] |
| Vegetable stalks, peels | Slow pyrolysis | Biochar (soil amendment) | Soil improvement; carbon sequestration | [126] |
| Plant Source | Material/Strategy | Therapeutic Application | Key Findings | Ref. |
|---|---|---|---|---|
| Daucus carota (carrot) | Green-synthesized silver nanoparticles | Antimicrobial wound dressing | AgNPs IC50: 83.6 µg/mL (S. aureus), 111 µg/mL (E. coli) | [145] |
| Spinacia oleracea (spinach) | Decellularized leaf scaffolds (prevascularized) | Tissue engineering scaffold | Limited immunological response; collagen deposition within 1 week post-implantation | [146] |
| Decellularized vascular scaffolds | Organ-on-chip vascular template | Retained perfusable microchannels, vascular template functionality | [147] | |
| Musa spp. (banana) | Banana pseudo-stem fibers composite (banana-chitosan-guar gum) | Wound healing patch | Biocompatible; supports fibroblast proliferation and controlled drug release | [148] |
| Musa balbisiana (banana) | Banana pseudo-stem fiber sutures | Anti-infective surgical sutures | Prevented post-operative wound infections; inhibited biofilm formation | [149] |
| Cucurbita spp. (pumpkin) | Nano-phytosome gel with pumpkin seed oil & lidocaine | Burn wound healing (rabbit model) | Closure rate ~0.216 mm/d vs. ~0.021 mm/d in control; half-closure time reduced to ~8.3 days | [8] |
| Application Area | Bioactive Components | Technologies Involved | Market Projection (Billion USD—Year) | Refs. |
|---|---|---|---|---|
| Wound healing | Antioxidants, antimicrobials, phytochemicals | Hydrogels, plant-derived nanoparticles | 14.87 (2030) | [140] |
| Antioxidant-based ingredients | Polyphenols, vitamins, flavonoids | Functional foods, cosmeceuticals | 6.4 (2035) | [140] |
| Combination Size | Combinations (C) | Permutations (P) | With 3 Sectors (C × 3/P × 3) |
|---|---|---|---|
| 2 (pairs) | 66 | 132 | 198/396 |
| 3 (triplets) | 220 | 1320 | 660/3960 |
| 4 (quartets) | 495 | 11,880 | 1485/35,640 |
| All subsets (upper bound) | 4095 | – | 12,285 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Saady, N.M.C.; Hernández, A.V.; Flores Servin, K.L.; Rodriguez, J.Z.; Haque, M.A.; Owusu, M.K.; Zendehboudi, S.; Bazan, C.; Ruiz Espinoza, J.E. Valorization of Agro-Food Plant Wastes: Bioactive Compound Profiles and Biotechnological Potential of Twenty Crops. Recycling 2026, 11, 7. https://doi.org/10.3390/recycling11010007
Saady NMC, Hernández AV, Flores Servin KL, Rodriguez JZ, Haque MA, Owusu MK, Zendehboudi S, Bazan C, Ruiz Espinoza JE. Valorization of Agro-Food Plant Wastes: Bioactive Compound Profiles and Biotechnological Potential of Twenty Crops. Recycling. 2026; 11(1):7. https://doi.org/10.3390/recycling11010007
Chicago/Turabian StyleSaady, Noori M. Cata, Alejandro Vázquez Hernández, Karla Lucia Flores Servin, Jose Zuniga Rodriguez, Md Ariful Haque, Michael Kwaku Owusu, Sohrab Zendehboudi, Carlos Bazan, and Juan Enrique Ruiz Espinoza. 2026. "Valorization of Agro-Food Plant Wastes: Bioactive Compound Profiles and Biotechnological Potential of Twenty Crops" Recycling 11, no. 1: 7. https://doi.org/10.3390/recycling11010007
APA StyleSaady, N. M. C., Hernández, A. V., Flores Servin, K. L., Rodriguez, J. Z., Haque, M. A., Owusu, M. K., Zendehboudi, S., Bazan, C., & Ruiz Espinoza, J. E. (2026). Valorization of Agro-Food Plant Wastes: Bioactive Compound Profiles and Biotechnological Potential of Twenty Crops. Recycling, 11(1), 7. https://doi.org/10.3390/recycling11010007















