Selection of Mulberry Genotypes from Northern Serbia for ‘Ornafruit’ Purposes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Morphometric Analyses of Vegetative Parts and Fruit
2.3. Chemical Analysis of Mulberry Fruits
2.4. Statistical Analysis
3. Results and Discussion
3.1. Vegetative Characterization of Investigated Mulberry Genotypes
3.2. Pomological Characterization of Investigated Mulberry Genotypes
3.3. The Chemical Composition of Fruits Belonging to Selected Genotypes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Imran, M.; Khan, I.; Shah, M.; Khan, R.; Khan, F. Chemical composition and antioxidant activity of certain Morus species. J. Zhejiang Univ. Sci. B 2010, 11, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Eyduran, S.P.; Ercisli, S.; Akin, M.; Beyhan, Ö.; Geçer, M.K. Organic acids, sugars, vitamin c, antioxidant capacity, and phenolic compounds in fruits of white (Morus alba L.) and black (Morus nigra L.) mulberry genotypes. J. Appl. Bot. Food Qual. 2014, 88, 134–138. [Google Scholar]
- Bolaric, S.; Müller, I.D.; Vokurka, A.; Cepo, D.V.; Ruscic, M.; Srecec, S.; Kremer, D. Morphological and molecular characteri-zation of Croatian carob tree (Ceratonia siliqua L.) germplasm. Turk. J. Agric. For. 2021, 45, 807–818. [Google Scholar] [CrossRef]
- Grygorieva, O.; Klymenko, S.; Kuklina, A.; Vinogradova, Y.; Vergun, O.; Sedlackova, V.H.; Brindza, J. Evaluation of Lonicera caerulea L. genotypes based on morphological characteristics of fruits germplasm collection. Turk. J. Agric. For. 2021, 45, 850–860. [Google Scholar] [CrossRef]
- Ilhan, G.; Gundogdu, M.; Karlović, K.; Židovec, V.; Vokurka, A.; Ercişli, S. Main agro-morphological and biochemical berry characteristics of wild-grown Sea Buckthorn (Hippophae rhamnoides L. ssp. caucasica Rousi) genotypes in Turkey. Sustainability 2021, 13, 1198. [Google Scholar] [CrossRef]
- Singhal, B.K.; Khan, M.A.; Dhar, A.; Baqual, F.M.; Bindroo, B.B. Approaches to industrial exploitation of mulberry (Mulberry sp.) fruits. J. Fruit Ornam. Plant Res. 2010, 18, 83–99. [Google Scholar]
- Ericsli, S.; Orhan, E. Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem. 2007, 103, 1380–1384. [Google Scholar] [CrossRef]
- Ercisli, S. A short review of the fruit germplasm resources of Turkey. Genet. Res. Crop. Evol. 2004, 51, 419–435. [Google Scholar] [CrossRef]
- Can, A.; Kazankaya, A.; Orman, E.; Gundogdu, M.; Ercisli, S.; Choudhary, R.; Karunakaran, R. Sustainable mulberry (Morus nigra L., Morus alba L. and Morus rubra L.) production in Eastern Turkey. Sustainability 2021, 13, 13507. [Google Scholar] [CrossRef]
- Ljubojević, M.; Ognjanov, V.; Sentić, I.; Dulić, J. Fruit Species in Landscape Design (In Serbian: Voćne vrste u Pejzažnom Projektovanju); University of Novi Sad, Faculty of Agriculture: Novi Sad, Serbia, 2018. [Google Scholar]
- Sahin, M. Ornafruit: Fruit species for ornamental purposes. In Ornamental Plants: With Their Features and Usage Principles; Cig, A., Ed.; Iksad Publications: Ankara, Turkey, 2020; pp. 397–424. [Google Scholar]
- Ljubojević, M. Horticulturalization of the 21st century cities. Sci. Hortic. 2021, 288, 110350. [Google Scholar] [CrossRef]
- Ahlawat, T.; Patel, N.L.; Agnihotri, R.; Patel, C.R.; Tandel, Y. Black Mulberry (Morus nigra). In Underutilized Fruit Crops: Importance and Cultivation; Narendra Publishing House: Delhi, India, 2016; pp. 195–212. ISBN 978-93-86110-09-1. [Google Scholar]
- Roloff, A.; Korn, S.; Gillner, S. The Climate-Species-Matrix to select tree species for urban habitats considering climate change. Urban For. Urban Green. 2009, 8, 295–308. [Google Scholar] [CrossRef]
- Lafontaine-Messier, M.; Gélinas, N.; Olivier, A. Profitability of food trees planted in urban public green areas. Urban For. Urban Green. 2016, 16, 197–207. [Google Scholar] [CrossRef]
- Colinas, J.; Bush, P.; Manaugh, K. The socio-environmental impacts of public urban fruit trees: A Montreal case-study. Urban For. Urban Green. 2019, 45, 126132. [Google Scholar] [CrossRef]
- Fetouh, M.I. Edible landscaping in urban horticulture. In Urban Horticulture; Nandwani, D., Ed.; Springer: Cham, Switzerland, 2018; pp. 141–173. [Google Scholar]
- Poguberović, S.S.; Krčmar, D.M.; Dalmacija, B.D.; Maletić, S.P.; Tomašević-Pilipović, D.D.; Kerkez, D.V.; Rončević, S.D. Removal of Ni (II) and Cu (II) from aqueous solutions using ‘green’ zero-valent iron nanoparticles produced by oak and mulberry leaf extracts. Water Sci. Technol. 2016, 74, 2115–2123. [Google Scholar] [CrossRef]
- Bošnjaković, D.; Ognjanov, V.; Ljubojević, M.; Barać, G.; Predojević, M.; Mladenović, E.; Čukanović, J. Biodiversity of wild fruit species of Serbia. Genetika 2012, 44, 81–90. [Google Scholar] [CrossRef]
- Natić, M.M.; Dabić, Č.D.; Papetti, A.; Fotrić, M.M.; Ognjanov, V.; Ljubojević, M.; Tešić, L.Ž. Analysis and characterisation of phytochemicals in mulberry (Morus alba) fruits grown in Vojvodina, North Serbia. Food Chem. 2015, 171, 128–136. [Google Scholar] [CrossRef]
- Marchetti, L.; Truzzi, E.; Frosi, I.; Papetti, A.; Cappellozza, S.; Saviane, A.; Pellati, F.; Bertelli, D. In vitro bioactivity evaluation of mulberry leaf extracts as nutraceuticals for the management of diabetes mellitus. Food Funct. 2022, 13, 4344–4359. [Google Scholar] [CrossRef]
- Zhao, Y. Berry Fruit: Value-Added Products for Health Promotion; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef]
- Asano, N.; Yamashita, T.; Yasuda, K.; Ikeda, K.; Kizu, H.; Kameda, Y.; Kato, A.; Nash, R.J.; Lee, H.S.; Ryu, K.S. Polyhydroxylated alkaloids isolated from mulberry trees (Morus alba L.) and silkworms (Bombyx mori L.). J. Agric. Food Chem. 2001, 49, 4208–4213. [Google Scholar] [CrossRef]
- Kostić, D.A.; Dimitrijević, D.S.; Mitić, S.S.; Mitić, M.N.; Stojanović, G.S.; Živanović, A.V. A survey on macro-and micro-elements, phenolic compounds, biological activity and use of Morus spp. (Moraceae). Fruits 2013, 68, 333–347. [Google Scholar] [CrossRef] [Green Version]
- Ercisli, S.; Tosun, M.; Duralija, B.; Voća, S.; Sengul, M.; Turan, M. Phytochemical content of some black (Morus nigra L.) and purple (Morus rubra L.) mulberry genotypes. Food Technol. Biotech. 2010, 48, 102–106. [Google Scholar]
- Bae, S.H.; Suh, H.J. Antioxidant activities of five different mulberry cultivars in Korea. LWT-Food Sci. Technol. 2007, 40, 955–962. [Google Scholar] [CrossRef]
- Song, W.; Wang, H.J.; Bucheli, P.; Zhang, P.F.; Wei, D.Z.; Lu, Y.H. Phytochemical profiles of different mulberry (Morus sp.) species from China. J. Agr. Food Chem. 2009, 57, 9133–9140. [Google Scholar] [CrossRef]
- Pavlović, A.V.; Dabić, D.C.; Momirovic, N.M.; Dojčinović, B.P.; Milojković-Opsenica, D.M.; Tešić, Z.L.; Natić, M.M. Chemical composition of two different extracts of berries harvested in Serbia. J. Agr. Food Chem. 2013, 61, 4188–4194. [Google Scholar] [CrossRef] [PubMed]
- Calín-Sánchez, Á.; Martínez-Nicolás, J.J.; Munera-Picazo, S.; Carbonell-Barrachina, Á.A.; Legua, P.; Hernández, F. Bioactive compounds and sensory quality of black and white mulberries grown in Spain. Plant. Food Hum. Nutr 2013, 68, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Sohn, K.W. Conservation status of sericulture germplasm resources in the world. In Conservation Status of Mulberry (Morus spp.) Genetic Resources in the World; Agriculture and Consumer Protection FAO: Rome, Italy, 2003; Volume 43, p. 11. [Google Scholar]
- Kadri, A.; Saleh, S.; Elbitar, A.; Chehade, A. Genetic diversity assessment of ancient mulberry (Morus spp.) in Lebanon using morphological, chemical and molecular markers (SSR and ISSR). Adv. Hort. Sci. 2021, 35, 243–253. [Google Scholar] [CrossRef]
- Waterman, P.G.; Mole, S. Analysis of Phenolic Plant Metabolites; Blackwell Scientific: Hoboken, NJ, USA, 1994. [Google Scholar]
- Meena, V.S.; Gora, J.S.; Singh, A.; Ram, C.; Meena, N.K.; Pratibha; Rouphael, Y.; Basile, B.; Kumar, P. Underutilized fruit crops of Indian arid and semi-arid regions: Importance, conservation and utilization strategies. Horticulturae 2022, 8, 171. [Google Scholar] [CrossRef]
- Pentón, G.; Martín, G.; Pérez, A.; Noda, Y. Morphoagronomic performance of mulberry (Morus alba L.) varietes during the establishment. Pastos Forrajes 2007, 30, 315–325. [Google Scholar]
- Ercisli, S.; Orhan, E. Some physico-chemical characteristics of black mulberry (Morus nigra L.) genotypes from Northeast Anatolia region of Turkey. Sci. Hortic. 2008, 116, 41–46. [Google Scholar] [CrossRef]
- Farahani, M.; Salehi-Arjmand, H.; Khadivi, A.; Akramian, M. Chemical characterization and antioxidant activities of Morus alba var. nigra fruits. Sci. Hortic. 2019, 253, 120–127. [Google Scholar] [CrossRef]
- Ognjanov, V.; Ljubojević, M.; Ninić-Todorović, J.; Bošnjaković, D.; Barać, G.; Čukanović, J.; Mladenović, E. Morphometric diversity in dwarf sour cherry germplasm in Serbia. J. Hortic. Sci. Biotechnol. 2012, 87, 117–122. [Google Scholar] [CrossRef]
- Gupta, S.; Rosenthal, D.M.; Stinchcombe, J.R.; Baucom, R.S. The remarkable morphological diversity of leaf shape in sweet potato (Ipomoea batatas): The influence of genetics, environment, and G×E. New Phytol. 2020, 225, 2183–2195. [Google Scholar] [CrossRef] [PubMed]
- Lo Bianco, R.; Mirabella, F. Use of leaf and fruit morphometric analysis to identify and classify white mulberry (Morus alba L.) genotypes. Agriculture 2018, 8, 157. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Kumari, A.; Thakur, I.K.; Chandel, M.; Bhatia, A.K.; Kumar, A. Variations in morphometric characteristics of white mulberry (Morus alba L.). J. Pharmacogn. Phytochem. 2021, 10, 312–315. [Google Scholar]
- Özgen, M.; Güneş, M.; Akça, Y.; Türemiş, N.; Ilgin, M.; Kizilci, G.; Erdoğan, Ű.; Serçe, S. Morphological characterization of several Morus species from Turkey. Hort. Environ. Biotechnol. 2009, 50, 9–13. [Google Scholar]
- Sanchez, E.M.; Calin-Sanchez, A.; Carbonell-Barrachina, A.A.; Melgarejo, P.; Hernandez, F.; Martinez-Nicolas, J.J. Physicochemical characterization of eight Spanish mulberry clones: Processing and fresh market aptitudes. Int. J. Food Sci. Technol. 2014, 49, 477–483. [Google Scholar] [CrossRef]
- Hashemi, S.; Khadivi, A. Morphological and pomological characteristics of white mulberry (Morus alba L.) accessions. Sci. Hortic. 2020, 259, 108827. [Google Scholar] [CrossRef]
- Nayab, S.; Razzaq, K.; Ullah, S.; Rajwana, I.A.; Amin, M.; Faried, H.N.; Akhtar, G.; Khan, A.S.; Asghar, Z.; Hassan, H.; et al. Genotypes and harvest maturity influence the nutritional fruit quality of mulberry. Sci. Hortic. 2020, 266, 109311. [Google Scholar] [CrossRef]
- Chen, H.; Chen, J.; Yang, H.; Chen, W.; Gao, H.; Lu, W. Variation in total anthocyanin, phenolic contents, antioxidant enzyme and antioxidant capacity among different mulberry (Morus sp.) cultivars in China. Sci. Hortic. 2016, 213, 186–192. [Google Scholar] [CrossRef]
- Lee, Y.; Hwang, K.T. Changes in physicochemical properties of mulberry fruits (Morus alba L.) during ripening. Sci. Hortic. 2017, 217, 189–196. [Google Scholar] [CrossRef]
- Elmaci, Y.; Altuğ, T. Flavor evaluation of three black mulberry (Morus nigra) cultivars using GC/MS, chemical and sensory data. J. Sci. Food Agric. 2002, 82, 632–635. [Google Scholar] [CrossRef]
- Gundogdu, M.; Muradoglu, F.; Sensoy, R.I.G.; Yilmaz, H. Determination of fruit chemical properties of Morus nigra L., Morus alba L. and Morus rubra L. by HPLC. Sci. Hortic. 2011, 132, 37–41. [Google Scholar] [CrossRef]
- Al-Mayahi, A.; Al-Ismaily, S.; Gibreel, T.; Kacimov, A.; Al-Maktoumi, A. Home gardening in Muscat, Oman: Gardeners’ practices, perceptions and motivations. Urban For. Urban Green. 2019, 38, 286–294. [Google Scholar] [CrossRef]
- Homan, J. Edible Landscapes: Relocalising Food and Bringing Nature into North London. In Urban Biodiversity and Ecological Design for Sustainable Cities; Ito, K., Ed.; Springer: Tokyo, Japan, 2021. [Google Scholar]
- Bunge, A.; Diemont, S.A.W.; Bunge, J.A.; Harris, S. Urban foraging for food security and sovereignty: Quantifying edible forest yield in Syracuse, New York using four common fruit- and nut-producing street tree species. J. Urban Ecol. 2019, 5, juy028. [Google Scholar] [CrossRef] [Green Version]
- Haight, B.J. Lovely homegrown menus: Substituting beautiful edibles for ornamentals in residential landscapes. Ph.D. Thesis, Washington State University, Washington, DC, USA, 2006. [Google Scholar]
- Amani-Beni, M.; Xie, G.; Yang, Q.; Russo, A.; Khalilnezhad, M.R. Socio-cultural appropriateness of the use of historic Persian gardens for modern urban edible gardens. Land 2022, 11, 38. [Google Scholar] [CrossRef]
- Shubha, K.; Mukherjee, A.; Anand, S.; Koley, T.K.; Kumar, U. Nutri-garden for achieving Sustainable Development Goals (SDGs). Food Sci. Rep. 2020, 1, 25–27. [Google Scholar]
Number | Species | Genotype Code | Place of Collecting | Type of Green Area |
---|---|---|---|---|
1. | M. alba | BP 1/4 | Bačka Palanka | Rural back-yard |
2. | M. alba | BP 3/9 | Bačka Palanka | Rural back-yard |
3. | M. alba | DJ1 | Novi Karlovci | Rural back-yard |
4. | M. alba | DT1 | Inđija | Urban front-yard |
5. | M. alba | JP2 | Inđija | School front-yard |
6. | M. alba | MG1 | Novi Karlovci | Rural back-yard |
7. | M. alba | PB1 | Novi Sad | Urban front-yard |
8. | M. alba | ZD1 | Inđija | Urban front-yard |
9. | M. alba | ZP1 | Novi Karlovci | Rural front-yard |
10. | M. alba | ZP2 | Novi Karlovci | Rural front-yard |
11. | M. nigra | BPJ | Bačka Palanka | Rural back-yard |
12. | M. nigra | MN1 | Bačka Palanka | Rural back-yard |
13. | M. nigra | SK1 | Sremski Karlovci | Urban front-yard |
14. | M. nigra | ZP3 | Novi Karlovci | Rural front-yard |
15. | M. rubra | MR1 | Inđija | Urban front-yard |
Genotype Code | Leaf Color | Leaf Shape | Tree Vigor | Growth Habit |
---|---|---|---|---|
BP 1/4 | Dark green | Cordate | Semi | Spreading |
BP 3/9 | Dark green | Cordate | Vigorous | Dropping |
DJ | Green | Ovate | Vigorous | Dropping |
DT1 | Green | Oval | Vigorous | Dropping |
JP2 | Green | Heteromorphic | Vigorous | Spreading |
MG1 | Green | Ovate | Semi | Spreading |
PB1 | Green | Oval | Vigorous | Spreading |
ZD1 | Light green | Palmately lobed | Semi | Spreading |
ZP1 | Dark green | Cordate | Semi | Spreading |
ZP2 | Green | Ovate | Vigorous | Spreading |
BPJ | Light green | Cordate | Vigorous | Spreading |
MN1 | Dark green | Cordate | Vigorous | Spreading |
SK1 | Dark green | Cordate | Vigorous | Spreading |
ZP3 | Light green | Cordate | Vigorous | Dropping |
MR1 | Green | Cordate | Semi | Dropping |
Genotype Code | Annual Branches Length (cm) | Branch Thickness (mm) | Internodes Length (cm) | Leaf Length (cm) | Leaf Width (cm) | Leaf Shape Index (Length/Width Ratio) | Petiole Length (cm) | Petiole Width (mm) | Mass of Ten Leaves (g) |
---|---|---|---|---|---|---|---|---|---|
BPJ | 47.7 ± 7.6 hi* | 4.1 ± 0.5 e | 5.5 ± 1.1 e | 13.6 ± 1.6 cd | 10.4 ± 1.9 efg | 1.3 ± 0.1 bcd | 3.8 ± 0.4 h | 3.0 ± 0.3 b | 21.7 ± 3.7 e |
BP 1/4 | 36.7 ± 2.8 j | 3.6 ± 0.1 fg | 4.2 ± 0.5 f | 12.2 ± 0.7 e | 10.0 ± 0.9 fg | 1.2 ± 0.1 def | 4.2 ± 0.4 gh | 2.7 ± 0.3 c | 17.4 ± 2.1 fg |
BP 3/9 | 43.6 ± 4.5 i | 3.9 ± 0.6 ef | 3.3 ± 0.9 g | 12.4 ± 1.8 e | 9.1 ± 1.3 hi | 1.3 ± 0.1 abc | 4.8 ± 0.7 e | 2.4 ± 0.4 d | 17.1 ± 2.5 fg |
DJ1 | 32.9 ± 5.1 j | 3.5 ± 0.2 g | 2.8 ± 0.6 g | 11.8 ± 2.1 e | 8.6 ± 0.5 i | 1.4 ± 0.3 abc | 4.1 ± 0.3 gh | 2.2 ± 0.3 f | 16.8 ± 2.0 fg |
DT1 | 108.2 ± 5.7 b | 4.9 ± 0.2 c | 8.3 ± 1.1 a | 14.6 ± 1.2 c | 10.0 ± 0.8 fgh | 1.5 ± 0.2 a | 5.2 ± 0.5 d | 2.1 ± 0.2 f | 16.5 ± 1.0 gh |
JP2 | 51.6 ± 3.7 h | 2.7 ± 0.3 h | 5.0 ± 0.7 e | 14.0 ± 2.2 c | 10.8 ± 1.1 def | 1.4 ± 0.2 cde | 4.2 ± 0.4 gh | 2.0 ± 0.3 f | 14.3 ± 2.2 i |
MG1 | 76.4 ± 6.3 e | 5.2 ± 0.6 c | 6.4 ± 0.4 d | 17.9 ± 1.2 a | 14.1 ± 0.9 b | 1.3 ± 0.1 cde | 6.4 ± 0.6 b | 2.8 ± 0.2 bc | 34.9 ± 5.8 b |
MN1 | 61.5 ± 6.5 g | 4.1 ± 0.4 e | 5.0 ± 0.5 e | 12.7 ± 1.1 de | 9.8 ± 1.1 gh | 1.3 ± 0.1 b-e | 4.1 ± 0.3 gh | 2.6 ± 0.3 cd | 17.5 ± 2.0 fg |
MR1 | 101.8 ± 10.4 c | 4.4 ± 0.4 d | 7.6 ± 1.3 abc | 12.0 ± 1.7 e | 9.9 ± 1.3 fgh | 1.3 ± 0.1 ef | 5.9 ± 0.9 c | 1.8 ± 0.2 g | 14.5 ± 2.5 hi |
PB1 | 46.4 ± 6.6 i | 3.9 ± 0.3 ef | 4.9 ± 0.5 e | 16.4 ± 1.4 b | 11.2 ± 1.4 de | 1.5 ± 0.2 a | 4.3 ± 0.3 fg | 2.5 ± 0.2 d | 23.8 ± 2.0 d |
SK1 | 69.8 ± 3.6 f | 4.9 ± 0.5 c | 8.2 ± 1.6 ab | 12.8 ± 1.6 de | 11.8 ± 1.4 cd | 1.1 ± 0.1 g | 7.3 ± 0.8 a | 2.4 ± 0.6 de | 17.2 ± 1.7 fg |
ZD1 | 82.5 ± 0.3 d | 4.5 ± 0.9 d | 7.1 ± 1.5 cd | 10.2 ± 1.0 f | 9.0 ± 1.0 hi | 1.1 ± 0.2 fg | 4.7 ± 0.6 ef | 1.8 ± 0.1 g | 6.4 ± 0.2 j |
ZP1 | 100.5 ± 10.7 c | 8.1 ± 0.8 a | 6.9 ± 0.9 d | 18.1 ± 2.3 a | 15.1 ± 2.7 a | 1.2 ± 0.1 ef | 7.0 ± 0.5 a | 3.6 ± 0.6 a | 40.1 ± 7.1 a |
ZP2 | 73.1 ± 3.3 ef | 5.5 ± 0.2 b | 5.2 ± 1.0 e | 17.2 ± 1.1 ab | 12.4 ± 1.4 c | 1.4 ± 0.2 ab | 4.1 ± 0.2 gh | 3.0 ± 0.4 b | 28.8 ± 1.7 c |
ZP3 | 118.5 ± 8.4 a | 5.1 ± 0.0 c | 7.6 ± 1.7 bc | 12.9 ± 1.6 de | 10.7 ± 1.4 efg | 1.2 ± 0.1 ef | 5.9 ± 0.5 c | 2.2 ± 0.3 ef | 18.9 ± 3.5 f |
69.4 | 4.6 | 5.7 | 14.1 | 10.9 | 1.3 | 5.0 | 2.5 | 20.8 | |
Amin | 30.0 | 2.2 | 2.0 | 8.1 | 7.0 | 0.8 | 3.0 | 1.1 | 6.2 |
Amax | 128.4 | 9.2 | 10.4 | 22.0 | 21.0 | 2.7 | 9.0 | 5.1 | 51.4 |
S.D. | 28.5 | 1.3 | 1.9 | 2.8 | 2.3 | 0.2 | 1.2 | 0.6 | 8.4 |
CV% | 41.1 | 29.4 | 34.3 | 19.8 | 20.7 | 14.6 | 24.1 | 24.3 | 40.7 |
Genotype Code | Fruit Mass (g) | Fruit Height (mm) | Fruit Width (mm) | Fruit Shape Index | Peduncle Length (mm) | Peduncle Width (mm) | Dry Matter Content (%) |
---|---|---|---|---|---|---|---|
BP1/4 | 4.2 ± 1.0 c* | 29.2 ± 3.3 b | 15.1 ± 2.0 bc | 2.0 ± 0.3 c | 7.1 ± 1.2 f | 1.4 ± 0.1 b | 14.0 ± 1.1 ef |
BP3/9 | 3.5 ± 0.7 d | 25.8 ± 2.4 c | 14.6 ± 1.0 c | 1.8 ± 0.1 de | 8.4 ± 1.1 e | 1.0 ± 0.1 ef | 16.9 ± 1.4 c |
DJ1 | 6.1 ± 0.8 a | 33.2 ± 2.1 a | 17.6 ± 1.6 a | 1.9 ± 0.1 cd | 13.7 ± 1.6 a | 1.3 ± 0.3 bcd | 15.2 ± 0.9 de |
DT1 | 1.4 ± 0.2 f | 18.5 ± 1.6 e | 10.2 ± 1.4 g | 1.8 ± 0.2 cde | 11.2 ± 1.3 c | 0.7 ± 0.1 h | 19.1 ± 1.5 b |
JP2 | 1.9 ± 0.4 f | 21.3 ± 2.2 d | 12.0 ± 0.9 f | 1.8 ± 0.2 de | 7.1 ± 1.0 f | 0.8 ± 0.2 gh | 16.1 ± 1.2 cd |
MG1 | 5.0 ± 0.8 b | 34.8 ± 2.9 a | 14.2 ± 1.4 cde | 2.5 ± 0.2 a | 12.6 ± 0.9 b | 1.6 ± 0.2 a | 13.0 ± 1.3 f |
MN1 | 2.8 ± 0.9 e | 24.7 ± 3.3 c | 13.1 ± 2.1 e | 1.9 ± 0.2 cd | 9.9 ± 1.1 d | 0.9 ± 0.2 fgh | 11.7 ± 1.2 g |
MR1 | 4.9 ± 0.9 b | 29.5 ± 3.6 b | 17.3 ± 2.5 a | 1.7 ± 0.4 de | 10.4 ± 1.1 cd | 1.2 ± 0.2 cde | 19.8 ± 2.4 b |
PB1 | 4.2 ± 0.8 c | 30.0 ± 2.7 b | 16.0 ± 1.2 b | 1.9 ± 0.2 cde | 13.9 ± 0.9 a | 1.3 ± 0.2 bc | 14.8 ± 1.6 de |
ZD1 | 2.7 ± 1.0 e | 20.9 ± 4.0 d | 13.3 ± 1.2 de | 1.6 ± 0.2 f | 5.3 ± 0.8 g | 0.9 ± 0.2 fg | 24.9 ± 1.5 a |
ZP1 | 3.4 ± 0.6 d | 24.4 ± 2.8 c | 14.4 ± 0.9 cd | 1.7 ± 0.2 ef | 12.5 ± 0.9 b | 1.1 ± 0.2 de | 19.6 ± 1.9 b |
ZP2 | 3.5 ± 0.7 d | 29.5 ± 3.1 b | 13.3 ± 1.4 de | 2.2 ± 0.2 b | 10.5 ± 0.9 cd | 0.9 ± 0.2 fg | 16.7 ± 1.3 c |
ZP3 | 1.8 ± 0.3 f | 20.0 ± 2.6 de | 11.4 ± 0.9 f | 1.7 ± 0.2 de | 10.4 ± 0.9 cd | 0.8 ± 0.2 gh | 13.2 ± 1.1 f |
Mean | 3.5 | 26.2 | 14.0 | 1.9 | 10.2 | 1.1 | 16.5 |
Absolute minimum | 1.1 | 14.8 | 8.4 | 1.1 | 2.1 | 0.3 | 11.2 |
Absolute maximum | 8.3 | 38.9 | 21.3 | 3.0 | 20.3 | 2.2 | 28.2 |
St. Dev. | 1.5 | 5.7 | 2.5 | 0.3 | 3.6 | 0.3 | 3.8 |
CV(%) | 43.7 | 21.7 | 18.1 | 21.5 | 34.7 | 29.6 | 22.8 |
Genotype Code | Soluble Solids Content (%) | Total Acidity (%) | Total Sugar Content (%) | Reducing Sugar Content (%) | Sucrose Content (%) | Ascorbic Acid (mg/%) | Total Anthocyanins Content (%) | Total phenolic Contents (mgGAE/100 g Fresh Mass) |
---|---|---|---|---|---|---|---|---|
MN1 | 11.5 ± 1.2 e* | 0.40 ± 0.0 a | 8.97 ± 1.1 e | 6.81 ± 0.7 f | 2.05 ± 0.2 a | 35.20 ± 2.6 c | 0.05 ± 0.01 b | 147.84 ± 0.82 c |
ZP3 | 15.8 ± 0.7 c | 0.43 ± 0.1 a | 12.08 ± 1.2 d | 10.10 ± 0.9 e | 1.88 ± 0.1 b | 42.24 ± 3.0 b | 0.10 ± 0.01 a | 185.03 ± 0.96 b |
DT1 | 18.5 ± 1.0 b | 0.38 ± 0.1 a | 15.20 ± 1.5 b | 13.96 ± 0.8 b | 1.18 ± 0.1 c | 49.28 ± 1.8 a | 0.12 ± 0.01 a | 221.08 ± 0.61 a |
MR1 | 21.2 ± 1.7 a | 0.19 ± 0.0 cd | 17.41 ± 1.5 a | 16.30 ± 0.9 a | 1.05 ± 0.1 d | 42.24 ± 2.7 b | - | 63.23 ± 1.28 d |
ZP2 | 13.4 ± 1.1 d | 0.27 ± 0.1 b | 12.08 ± 1.0 d | 10.14 ± 1.1 e | 1.84 ± 0.1 b | 31.68 ± 1.8 d | - | 44.93 ± 0.51 e |
ZP1 | 14.3 ± 1.3 d | 0.21 ± 0.0 bc | 13.20 ± 0.8 c | 11.20 ± 0.8 d | 1.90 ± 0.1 b | 17.60 ± 0.9 f | - | 34.87 ± 0.31 e |
BP 3/9 | 15.8 ± 1.2 c | 0.13 ± 0.0 d | 14.41 ± 0.8 b | 12.21 ± 1.0 c | 2.09 ± 0.1 a | 21.12 ± 1.5 e | - | 16.51 ± 0.29 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ljubojević, M.; Šavikin, K.; Zdunić, G.; Bijelić, S.; Mrđan, S.; Kozomara, M.; Pušić, M.; Narandžić, T. Selection of Mulberry Genotypes from Northern Serbia for ‘Ornafruit’ Purposes. Horticulturae 2023, 9, 28. https://doi.org/10.3390/horticulturae9010028
Ljubojević M, Šavikin K, Zdunić G, Bijelić S, Mrđan S, Kozomara M, Pušić M, Narandžić T. Selection of Mulberry Genotypes from Northern Serbia for ‘Ornafruit’ Purposes. Horticulturae. 2023; 9(1):28. https://doi.org/10.3390/horticulturae9010028
Chicago/Turabian StyleLjubojević, Mirjana, Katarina Šavikin, Gordana Zdunić, Sandra Bijelić, Snežana Mrđan, Marija Kozomara, Magdalena Pušić, and Tijana Narandžić. 2023. "Selection of Mulberry Genotypes from Northern Serbia for ‘Ornafruit’ Purposes" Horticulturae 9, no. 1: 28. https://doi.org/10.3390/horticulturae9010028
APA StyleLjubojević, M., Šavikin, K., Zdunić, G., Bijelić, S., Mrđan, S., Kozomara, M., Pušić, M., & Narandžić, T. (2023). Selection of Mulberry Genotypes from Northern Serbia for ‘Ornafruit’ Purposes. Horticulturae, 9(1), 28. https://doi.org/10.3390/horticulturae9010028