The Main Physicochemical Characteristics and Nutrient Composition during Fruit Ripening of Stauntonia obovatifoliola Subsp. Urophylla (Lardizabalaceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Determination of Fruit Physical Parameters
2.3. Determination of Biochemical Parameters
2.4. Determination of Carbohydrates
2.5. Determination of Vitamin B, Vitamin C, Total Phenolics, and Total Flavonoids
2.6. Determination of Amino Acids
2.7. Statistical Analysis
3. Results
3.1. Dynamic Changes of Appearance Quality during Fruit Development
3.2. Dynamic Changes of Total Soluble Solids, Titratable Acidity, Dry Matter, and Fruit Firmness during Fruit Development
3.3. Dynamic Changes of Carbohydrate Contents during Fruit Development
3.4. Dynamic Changes of Vitamin B, Vitamin C, Total Phenolics, Total Flavonoids, and Protein Contents during Fruit Development
3.5. Dynamic Changes of Amino Acid Composition during Fruit Development
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zou, S.; Yao, X.; Zhong, C.; Gao, P.; Wang, Z.; Huang, H. Phenotypic characterization of Stauntonia obovatifoliola Hayata subsp. urophylla germplasm: A potential new fruit crop. Genet. Resour. Crop Evol. 2020, 67, 1037–1050. [Google Scholar]
- Editorial Commission of Chinese Flora of Chinese Academy of Sciences. Flora of China; Science Press: Beijing, China, 2001. [Google Scholar]
- Wang, Y.; Xing, W.; He, X.; Duan, W.; Huang, W.; Gong, C. Differential comparison among different geographical provenances of Stauntonia urophylla. J. Cent. South Univ. For. Technol. 2015, 35, 55–60. [Google Scholar]
- Li, R.; Ru, Y.; Feng, L.; Wang, Z.; He, X.; Zhang, X. A comparative study of nutrient composition, bioactive properties and phytochemical characteristics of Stauntonia obovatifoliola flesh and pericarp. Front. Nutr. 2022, 9, 1013971. [Google Scholar] [CrossRef] [PubMed]
- Hong, Z.M.; Yang, T.M. Chemical base of Yao’s medication principle. J. South-Cent. Univ. Natl. 2010, 29, 37–40. [Google Scholar]
- Peng, X.B.; Gao, W.L.; Hu, D.Q.; Ma, F.F.; Fu, L.G.; Deng, Q.; Wei, Y. Chemical constituents from the aerial part of Stauntonia obovatifoliola Hayata subsp. urophylla. J. Chin. Med. Mater. 2013, 36, 1795–1798. [Google Scholar]
- Lu, X.R.; Qiu, F.; Pan, X.Q.; Li, J.; Wang, M.Y.; Gong, M.X. Simultaneous quantitative analysis of nine triterpenoid saponins for the quality control of Stauntonia obovatifoliola Hayata subsp. intermedia stems. J. Sep. Sci. 2014, 37, 3632–3640. [Google Scholar] [CrossRef]
- Lu, X.R.; Wang, X.M.; Wang, Z.M.; Chen, X.Q.; Wang, M.Y.; Gong, M.X. Triterpenoid Saponins from Stauntonia obovatifoliola Hayata ssp. urophylla. Helv. Chim. Acta 2015, 98, 245–252. [Google Scholar] [CrossRef]
- Thomas, S.S.; Cha, Y.S.; Kim, K.A. Perilla oil alleviates high-fat diet-induced inflammation in the colon of mice by suppressing nuclear factor-kappa b activation. J. Med. Food 2020, 23, 818–826. [Google Scholar] [CrossRef]
- Chen, X.D.; Tian, W.; Deng, R.H.; Liu, Y.; Deng, H.Y. Chemical constituents from Stauntonia obovatifoliola subsp. Urophylla. Chin. Tradit. Herb. Drugs 2013, 44, 671–673. [Google Scholar]
- Zhou, W.J.; Chen, Q.P.; Zeng, Y.B.; Wang, G.X. Content Determination of Oleanolic Acid in Stauntonia obovatifoliola Hayata subsp. urophylla by RP-HPLC. Chin. J. Inf. TCM 2015, 22, 92–94. [Google Scholar]
- Shan, Z.; Mu, Z.; Qin, H. Study on the species identification and distribution of Lardizabalaceae medicinal plants in Jiangxi province. China Med. Pharm. 2018, 8, 53–57. [Google Scholar]
- Wang, Y.; He, X.; Li, J.; Gong, C.; Zhou, W. Evaluation of adaptability on germplasm resources of Lardizabalaceae. South China For. Sci. 2018, 46, 24–27. [Google Scholar]
- Wu, L.; Xu, W.; He, S. Species and distributuin of medicinal plants of Lardizabalaceae in China. J. Anhui Agric. Sci. 2010, 38, 14325–14326. [Google Scholar]
- You, C.; Huang, H.; Mei, Y. Study of Lardizabalaceae resources and cultivation in southern Jiangxi Province. South China For. Sci. 2018, 46, 22–24. [Google Scholar]
- Zhong, W.; Cao, L.; Zhong, W.; Mu, Z.; Du, X.; Zhong, G. Survey resources of medicinal plants of Lardizabalaceae in Jiangxi Province. J. Jiangxi Univ. TCM 2016, 28, 63–64. [Google Scholar]
- Lelièvre, J.M.; Latchè, A.; Jones, B.; Bouzayen, M.; Pech, J.C. Ethylene and fruit ripening. Physiol. Plant. 1997, 101, 727–739. [Google Scholar] [CrossRef]
- Palma, J.M.; Corpas, F.J.; del Rio, L.A. Proteomics as an approach to the understanding of the molecular physiology of fruit development and ripening. J. Proteomics 2011, 74, 1230–1243. [Google Scholar] [CrossRef]
- Liu, R.; How-Kit, A.; Stammitti, L.; Teyssier, E.; Rolin, D.; Mortain-Bertrand, A.; Halle, S.; Liu, M.; Kong, J.; Wu, C.; et al. A DEMETER-like DNA demethylase governs tomato fruit ripening. Proc. Natl. Acad. Sci. USA 2015, 112, 10804–10809. [Google Scholar] [CrossRef] [Green Version]
- Shinozaki, Y.; Nicolas, P.; Fernandez-Pozo, N.; Ma, Q.; Evanich, D.J.; Shi, Y.; Xu, Y.; Zheng, Y.; Snyder, S.I.; Martin, L.B.B.; et al. High-resolution spatiotemporal transcriptome mapping of tomato fruit development and ripening. Nat. Commun. 2018, 9, 364. [Google Scholar] [CrossRef] [Green Version]
- Dabesor, P.A.; Sanni, D.M.; Kolawole, A.O.; Enujiugha, V.N.; Lawal, O.T.; Edeh, A.T. Changes in physicochemical properties and enzymes associated with ripening of snake tomato (Trichosanthes Cucumerina L.) fruit. Biocatal. Agric. Biotechnol. 2022, 40, 102313. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, X.; Zhang, L.P.; Gao, Z.S.; Jia, H.J. Effect of both harvest maturities and storage temperatures on fruit quality of‘Jinxiu’ yellow peach. Sci. Technol. Food Ind. 2015, 36, 334–338. [Google Scholar]
- Kong, X.J.; Lin, H.T.; Zhou, H.; Lin, Y.F.; Chen, Y.H.; Wang, H. Study on the optimum harvesting date of fresh-eating Chinese olive fruit and its quality assessment parameters. Storage Process 2016, 16, 6–14. [Google Scholar]
- Zozio, S.; Servent, A.; Cazal, G.; Mbeguie-A-Mbeguie, D.; Ravion, S.; Pallet, D.; Abel, H. Changes in antioxidant activity during the ripening of jujube (Ziziphus mauritiana Lamk). Food Chem. 2014, 150, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Khan, H.; Shah, M.; Khan, R.; Khan, F. Chemical composition and antioxidant activity of certain Morus species. J. Zhejiang Univ. Sci. B 2010, 11, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.; Gao, P.; Jia, T.; Huang, H. Physicochemical Characteristics and Nutritional Composition during Fruit Ripening of Akebia trifoliata (Lardizabalaceae). Horticulturae 2022, 8, 326. [Google Scholar] [CrossRef]
- Razzaq, K.; Khan, A.S.; Malik, A.U.; Shahid, M. Ripening period influences fruit softening and antioxidative system of ‘Samar Bahisht Chaunsa’ mango. Sci. Hortic. 2013, 160, 108–114. [Google Scholar] [CrossRef]
- Zhao, Y.T.; Zhu, X.; Hou, Y.Y.; Pan, Y.F.; Shi, L.; Li, X.H. Effects of harvest maturity stage on postharvest quality of winter jujube (Zizyphus jujuba Mill. cv. Dongzao) fruit during cold storage. Sci. Hortic. 2021, 277, 109778. [Google Scholar] [CrossRef]
- Saquet, A.A. Storage of pears. Sci. Hortic. 2019, 246, 1009–1016. [Google Scholar] [CrossRef]
- Mahmood, T.; Anwar, F.; Abbas, M.; Boyce, M.C.; Saari, N. Compositional Variation in Sugars and Organic Acids at Different Maturity Stages in Selected Small Fruits from Pakistan. Int. J. Mol. Sci. 2012, 13, 1380–1392. [Google Scholar] [CrossRef]
- Riaz, M.; Zamir, T.; Rashid, N.; Jamil, N.; Rizwan, S.; Masood, Z.; Mushtaq, A.; Tareen, H.; Khan, M.; Ali, M. Comparative study of nutritional quality of orange (Citrus sinensis) at different maturity stages in relation to significance for human health. Am. Eur. J. Toxicol. Sci. 2015, 7, 209–213. [Google Scholar]
- Sanchez, E.M.; Calin-Sanchez, A.; Carbonell-Barrachina, A.A.; Melgarejo, P.; Hernandez, F.; Martinez-Nicolas, J.J. Physicochemical characterisation of eight Spanish mulberry clones: Processing and fresh market aptitudes. Int. J. Food Sci. Technol. 2014, 49, 477–483. [Google Scholar] [CrossRef]
- Chen, M.Y.; Zhang, P.; Zhao, T.T.; Han, F.; Liu, X.L.; Zhong, C.H. Relationship between harvest indices and fruit quality traits in Actinidia chinensis ‘Jintao’. Plant Sci. J. 2019, 37, 621–627. [Google Scholar]
- Nardozza, S.; Gamble, J.; Axten, L.G.; Wohlers, M.W.; Clearwater, M.J.; Feng, J.Q.; Harker, F.R. Dry matter content and fruit size affect flavour and texture of novel Actinidia deliciosa. J. Sci. Food Agric. 2011, 91, 742–748. [Google Scholar] [CrossRef]
- Khodabakhshian, R.; Emadi, B.; Khojastehpour, M.; Golzarian, M.R. Determining quality and maturity of pomegranates using multispectral imaging. J. Saudi Soc. For. Agric. Sci. 2015, 16, 322–331. [Google Scholar] [CrossRef] [Green Version]
- Rolland, F.; Baena-Gonzalez, E.; Sheen, J. Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annu. Rev. Plant Biol. 2006, 57, 675–709. [Google Scholar] [CrossRef]
- Araya, T.; Noguchi, K.; Terashima, I. Effects of carbohydrate accumulation on photosynthesis differ between sink and source leaves of Phaseolus vulgaris L. Plant Cell Physiol. 2006, 47, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Sturm, K.; Koron, D.; Stampar, F. The composition of fruit of different strawberry varieties depending on maturity stage. Food Chem. 2003, 83, 417–422. [Google Scholar] [CrossRef]
- Phillips, K.M.; McGinty, R.C.; Couture, G.; Pehrsson, P.R.; McKillop, K.; Fukagawa, N.K. Dietary fiber, starch, and sugars in bananas at different stages of ripeness in the retail market. PLoS ONE 2021, 16, e0253366. [Google Scholar] [CrossRef]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.H.; Li, S.F.; Dong, Y.; Zhi, H.H.; Zong, W. Tea polyphenols incorporated into alginate-based edible coating for quality maintenance of Chinese winter jujube under ambient temperature. LWT Food Sci. Technol. 2016, 70, 155–161. [Google Scholar] [CrossRef]
- Mditshwa, A.; Fawole, O.A.; Vries, F.; Kobus, V.D.M.; Crouch, E.; Opara, U.L. Impact of dynamic controlled atmospheres on reactive oxygen species, antioxidant capacity and phytochemical properties of apple peel (cv. Granny Smith). Sci. Hortic. 2017, 216, 169–176. [Google Scholar] [CrossRef]
- Jin, P.; Wu, X.; Xu, F.; Wang, X.L.; Wang, J.; Zheng, Y.H. Enhancing Antioxidant Capacity and Reducing Decay of Chinese Bayberries by Essential Oils. J. Agric. Food Chem. 2012, 60, 3769–3775. [Google Scholar] [CrossRef] [PubMed]
- Kirigia, D.; Winkelmann, T.; Kasili, R.; Mibus, H. Nutritional composition in African nightshade (Solanum scabrum) influenced by harvesting methods, age and storage conditions. Postharvest Biol. Technol. 2019, 153, 142–151. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, L.L.; Liu, Z.G.; Zhao, Z.H.; Zhao, J.; Wang, Z.T.; Zhou, G.F.; Liu, P.; Liu, M.J. Transcriptome and metabolome profiling unveil the mechanisms of Ziziphus jujuba Mill. peel coloration. Food Chem. 2020, 312, 125903. [Google Scholar] [CrossRef] [PubMed]
- Zoratti, L.; Karppinen, K.; Escobar, A.L.; Haggman, H.; Jaakola, L. Light-controlled flavonoid biosynthesis in fruits. Front. Plant Sci. 2014, 5, 534. [Google Scholar] [CrossRef]
- Shwartz, E.; Glazer, I.; Bar-Ya’akov, I.; Matityahu, I.; Bar-Ilan, I.; Holland, D.; Amir, R. Changes in chemical constituents during the maturation and ripening of two commercially important pomegranate accessions. Food Chem. 2009, 115, 965–973. [Google Scholar] [CrossRef]
- Fawole, O.A.; Opara, U.L. Changes in physical properties, chemical and elemental composition and antioxidant capacity of pomegranate (cv. Ruby) fruit at five maturity stages. Sci. Hortic. 2013, 150, 37–46. [Google Scholar] [CrossRef]
- Koopman, W.J.; Nijtmans, L.G.; Dieteren, C.E.; Roestenberg, P.; Valsecchi, F.; Smeitink, J.A.; Willems, P.H. Mammalian mitochondrial complex I: Biogenesis, regulation, and reactive oxygen species generation. Antioxid. Redox Signal. 2010, 12, 1431–1470. [Google Scholar] [CrossRef] [Green Version]
- Laxman, S.; Sutter, B.M.; Wu, X.; Kumar, S.; Guo, X.; Trudgian, D.C.; Mirzaei, H.; Tu, B.P. Sulfur amino acids regulate translational capacity and metabolic homeostasis through modulation of tRNA thiolation. Cell 2013, 154, 416–429. [Google Scholar] [CrossRef] [Green Version]
- Buck, M.D.; Sowell, R.T.; Kaech, S.M.; Pearce, E.L. Metabolic instruction of immunity. Cell 2017, 169, 570–586. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Yuan, Z.; Radford, S.J.; Liu, C.; Libutti, S.K.; Zheng, X.F.S. Amino acids-Rab1A-mTORC1 signaling controls whole-body glucose homeostasis. Cell Rep. 2021, 34, 108830. [Google Scholar] [CrossRef]
- Kelly, B.; Pearce, E.L. Amino assets: How amino acids support immunity. Cell Metab. 2020, 32, 154–175. [Google Scholar] [CrossRef]
- Zhu, S.R.; Yang, G.; Yang, D.; Li, L.b.; Mo, R.J.; Li, X.L.; Zhang, Y.F. Comparative analysis of organic nutrients between Holboellia latifolia and nine common fruits. J. Kunming Univ. 2022, 44, 70–74. [Google Scholar]
- Yang, Y.X. China Food Composition Tables, 6th ed.; Peking University Medical Press: Beijing, China, 2018. [Google Scholar]
Time (min) | Flow Rate (mL/min) | Sodium Acetate Buffer (%) | Acetonitrile (%) | Pure Water (%) |
---|---|---|---|---|
start | 1.0 | 100 | 0 | 0 |
0.5 | 1.0 | 98 | 2 | 0 |
13 | 1.0 | 95 | 5 | 0 |
19 | 1.0 | 91 | 9 | 0 |
29.5 | 1.0 | 83 | 17 | 0 |
33 | 1.0 | 0 | 60 | 40 |
36 | 1.0 | 100 | 0 | 0 |
45 | 1.0 | 100 | 0 | 0 |
Stages | Single Fruit Weight/g | Fruit Length/mm | Fruit Diameter/mm | Fruit Shape Index |
---|---|---|---|---|
S1 | 14.08 ± 1.28 e | 47.79 ± 1.98 d | 24.12 ± 0.58 d | 1.98 ± 0.07 ab |
S2 | 83.86 ± 4.45 d | 84.24 ± 3.90 c | 39.54 ± 0.87 c | 2.14 ± 0.15 a |
S3 | 133.75 ± 3.02 c | 96.40 ± 3.95 b | 52.54 ± 1.54 b | 1.84 ± 0.08 b |
S4 | 192.72 ± 10.51 b | 111.62 ± 5.03 a | 53.94 ± 1.65 b | 2.08 ± 0.12 ab |
S5 | 230.57 ± 8.15 a | 114.21 ± 3.94 a | 59.57 ± 0.24 a | 1.92 ± 0.07 ab |
S6 | 240.40 ± 2.22 a | 118.77 ± 3.27 a | 62.86 ± 1.93 a | 1.89 ± 0.03 ab |
Stages | Vitamin B1 mg/100 g FW | Vitamin B2 mg/100 g FW | Vitamin B3 mg/100 g FW | Vitamin B6 mg/100 g FW | Vitamin C mg/100 g FW | Protein Content g/100 g | Total Phenolics mg/100 g FW | Total Flavonoids mg/100 g FW |
---|---|---|---|---|---|---|---|---|
S1 | 13.88 ± 0.66 b | 191.21 ± 2.99 a | 10.53 ± 0.71 a | 1.39 ± 0.08 a | 553.88 ± 18.12 b | 2.08 ± 0.04 a | 1491.92 ± 10.48 a | 622.92 ± 0.47 a |
S2 | 20.24 ± 1.68 a | 31.08 ± 1.27 c | 4.12 ± 0.32 bc | 0.62 ± 0.03 b | 608.58 ± 7.28 a | 1.54 ± 0.01 b | 295.40 ± 3.65 d | 25.20 ± 0.46 d |
S3 | 18.62 ± 0.47 a | 33.77 ± 1.07 bc | 3.08 ± 0.16 cd | 0.51 ± 0.03 b | 464.12 ± 13.49 c | 1.39 ± 0.00 c | 376.91 ± 1.80 c | 73.09 ± 0.28 b |
S4 | 14.87 ± 1.21 b | 38.65 ± 1.57 b | 4.68 ± 0.28 b | 0.58 ± 0.03 b | 332.62 ± 6.52 d | 1.35 ± 0.04 c | 323.39 ± 5.19 d | 39.08 ± 0.55 c |
S5 | 14.53 ± 1.17 b | 18.17 ± 0.97 d | 4.66 ± 0.75 b | 0.18 ± 0.03 c | 1.02 ± 0.04 e | 0.93 ± 0.08 d | 531.10 ± 20.23 b | 15.09 ± 0.93 e |
S6 | 2.58 ± 0.21 c | 22.38 ± 2.47 d | 2.03 ± 0.30 d | 0.13 ± 0.01 c | 1.22 ± 0.19 e | 0.48 ± 0.00 e | 512.38 ± 9.62 b | 13.85 ± 0.80 e |
Amino Acids (mg/100 g) | Fruit Development Stages | |||||
---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | |
Aspartic acid (Asp) | 324.90 ± 4.88 b | 433.71 ± 4.40 a | 393.44 ± 5.56 a | 332.24 ± 8.34 b | 162.33 ± 32.59 c | 33.45 ± 1.15 d |
Serine (Ser) | 148.56 ± 1.63 a | 75.05 ± 2.08 c | 75.91 ± 0.36 c | 78.36 ± 0.82 c | 86.12 ± 2.35 b | 31.30 ± 1.21 d |
Glutamic acid (Glu) | 103.97 ± 3.37 a | 50.13 ± 0.77 b | 44.46 ± 0.50 b | 44.58 ± 0.45 b | 32.20 ± 4.29 c | 23.89 ± 1.57 d |
Glycine (Gly) | 67.18 ± 0.71 a | 33.29 ± 0.34 b | 28.81 ± 1.15 c | 31.92 ± 0.63 bc | 23.91 ± 2.51 d | 17.53 ± 0.9 e |
Threonine (Thr) * | 71.02 ± 1.25 a | 34.38 ± 0.70 b | 30.31 ± 0.92 c | 34.50 ± 0.48 b | 15.01 ± 0.72 d | 17.01 ± 0.78 d |
Histidine (His) | 38.18 ± 0.76 a | 21.05 ± 0.95 c | 17.18 ± 0.43 cd | 20.25 ± 0.71 c | 27.77 ± 3.71 b | 12.72 ± 0.29 d |
Arginine (Arg) | 141.98 ± 2.05 a | 69.54 ± 0.90 c | 65.17 ± 0.60 c | 66.58 ± 1.25 c | 85.75 ± 2.66 b | 41.31 ± 1.86 d |
Alanine (Ala) | 40.21 ± 0.78 a | 19.47 ± 0.45 b | 18.48 ± 0.42 b | 18.83 ± 0.20 b | 17.92 ± 1.10 b | 9.38 ± 0.31 c |
Proline (Pro) | 47.07 ± 14.05 a | 33.62 ± 1.49 ab | 30.17 ± 0.94 ab | 29.49 ± 0.83 ab | 34.73 ± 1.49 ab | 15.35 ± 0.57 b |
Cysteine (Cys) | 6.35 ± 0.27 b | 4.31 ± 0.18 bcd | 4.58 ± 0.25 bc | 2.81 ± 0.16 cd | 27.43 ± 1.80 a | 1.86 ± 0.18 d |
Tyrosine (Tyr) | 55.03 ± 1.35 a | 26.55 ± 1.60 b | 25.94 ± 0.68 b | 26.80 ± 0.63 b | 24.72 ± 0.95 b | 18.90 ± 0.72 c |
Valine (Val) * | 87.50 ± 1.45 a | 42.78 ± 1.16 b | 36.90 ± 1.37 c | 39.51 ± 1.12 bc | 27.37 ± 2.36 d | 20.30 ± 0.71 e |
Methionine (Met) * | 13.41 ± 0.49 a | 5.88 ± 0.36 bc | 6.83 ± 0.17 b | 4.82 ± 0.11 cd | 5.44 ± 0.54 cd | 4.31 ± 0.27 d |
Lysine (Lys) * | 85.47 ± 1.70 a | 40.02 ± 2.07 b | 37.60 ± 0.93 b | 38.10 ± 0.97 b | 27.42 ± 2.60 c | 20.82 ± 0.61 d |
Isoleucine (Ile) * | 112.80 ± 3.08 a | 55.06 ± 1.54 b | 52.58 ± 1.15 b | 51.39 ± 1.21 b | 37.46 ± 3.67 c | 27.60 ± 0.91 d |
Leucine (Leu) * | 98.02 ± 4.13 a | 49.33 ± 1.65 b | 44.96 ± 2.14 b | 47.07 ± 1.80 b | 32.64 ± 3.49 c | 24.97 ± 0.69 c |
Phenylalanine (Phe) * | 64.15 ± 1.25 a | 31.12 ± 0.94 b | 27.75 ± 0.56 b | 28.40 ± 0.82 b | 20.89 ± 2.22 c | 16.17 ± 0.49 d |
Total amino acids (TAAs) | 1505.81 ± 25.32 a | 1025.28 ± 14.88 b | 941.07 ± 13.59 bc | 895.65 ± 17.42 c | 689.08 ± 59.57 d | 336.89 ± 11.98 e |
Essential amino acids (EAAs) | 532.37 ± 10.03 a | 258.58 ± 7.74 b | 236.93 ± 4.58 b | 243.78 ± 5.54 b | 166.21 ± 15.54 c | 131.20 ± 4.26 d |
35.35% | 25.22% | 25.18% | 27.22% | 24.12% | 38.94% |
Parameter | S. obovatifoliola Subsp. Urophylla | Apple | Banana | Grape | Peach | Kiwifruit | Strawberry | Cherry |
---|---|---|---|---|---|---|---|---|
Total soluble solids (%) | 13.52 | 12.00 | 22.63 | 17.51 | 7.82 | 7.58 | 7.08 | 14.30 |
total sugars (g/100 g) | 12.45 | 11.07 | 19.55 | 15.30 | 6.17 | 6.99 | 5.93 | 11.90 |
fructose (g/100 g) | 5.35 | 4.66 | 7.96 | 6.02 | 0.89 | 1.96 | 1.74 | 7.63 |
glucose (g/100 g) | 7.02 | 1.39 | 2.41 | 7.56 | 0.75 | 2.38 | 2.42 | 1.44 |
protein (g/100 g) | 0.48 | 0.41 | 1.26 | 0.55 | 0.78 | 1.15 | 0.90 | 0.32 |
Total amino acids (mg/100 g) | 689.08 | 2706.92 | 7623.91 | 368.33 | 4580.00 | 629.27 | 667.00 | 573.00 |
vitamin B1 (mg/100 g) | 2.58 | 0.02 | 0.02 | 0.03 | 0.01 | 0.05 | 0.02 | 0.02 |
vitamin B2 (mg/100 g) | 22.38 | 0.02 | 0.04 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
vitamin B3 (mg/100 g) | 2.03 | 0.20 | 0.70 | 0.25 | 0.30 | 0.30 | 0.30 | 0.60 |
vitamin C (mg/100 g) | 1.22 | 2.84 | 8.00 | 4.79 | 5.17 | 89.89 | 74.80 | 11.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, T.; Feng, C.; Zou, S.; Gao, P. The Main Physicochemical Characteristics and Nutrient Composition during Fruit Ripening of Stauntonia obovatifoliola Subsp. Urophylla (Lardizabalaceae). Horticulturae 2023, 9, 29. https://doi.org/10.3390/horticulturae9010029
Jia T, Feng C, Zou S, Gao P. The Main Physicochemical Characteristics and Nutrient Composition during Fruit Ripening of Stauntonia obovatifoliola Subsp. Urophylla (Lardizabalaceae). Horticulturae. 2023; 9(1):29. https://doi.org/10.3390/horticulturae9010029
Chicago/Turabian StyleJia, Tianjiao, Chen Feng, Shuaiyu Zou, and Puxin Gao. 2023. "The Main Physicochemical Characteristics and Nutrient Composition during Fruit Ripening of Stauntonia obovatifoliola Subsp. Urophylla (Lardizabalaceae)" Horticulturae 9, no. 1: 29. https://doi.org/10.3390/horticulturae9010029
APA StyleJia, T., Feng, C., Zou, S., & Gao, P. (2023). The Main Physicochemical Characteristics and Nutrient Composition during Fruit Ripening of Stauntonia obovatifoliola Subsp. Urophylla (Lardizabalaceae). Horticulturae, 9(1), 29. https://doi.org/10.3390/horticulturae9010029