Watermelon Rind and Flesh Volatile Profiles and Cultivar Difference
Abstract
:1. Introduction
2. Materials and Methods
2.1. Watermelon Samples
2.2. Volatile Extraction Using SPME
2.3. GC-MS Analysis
2.4. Statistical Analysis
3. Results
3.1. Watermelon Rind and Flesh Total and Grouped Volatiles
3.2. Watermelon Rind Major Volatiles and Cultivar Difference
3.3. Watermelon Flesh Major Volatiles and Cultivar Difference
3.4. Rind and Flesh Volatile Comparison with PCA and Heat Map
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kyriacou, M.C.; Leskovar, D.I.; Colla, G.; Rouphael, Y. Watermelon and melon fruit quality: The genotypic and agro-environmental factors implicated. Sci. Hortic. 2018, 234, 393–408. [Google Scholar] [CrossRef]
- Rico, X.; Gullón, B.; Alonso, J.L.; Yáñez, R. Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: An overview. Food Res. Int. 2020, 132, e109086. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; He, C.; Song, H. Comparison of fresh watermelon juice aroma characteristics of five varieties based on gas chromatography-olfactometry-mass spectrometry. Food Res. Int. 2018, 107, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Kassim, M.A.; Hussin, A.H.; Meng, T.K.; Kamaludin, R.; Zaki, M.S.I.M.; Zakaria, W.Z.E.W. Valorisation of watermelon (Citrullus lanatus) rind waste into bioethanol: An optimization and kinetic studies. Int. J. Environ. Sci. Technol. 2021, e033105. [Google Scholar] [CrossRef]
- Romdhane, M.B.; Haddar, A.; Ghazala, I.; Jeddou, K.B.; Helbert, C.B.; Ellouz-Chaabouni, S. Optimization of polysaccharides extraction from watermelon rinds: Structure, functional and biological activities. Food Chem. 2017, 216, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Rambabu, K.; Bharath, G.; Hai, A.; Luo, S.; Liao, K.; Abu Haija, M.; Banat, F.; Naushad, M. Development of watermelon rind derived activated carbon/manganese ferrite nanocomposite for cleaner desalination by capacitive deionization. J. Clean. Prod. 2020, 272, 122626. [Google Scholar] [CrossRef]
- Liu, C.; Ngo, H.H.; Guo, W. Watermelon rind: Agro-waste or superior biosorbent? Appl. Biochem. Biotechnol. 2012, 167, 1699–1715. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xu, P.; Dong, S.; Yu, Y.; Chen, H.; Xiao, J. Using watermelon rind and nitrite-containing wastewater for electricity production in a membraneless biocathode microbial fuel cell. J. Clean. Prod. 2021, 307, e127306. [Google Scholar] [CrossRef]
- Lakshmipathy, R.; Sarada, N.C. Biosorptive removal of methylene blue from aqueous solution by chemically activated watermelon rind as adsorbent. J. Indian Chem. Soc. 2015, 92, 999–1002. [Google Scholar]
- Ho, L.; Ramli, N.F.; Tan, T.; Muhamad, N.; Haron, M.N. Effect of extraction solvents and drying conditions on total phenolic content and antioxidant properties of watermelon rind powder. Sains Malays. 2018, 47, 99–107. [Google Scholar] [CrossRef]
- Egbuonu, A.C.C. Comparative assessment of some mineral, amino acid and vitamin compositions of watermelon (Citrullus lanatus) rind and seed. Asian J. Biochem. 2015, 10, 230–236. [Google Scholar] [CrossRef]
- Al-Sayed, H.M.A.; Ahmed, A.R. Utilization of watermelon rinds and sharlyn melon peels as a natural source of dietary fiber and antioxidants in cake. Ann. Agric. Sci. 2013, 58, 83–95. [Google Scholar] [CrossRef] [Green Version]
- Tarazona-Díaz, M.P.; Viegas, J.; Moldao-Martins, M.; Aguayo, E. Bioactive compounds from flesh and by-product of fresh-cut watermelon cultivars. J. Sci. Food Agric. 2011, 91, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Rimando, A.M.; Perkins-Veazie, P.M. Determination of citrulline in watermelon rind. J. Chromatogr. A 2005, 1078, 196–200. [Google Scholar] [CrossRef]
- Méndez, D.A.; Fabra, M.J.; Gómez-Mascaraque, L.; López-Rubio, A.; Martinez-Abad, A. Modelling the extraction of pectin towards the valorisation of watermelon rind waste. Foods 2021, 10, 738. [Google Scholar] [CrossRef]
- Petkowicz, C.L.O.; Vriesmann, L.C.; Williams, P.A. Pectins from food waste: Extraction, characterization and properties of watermelon rind pectin. Food Hydrocoll. 2017, 65, 57–67. [Google Scholar] [CrossRef]
- Simonne, A.; Carter, M.; Fellers, R.; Weese, J.; Wei, C.I.; Smonne, E.; Miller, M. Chemical, physical and sensory characterization of watermelon rind pickles. J. Food Process. Preserv. 2003, 26, 415–431. [Google Scholar] [CrossRef]
- Souad, A.M.; Jamal, P.; Olorunnisola, K.S. Effective jam preparations from watermelon waste. Int. Food Res. J. 2012, 19, 1545–1549. [Google Scholar]
- Hoque, M.M.; Iqbal, A. Drying of watermelon rind and development of cakes from rind powder. Int. J. Nov. Res. Life Sci. 2015, 2, 14–21. [Google Scholar]
- Naknaen, P.; Itthisoponkul, T.; Sondee, A.; Angsombat, N. Utilization of watermelon rind waste as a potential source of dietary fiber to improve health promoting properties and reduce glycemic index for cookie making. Food Sci. Biotechnol. 2016, 25, 415–424. [Google Scholar] [CrossRef]
- Olaitan, N.I.; Eke, M.O.; Agudu, S.S. Effect of watermelon (Citrullus lanatus) rind flour supplementation on the quality of wheat based cookies. Int. J. Eng. Sci. 2017, 6, 59–66. [Google Scholar] [CrossRef]
- Chakrabarty, N.; Mourin, M.M.; Islam, N.; Haque, A.R.; Akter, S.; Siddique, A.A.; Sarker, M. Assessment of the Potential of Watermelon Rind Powder for the Value Addition of Noodles. J. Biosyst. Eng. 2020, 45, 223–231. [Google Scholar] [CrossRef]
- Ho, L.; Che Dahri, N. Effect of watermelon rind powder on physicochemical, textural, and sensory properties of wet yellow noodles. CyTA-J. Food 2016, 14, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Badr, S.A.; El-Waseif, M.A.; Ghaly, M.S. Effect of Addition Watermelon Rind Powder on Quality Criteria and Microbial Aspects of Beef Burger Patties during Frozen Storage Periods. J. Food Dairy Sci. 2018, 9, 177–187. [Google Scholar] [CrossRef]
- Kumar, P.; Mehta, N.; Malav, O.P.; Kumar Chatli, M.; Rathour, M.; Kumar Verma, A. Antioxidant and antimicrobial efficacy of watermelon rind extract (WMRE) in aerobically packaged pork patties stored under refrigeration temperature (4 ± 1 °C). J. Food Process. Preserv. 2018, 42, e13757. [Google Scholar] [CrossRef]
- Hasanin, M.S.; Hashem, A.H. Eco-friendly, economic fungal universal medium from watermelon peel waste. J. Microbiol Methods. 2020, 168, e105802. [Google Scholar] [CrossRef] [PubMed]
- Erukainure, O.L.; Oke, O.V.; Daramola, A.O.; Adenekan, S.O.; Umanhonlen, E.E. Improvement of the biochemical properties of watermelon rinds subjected to Saccharomyces cerevisae solid media fermentation. Pak. J. Nutr. 2010, 9, 806–809. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Liu, Y.; Wang, B.; Song, H.; Zou, T. Screening of the volatile compounds in fresh and thermally treated watermelon juice via headspace-gas chromatography-ion mobility spectrometry and comprehensive two-dimensional gas chromatography-olfactory-mass spectrometry analysis. LWT 2020, 137, 11047. [Google Scholar] [CrossRef]
- Ilahy, R.; Tlili, I.; Siddiqui, M.W.; Hdider, C.; Lenucci, M.S. Inside and beyond color: Comparative overview of functional quality of tomato and watermelon fruits. Front. Plant. Sci. 2019, 10, e00769. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, J.L.; Du, X.; Wallace, R.W. Investigating sensory properties of seven watermelon varieties and factors impacting refreshing perception using quantitative descriptive analysis. Food Res. Int. 2020, 138, e109681. [Google Scholar] [CrossRef]
- Scott, G.; Williams, C.; Wallace, R.W.; Du, X. Exploring plant performance, fruit physicochemical characteristics, volatile profiles, and sensory properties of day-neutral and short-day strawberry cultivars grown in Texas. J. Agric. Food Chem. 2021, 69, 13299–13314. [Google Scholar] [CrossRef] [PubMed]
- Yajima, I.; Sakakibara, H.; Ide, J.; Yanai, T.; Hayashi, K. Volatile flavor components of watermelon (Citrullus vulgaris). Agric. Biol. Chem. 1985, 49, 3145–3150. [Google Scholar] [CrossRef]
- Pino, J.A.; Marbot, R.; Aguero, J. Volatile components of watermelon (Citrullus ianatus [thunb.] Matsum. et Nakai) fruit. J. Essent. Oil Res. 2003, 15, 379–380. [Google Scholar] [CrossRef]
- Mendoza-Enano, M.L.; Stanley, R.; Frank, D. Linking consumer sensory acceptability to volatile composition for improved shelf-life: A case study of fresh-cut watermelon (Citrullus lanatus). Postharvest Biol. Technol. 2019, 154, 137–147. [Google Scholar] [CrossRef]
- Saftner, R.; Luo, Y.; McEvoy, J.; Abbott, J.A.; Vinyard, B. Quality characteristics of fresh-cut watermelon slices from non-treated and 1-methylcyclopropene- and/or ethylene-treated whole fruit. Postharvest Biol. Technol. 2007, 44, 71–79. [Google Scholar] [CrossRef]
- Xisto, A.L.R.P.; de Barros Vilas Boas, E.V.; Nunes, E.E.; Vilas Boas, B.M.; Guerreiro, M.C. Volatile profile and physical, chemical, and biochemical changes in fresh cut watermelon during storage. Food Sci. Technol. 2012, 32, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Fredes, A.; Sales, C.; Barreda, M.; Valcárcel, M.; Roselló, S.; Beltrán, J. Quantification of prominent volatile compounds responsible for muskmelon and watermelon aroma by purge and trap extraction followed by gas chromatography-mass spectrometry determination. Food Chem. 2016, 190, 689–700. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; He, C.; Song, H.L. Comparison of SPME versus SAFE processes for the analysis of flavor compounds in watermelon juice. Food Anal. Methods 2018, 11, 1677–1689. [Google Scholar] [CrossRef]
- Yang, X.; Yang, F.; Liu, Y.; Li, J.; Song, H. Identification of key off-flavor compounds in thermally treated watermelon juice via gas chromatography–olfactometry–mass spectrometry, aroma recombination, and omission experiments. Foods 2020, 9, 227. [Google Scholar] [CrossRef] [Green Version]
- Beaulieu, J.C.; Lea, J.M. Characterization and semiquantitative analysis of volatiles in seedless watermelon varieties using solid-phase microextraction. J. Agric. Food Chem. 2006, 54, 7789–7793. [Google Scholar] [CrossRef]
- Tlili, I.; Hdider, C.; Lenucci, M.S.; Riadh, I.; Jebari, H.; Dalessandro, G. Bioactive compounds and antioxidant activities of different watermelon (Citrullus lanatus (thunb.) mansfeld) cultivars as affected by fruit sampling area. J. Food Compos. Anal. 2011, 24, 307–314. [Google Scholar] [CrossRef]
- Huber, B.; Hernández, R. Optimizing production of ‘Fascination’ and ‘Carnivor’ transplants for grafting using lower daily light integral and higher CO2. Int. Soc. Hortic. Sci. 2021, 1302, e130214. [Google Scholar] [CrossRef]
- Trandel, M.A.; Perkins-Veazie, P.; Schultheis, J. Predicting hollow heart incidence in triploid watermelon (Citrullus lanatus). HortScience 2020, 55, 1926–1930. [Google Scholar] [CrossRef]
- Bertucci, M.B.; Jennings, K.; Monks, D.W.; Schultheis, J.R.; Perkins-Veazie, P.; Louws, F.; Jordan, D.L. Early Season Growth, Yield, and Fruit Quality of Standard and Mini Watermelon Grafted onto Several Commercially Available Cucurbit Rootstocks. HortTechnology 2018, 28, 459–469. [Google Scholar] [CrossRef]
- Ramirez, J.L.; Juma, S.; Du, X. Consumer acceptance of watermelon flesh-rind blends and the effect of rind on refreshing perception. J. Food Sci. 2021, 86, 1384–1392. [Google Scholar] [CrossRef] [PubMed]
V# | LRI Wax | Compounds | CAS# | Watermelon Rind | p-Value | Watermelon Flesh | p-Value | F-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Captivation | Exclamation | Excursion | Fascination | Captivation | Exclamation | Excursion | Fascination | Cultivar (C) | Fruit Part (P) | C × P | ||||||
Aldehydes (33) | ||||||||||||||||
V1 | 636 | Acetaldehyde | 75-07-0 | 2.51a | 3.20ab | 3.71ab | 4.13b | 0.048 | 1.46a | 2.04ab | 2.59b | 2.54b | 0.021 | 8.85 | 35.35 | 0.38 |
V2 | 697 | Propanal | 123-38-6 | 1.35a | 1.29a | 1.24a | - | 0.905 | 0.70a | 0.65a | 0.71a | 0.59a | 0.650 | 0.21 | 29.23 | 0.14 |
V3 | 841 | 2-Methylbutanal | 96-17-3 | 0.02a | 0.03a | 0.02a | 0.03a | 0.697 | 0.03ab | 0.03b | 0.03ab | 0.02a | 0.023 | 0.68 | 1.13 | 0.78 |
V4 | 843 | 3-Methylbutanal | 590-86-3 | 0.02a | 0.02a | 0.02a | 0.03a | 0.652 | 0.03b | 0.03b | 0.03ab | 0.02a | 0.015 | 0.17 | 0.81 | 1.59 |
V5 | 880 | Pentanal | 110-62-3 | 0.31ab | 0.88c | 0.53b | 0.21a | <0.001 | 0.62b | 0.50ab | 0.45ab | 0.39a | 0.016 | 23.67 | 0.05 | 21.93 |
V6 | 1031 | (E)-2-Butenal | 4170-30-3 | - | - | - | - | - | 0.07a | 0.09a | 0.14b | - | 0.011 | - | - | - |
V7 | 1055 | 2-Ethyl-3-methylbutanal | 26254-92-2 | 0.01a | 0.02a | 0.01a | 0.01a | 0.383 | 0.09b | 0.06ab | 0.06ab | 0.04a | 0.025 | 4.10 | 120.8 | 5.55 |
V8 | 1075 | Hexanal | 66-25-1 | 7.42a | 11.53b | 8.39a | 8.54a | 0.002 | 15.07b | 15.12b | 12.70a | 14.83b | 0.013 | 12.67 | 267.8 | 7.81 |
V9 | 1121 | (E)-2-Pentenal | 1576-87-0 | 0.17a | 0.18a | 0.18a | 0.23a | 0.158 | 0.53c | 0.36b | 0.48c | 0.25a | <0.001 | 15.69 | 281.3 | 35.65 |
V10 | 1130 | (E)-3-Hexenal | 69112-21-6 | 0.11a | 0.10a | 0.09a | 0.11a | 0.682 | 0.03a | - | 0.04a | - | 0.062 | 0.10 | 42.97 | 2.49 |
V11 | 1135 | (Z)-3-Hexenal | 6789-80-6 | 0.61a | 0.31a | 0.54a | 0.79a | 0.233 | - | - | - | - | - | - | - | - |
V12 | 1169 | 2-Methyl-2-pentenal | 28467-88-1 | - | - | - | - | - | 0.01a | 0.01a | 0.01a | 0.005a | 0.291 | - | - | - |
V13 | 1176 | Heptanal | 111-71-7 | 0.06ab | 0.08b | 0.03a | 0.12c | <0.001 | 0.65b | 0.51ab | 0.46ab | 0.42a | 0.051 | 3.40 | 292.1 | 5.72 |
V14 | 1191 | 3-Methyl-2-butenal | 107-86-8 | - | - | - | - | - | 0.01a | 0.02b | - | 0.02b | 0.004 | - | - | - |
V15 | 1194 | (Z)-2-Hexenal | 16635-54-4 | 0.24b | 0.20ab | 0.17a | - | 0.003 | 0.02a | 0.03a | 0.05a | 0.02a | 0.358 | 6.47 | 47.7 | 24.8 |
V16 | 1204 | 3,3-Dimethylhexanal | 55320-57-5 | - | - | - | - | - | 0.29a | 0.25a | 0.17a | 0.22a | 0.237 | - | - | - |
V17 | 1210 | (E)-2-Hexenal | 6728-26-3 | 10.57d | 6.91c | 5.05b | 0.93a | <0.001 | 1.41d | 1.00c | 0.80b | 0.49a | <0.001 | 539.0 | 2708.4 | 367.7 |
V18 | 1281 | Octanal | 124-13-0 | 0.12b | 0.31c | 0.04a | 0.46d | <0.001 | 1.27b | 0.92ab | 0.79a | 0.75a | 0.017 | 5.92 | 209.7 | 14.49 |
V19 | 1315 | (E)-2-Heptenal | 57266-86-1 | 0.18a | 0.21a | 0.11a | 0.12a | 0.098 | 2.00a | 1.68a | 1.52a | 1.61a | 0.270 | 2.00 | 316.8 | 1.22 |
V20 | 1388 | Nonanal | 124-19-6 | 6.95b | 7.07b | 0.67a | 12.62c | <0.001 | 5.97b | 5.84b | 5.15b | 4.40a | <0.001 | 74.33 | 51.25 | 23.49 |
V21 | 1422 | (E)-2-Octenal | 2548-87-0 | 0.38b | 0.37b | 0.21a | 0.44b | 0.001 | 2.34ab | 2.15a | 2.24ab | 2.91b | 0.038 | 6.39 | 657.0 | 3.30 |
V22 | 1435 | (E)-6-Nonenal | 2277-20-5 | 0.08b | - | 0.03a | 0.09b | <0.001 | 0.16a | 0.19a | 0.15a | 0.13a | 0.646 | 46.25 | 63.07 | 83.06 |
V23 | 1445 | (Z)-6-Nonenal | 2277-19-2 | 8.77b | 12.08c | 1.02a | 12.07c | <0.001 | 6.62c | 4.41b | 3.67b | 2.07a | <0.001 | 1692.4 | 1576.5 | 1667.1 |
V24 | 1493 | Decanal | 112-31-2 | - | 0.04a | 0.05a | 0.17b | 0.004 | 0.10ab | 0.09a | 0.11ab | 0.14b | 0.016 | 17.16 | 4.18 | 7.44 |
V25 | 1499 | (Z)-2-Nonenal | 18829-56-6 | 0.29b | 0.14a | 0.12a | 0.36b | <0.001 | 0.30a | 0.31a | 0.47a | 0.46a | 0.180 | 4.99 | 22.75 | 4.64 |
V26 | 1514 | Benzaldehyde | 100-52-7 | 0.12a | 0.06a | 0.07a | 0.35b | 0.002 | 0.36b | 0.27ab | 0.34b | 0.16a | 0.013 | 2.28 | 26.56 | 19.52 |
V27 | 1531 | (E)-2-Nonenal | 60784-31-8 | 10.84b | 4.99a | 3.29a | 8.60b | <0.001 | 7.42a | 9.33ab | 11.65bc | 12.97c | 0.001 | 14.27 | 57.18 | 30.77 |
V28 | 1567 | (E,E)-2,6-Nonadienal | 17587-33-6 | 0.17c | 0.10b | 0.06a | 0.16c | <0.001 | 0.19c | 0.15b | 0.19c | 0.06a | <0.001 | 40.43 | 25.52 | 96.07 |
V29 | 1581 | (E,Z)-2,6-Nonadienal | 557-48-2 | 13.63c | 9.34b | 5.64a | 9.88b | <0.001 | 8.12b | 6.91b | 9.77c | 5.30a | <0.001 | 32.12 | 59.37 | 62.98 |
V30 | 1637 | (E)-2-Decenal | 3913-81-3 | 0.02a | 0.01a | 0.01a | 0.01a | 0.432 | 0.33a | 0.30a | 0.39a | 0.40a | 0.365 | 1.11 | 249.6 | 1.32 |
V31 | 1803 | (E,E)-2,4-Decadienal | 25152-84-5 | 0.01a | 0.01a | 0.01a | 0.01a | 0.194 | 0.14a | 0.10a | 0.12a | 0.11a | 0.453 | 0.75 | 102.9 | 0.88 |
V32 | 1824 | 4-Oxononanal | 74327-29-0 | 0.20b | 0.31c | 0.07a | 0.42d | <0.001 | 0.81a | 0.78a | 0.75a | 0.88a | 0.066 | 39.07 | 1208.6 | 12.31 |
V33 | 2005 | (E)-Cinnamaldehyde | 14371-10-9 | 0.01a | 0.01a | 0.01ab | 0.01b | 0.033 | 0.01a | 0.01ab | 0.01b | 0.01ab | 0.036 | 6.36 | 10.77 | 3.17 |
Alcohols (33) | ||||||||||||||||
V34 | 832 | Methanol | 67-56-1 | 0.17a | 0.15a | 0.16a | 0.80b | <0.001 | 0.23a | 0.22a | 0.24a | 0.22a | 0.830 | 631.4 | 220.1 | 657.2 |
V35 | 851 | Ethanol | 64-17-5 | - | - | 0.27 | - | - | 1.28a | 3.44bc | 3.96c | 3.27b | <0.001 | 97.53 | 479.4 | - |
V36 | 1103 | 3-Pentanol | 584-02-1 | - | 0.01a | 0.02a | 0.02a | 0.069 | - | 0.01 | - | - | - | 5.47 | 21.88 | - |
V37 | 1136 | 1-Butanol | 71-36-3 | - | - | - | - | - | 0.04a | 0.07ab | 0.10b | 0.09b | 0.016 | - | - | - |
V38 | 1149 | 2-Methyl-3-pentanol | 623-37-0 | 0.03a | 0.03a | 0.05b | 0.09c | 0.016 | 0.02a | 0.03a | 0.03a | 0.03a | 0.275 | 20.26 | 50.31 | 13.47 |
V39 | 1152 | 1-Penten-3-ol | 616-25-1 | 0.25a | 0.43b | 0.46b | 0.36ab | 0.014 | 0.22b | 0.19b | 0.19b | 0.12a | 0.003 | 6.31 | 105.8 | 8.21 |
V40 | 1199 | 2-Methylbutanol | 137-32-6 | - | 0.01a | 0.02a | 0.03a | 0.132 | 0.11a | 0.27b | 0.21b | 0.08a | <0.001 | 35.04 | 374.2 | 53.85 |
V41 | 1242 | 1-Pentanol | 71-41-0 | 0.43a | 1.03c | 0.73b | 0.33a | <0.001 | 1.35a | 1.39a | - | 1.27a | 0.530 | 18.07 | 223.5 | 15.19 |
V42 | 1314 | (Z)-2-Penten-1-ol | 33467-76-4 | 0.08a | 0.19b | 0.15ab | 0.13ab | 0.05 | - | - | - | - | - | - | - | - |
V43 | 1346 | 1-Hexanol | 111-27-3 | 1.42b | 1.73b | 4.29c | 0.60a | <0.001 | 4.19a | 5.48b | 3.61a | 5.79b | <0.001 | 39.20 | 355.0 | 456.3 |
V44 | 1356 | (E)-3-Hexen-1-ol | 928-97-2 | 0.02b | 0.02b | 0.08c | 0.01a | <0.001 | 0.03d | 0.02c | 0.02b | 0.01a | 0.055 | 13.30 | 0.15 | 0.05 |
V45 | 1376 | (Z)-3-Hexen-1-ol | 928-96-1 | 1.74b | 1.84b | 5.66c | 0.21a | <0.001 | 0.71c | 0.80c | 0.58b | 0.38a | <0.001 | 311.0 | 991.9 | 457.9 |
V46 | 1399 | (E)-2-Hexen-1-ol | 928-95-0 | 0.05a | - | 0.09b | - | 0.045 | - | - | - | - | - | - | - | - |
V47 | 1449 | 1-Heptanol | 111-70-6 | - | - | 0.17 | - | - | 1.12b | 0.90a | 0.83a | 0.94a | <0.001 | - | - | - |
V48 | 1458 | 6-Methylhept-5-en-2-ol | 1569-60-4 | 0.03a | 0.08bc | 0.09c | 0.06b | <0.001 | 1.48ab | 1.53ab | 1.68b | 1.25a | 0.060 | 4.31 | 956.5 | 3.30 |
V49 | 1472 | 2,4-Dimethyl-1-hepten-4-ol | 19549-94-1 | - | - | - | - | - | 0.06a | 0.04a | 0.03a | 0.02a | 0.266 | - | - | - |
V50 | 1477 | (Z)-3-Hepten-1-ol | 2108-05-6 | 0.02a | 0.02a | 0.08b | 0.02a | <0.001 | 0.03a | 0.03a | 0.02a | 0.01a | 0.363 | 10.48 | 6.50 | 8.07 |
V51 | 1485 | 2-Ethylhexanol | 104-76-7 | 0.36a | 0.62b | 0.49ab | 1.12c | <0.001 | 0.63b | 0.37a | 0.37a | 0.27a | <0.001 | 15.02 | 63.68 | 59.92 |
V52 | 1553 | 1-Octanol | 111-87-5 | 0.65a | 0.26a | 0.45a | 0.70a | 0.130 | 1.46b | 1.07a | 1.22ab | 1.39b | 0.004 | 7.04 | 112.3 | 0.23 |
V53 | 1561 | 6-Methyl-1-octanol | 110453-78-6 | - | 0.02a | - | 0.06a | 0.089 | - | - | - | - | - | - | - | - |
V54 | 1611 | (E)-2-Octen-1-ol | 18409-17-1 | 0.02b | 0.01a | 0.03c | 0.01a | <0.001 | 0.63a | 0.57a | 0.50a | 0.51a | 0.140 | 1.87 | 513.2 | 2.01 |
V55 | 1656 | 1-Nonanol | 143-08-8 | 1.73a | 1.61a | 2.14b | 1.80a | <0.001 | 1.08b | 0.77a | 1.10b | 1.15b | <0.001 | 32.83 | 658.5 | 8.76 |
V56 | 1680 | (Z)-3-Nonen-1-ol | 10340-23-5 | 12.43a | 12.35a | 23.90c | 17.95b | <0.001 | 8.12a | 8.49a | 9.45b | 12.31c | <0.001 | 113.9 | 533.8 | 66.54 |
V57 | 1709 | (E)-2-Nonen-1-ol | 31502-14-4 | 0.06 | - | - | - | - | - | 0.20a | - | 0.16a | 0.670 | - | - | - |
V58 | 1712 | (Z)-6-Nonenol | 35854-86-5 | 2.05b | 1.70b | 2.62c | 0.67a | <0.001 | 0.82b | 0.33a | 0.70b | 0.25a | <0.001 | 67.40 | 368.0 | 23.08 |
V59 | 1737 | (E,Z)-3,6-Nonadien-1-ol | 53046-97-2 | 0.09a | 0.09a | 0.23b | 0.06a | <0.001 | 0.10b | 0.04a | 0.07b | 0.03a | <0.001 | 36.76 | 47.80 | 21.25 |
V60 | 1747 | (Z,Z)-3,6-Nonadien-1-ol | 56805-23-3 | 8.62a | 11.38b | 21.36c | 7.56a | <0.001 | 5.97c | 4.38b | 5.97c | 3.40a | <0.001 | 167.0 | 709.9 | 107.7 |
V61 | 1758 | 1-Decanol | 112-30-1 | 0.03a | 0.04b | 0.03a | 0.06c | <0.001 | 0.17ab | 0.15a | 0.26b | 0.21ab | 0.028 | 5.47 | 210.3 | 5.98 |
V62 | 1764 | (E,Z)-2,6-Nonadien-1-ol | 7786-44-9 | 0.48b | 0.15a | 0.77c | 0.07a | <0.001 | 0.15a | 0.20a | 0.06a | 0.08a | 0.084 | 47.32 | 96.32 | 47.94 |
V63 | 1791 | (E)-5-Decenol | 56578-18-8 | 0.01a | 0.01ab | 0.01ab | - | 0.012 | 0.01a | 0.01a | - | 0.02a | 0.245 | 3.91 | 8.04 | 0.05 |
V64 | 1859 | 3-Ethyl-3-undecanol | 62101-31-9 | 0.34 | 0.58 | 0.33 | 0.26 | <0.001 | - | - | - | - | - | - | - | - |
V65 | 1864 | Benzyl alcohol | 100-51-6 | - | - | - | - | - | 0.15a | 0.28b | 0.19a | - | 0.001 | - | - | - |
V66 | 1895 | Phenylethyl alcohol | 60-12-8 | - | - | - | - | - | 0.01a | 0.02a | 0.02a | 0.01a | 0.177 | - | - | - |
Ketones (20) | ||||||||||||||||
V67 | 892 | 2-Methyl-3-pentanone | 565-69-5 | - | 0.01a | 0.02ab | 0.04b | <0.001 | 0.04b | 0.03ab | 0.03ab | 0.03ab | 0.050 | 19.62 | 28.48 | 26.05 |
V68 | 1013 | 1-Penten-3-one | 1629-58-9 | 0.11a | 0.29b | 0.13a | 0.42c | <0.001 | 0.58d | 0.40b | 0.49c | 0.21a | <0.001 | 7.67 | 712.2 | 491.2 |
V69 | 1052 | 2,3-Pentanedione | 600-14-6 | 0.01a | 0.02a | 0.005a | 0.02a | 0.059 | 0.02a | 0.02a | 0.02a | 0.01a | 0.334 | 0.34 | 3.28 | 3.91 |
V70 | 1143 | 3-Heptanone | 106-35-4 | - | 0.12a | - | 0.30b | 0.028 | 0.01a | 0.01a | 0.02a | 0.02a | 0.176 | 10.25 | 145.9 | 25.97 |
V71 | 1173 | 2-Heptanone | 110-43-0 | - | - | 0.03 | - | - | 0.03a | 0.03a | 0.03a | 0.03a | 0.506 | - | - | - |
V72 | 1232 | 6-Methyl-2-heptanone | 928-68-7 | - | - | - | - | - | 0.01a | 0.04b | 0.02a | - | 0.002 | - | - | - |
V73 | 1246 | 3-Octanone | 106-68-3 | 0.03ab | 0.01a | 0.004a | 0.08b | 0.023 | 0.44ab | 0.45b | 0.32a | 0.46b | 0.025 | 6.47 | 477.0 | 2.48 |
V74 | 1261 | 4-Hydroxy-6,6-dimethyl-cyclohex-2-enone | 42117-27-1 | 0.02 | - | - | - | - | 0.03a | 0.04a | 0.04ab | 0.05b | 0.071 | - | - | - |
V75 | 1276 | 2-Octanone | 111-13-7 | 0.02a | 0.03b | 0.03b | 0.06c | <0.001 | 0.04a | 0.05ab | 0.06b | 0.05ab | 0.066 | 19.78 | 47.81 | 10.17 |
V76 | 1303 | 2,2,6-Trimethylcyclohexanone | 2408-37-9 | 0.01a | 0.01a | 0.01a | 0.02a | 0.087 | 0.02c | 0.02c | 0.02b | 0.01a | <0.001 | 1.18 | 34.05 | 8.44 |
V77 | 1320 | 2,5-Octanedione | 3214-41-3 | 0.04a | 0.08c | 0.07bc | 0.05ab | 0.001 | 0.19b | 0.14a | 0.14a | 0.16ab | 0.030 | 1.52 | 234.6 | 11.64 |
V78 | 1324 | (Z)-6-Octen-2-one | 74810-53-0 | 0.01a | 0.03bc | 0.02ab | 0.04c | 0.003 | 0.03a | 0.03a | 0.04a | 0.03a | 0.152 | 5.10 | 6.98 | 12.57 |
V79 | 1331 | 6-Methyl-5-hepten-2-one | 110-93-0 | 0.19a | 0.42b | 0.27a | 0.41b | 0.001 | 6.58ab | 8.44b | 6.42a | 8.07ab | 0.019 | 7.29 | 1155.7 | 4.82 |
V80 | 1381 | 2-Nonanone | 821-55-6 | 0.01a | 0.01a | - | 0.09b | <0.001 | 0.005a | 0.02b | 0.03bc | 0.04c | <0.001 | 301.5 | 0.01 | 0.02 |
V81 | 1399 | Oct-3-en-2-one | 1669-44-9 | - | - | - | - | - | 0.15ab | 0.09a | 0.12b | 0.10b | 0.016 | - | - | - |
V82 | 1504 | 3-Nonen-2-one | 14309-57-0 | - | - | - | - | - | 0.13a | 0.12a | 0.11a | 0.17b | 0.003 | - | - | - |
V83 | 1513 | (E,Z)-3,5-Octadien-2-one | 4173-41-5 | - | 0.11a | 0.08a | 0.25a | 0.285 | - | - | - | 0.05 | - | - | - | - |
V84 | 1563 | (E,E)-3,5-Octadien-2-one | 30086-02-3 | - | 0.03a | - | 0.02a | 0.119 | 0.06b | 0.05b | 0.05b | 0.004a | <0.001 | 57.63 | 0.97 | 26.40 |
V85 | 1593 | 2-Undecanone | 112-12-9 | 0.07a | 0.03a | 0.02a | 0.06a | 0.096 | 0.06a | 0.08ab | 0.09b | 0.08ab | 0.031 | 1.17 | 14.49 | 5.30 |
V86 | 1642 | Acetophenone | 98-86-2 | 0.01ab | 0.02ab | 0.01a | 0.03b | 0.048 | - | - | - | - | - | - | - | - |
Terpenes and terpenoids (23) | ||||||||||||||||
V87 | 1146 | β-Myrcene | 123-35-3 | - | 0.02a | - | 0.21b | <0.001 | 0.01a | 0.02b | 0.02c | 0.03c | <0.001 | 1253.3 | 3017.9 | 2821.3 |
V88 | 1192 | Eucalyptol | 470-82-6 | 0.04b | - | 0.02a | 0.18c | 0.013 | - | - | - | - | - | - | - | - |
V89 | 1194 | Pino-camphone | 18358-53-7 | - | - | - | - | - | 0.02a | 0.03a | 0.05a | 0.02a | 0.358 | - | - | - |
V90 | 1427 | Tetrahydrolinalool | 78-69-3 | 0.02a | 0.06c | 0.05b | 0.08d | <0.001 | - | - | - | - | - | - | - | - |
V91 | 1464 | Dihydromyrcenol | 18479-58-8 | 0.07a | 0.22b | 0.23b | 0.22b | <0.001 | 0.09a | 0.08a | 0.06a | 0.03a | 0.560 | 3.97 | 55.79 | 8.00 |
V92 | 1545 | Linalool | 78-70-6 | 0.03a | 0.13ab | 0.11ab | 0.25b | 0.013 | 0.15a | 0.15a | 0.15a | 0.20b | 0.001 | 10.34 | 2.78 | 3.93 |
V93 | 1570 | trans-Bornyl acetate | 5655-61-8 | 0.01a | - | 0.01a | 0.06b | 0.005 | - | - | - | - | - | - | - | - |
V94 | 1572 | Isobornyl acetate | 125-12-2 | 0.06ab | 0.08ab | 0.03a | 0.11b | 0.011 | - | - | - | - | - | - | - | - |
V95 | 1633 | Menthol | 15356-70-4 | 0.10a | 0.22c | 0.14b | 0.26c | <0.001 | - | - | - | - | - | - | - | - |
V96 | 1674 | cis-citral | 106-26-3 | - | - | - | - | - | 0.16a | 0.23b | 0.18ab | 0.18ab | 0.029 | - | - | - |
V97 | 1690 | α-Terpineol | 98-55-5 | 0.004a | 0.01b | 0.004a | 0.001 | - | 0.002 | - | - | - | - | - | - | |
V98 | 1725 | trans-citral | 141-27-5 | - | - | - | - | - | 0.42a | 0.47a | 0.46a | 0.48a | 0.123 | - | - | - |
V99 | 1795 | cis-Geraniol | 106-25-2 | - | - | - | - | - | 0.01a | 0.02a | 0.05a | 0.02a | 0.229 | - | - | - |
V100 | 1838 | Geranyl propanoate | 105-90-8 | - | 0.02ab | 0.04b | 0.01a | 0.007 | - | - | - | - | - | - | - | - |
V101 | 1839 | trans-Geraniol | 106-24-1 | 0.11b | 0.01a | - | - | <0.001 | 0.004a | 0.03ab | 0.01a | 0.04b | 0.015 | 17.79 | 38.48 | 95.70 |
V102 | 1846 | trans-Geranylacetone | 3796-70-1 | 0.06a | 0.08b | 0.08ab | 0.14c | <0.001 | 0.96a | 1.46b | 1.64b | 2.19c | <0.001 | 85.78 | 2509.3 | 66.72 |
V103 | 1917 | β-ionone | 79-77-6 | 0.03a | 0.09c | 0.05b | - | <0.001 | 0.03a | 0.06bc | 0.06b | 0.08c | <0.001 | 71.42 | 0.62 | 9.74 |
V104 | 1938 | 6,10-Dimethyl-5,9-undecadien-2-ol | 53837-34-6 | - | - | - | - | - | 0.03a | 0.02a | 0.02a | 0.03a | 0.061 | - | - | - |
V105 | 1964 | β-Ionone-5,6-epoxide | 23267-57-4 | - | - | - | - | - | 0.02a | 0.04a | 0.03a | 0.03a | 0.164 | - | - | - |
V106 | 2010 | (E,Z)-Psuedoionone | 13927-47-4 | - | - | - | - | - | 0.01a | 0.01a | 0.02a | 0.01a | 0.124 | - | - | - |
V107 | 2087 | (E,E)-Psuedoionone | 3548-78-5 | - | - | - | - | - | 0.01a | 0.01a | 0.02ab | 0.01a | 0.004 | - | - | - |
V108 | 2241 | Dihydroactinidiolide | 15356-74-8 | - | - | - | - | - | 0.01a | 0.01ab | 0.01b | 0.01ab | 0.024 | - | - | - |
V109 | 2273 | Farnesyl acetone | 1117-52-8 | - | - | - | - | - | 0.01a | 0.02ab | 0.02b | 0.03c | <0.001 | - | - | - |
Esters and lactones (9) | ||||||||||||||||
V110 | 829 | Ethyl Acetate | 141-78-6 | - | 0.05a | - | 0.87b | <0.001 | - | - | - | - | - | - | - | - |
V111 | 1165 | Pentyl acetate | 628-63-7 | 0.005a | 0.01a | - | - | 0.330 | 0.01a | 0.01a | 0.02a | 0.02a | 0.305 | 1.92 | 3.09 | 0.01 |
V112 | 1265 | Hexyl acetate | 142-92-7 | 0.005a | 0.01a | 0.01a | 0.07b | <0.001 | 0.01a | 0.01a | 0.01a | 0.01a | 0.214 | 79.86 | 92.03 | 105.2 |
V113 | 1622 | 3-6-Nonadien-1-yl acetate | 76649-26-8 | - | - | - | - | - | 0.01a | - | 0.02a | - | 0.175 | - | - | - |
V114 | 1629 | E-2-hexenyl hexanoate | 3050-69-9 | - | - | - | - | - | 0.01a | 0.02a | - | 0.02a | 0.200 | - | - | - |
V115 | 1858 | 2-Ethyl-3-hydroxyhexyl 2-methylpropanoate | 74367-31-0 | - | - | - | - | - | 0.14 | 0.08 | 0.06 | 0.06 | <0.001 | - | - | - |
V116 | 2083 | Ethyl cinnamate | 103-36-6 | 0.01 | - | - | - | - | 0.002a | - | - | 0.002a | 0.305 | - | - | - |
V117 | 1996 | γ-Nonalactone | 104-61-0 | 0.01a | 0.01bc | 0.01ab | 0.02c | 0.001 | 0.03a | 0.05b | 0.05b | 0.05b | 0.010 | 12.82 | 510.5 | 3.56 |
V118 | 2103 | lactone of cis-Jasmone | 70851-61-5 | - | - | - | - | - | 0.003a | 0.003ab | 0.005bc | 0.01c | 0.001 | - | - | - |
Acids (5) | ||||||||||||||||
V119 | 1851 | Hexanoic acid | 142-62-1 | 0.14b | 0.05a | 0.08ab | 0.05a | 0.003 | 0.20b | 0.07a | 0.09a | 0.03a | 0.001 | 32.56 | 2.69 | 1.86 |
V120 | 1942 | 2-Ethylhexanoic acid | 149-57-5 | 0.02 | - | - | - | - | - | 0.01a | - | 0.01a | 0.952 | - | - | - |
V121 | 1947 | Heptanoic acid | 112-05-0 | 0.09a | 0.04a | 0.05a | 0.05a | 0.147 | 0.04b | 0.02a | 0.03a | 0.02a | 0.001 | 4.90 | 22.16 | 0.75 |
V122 | 2039 | Octanoic acid | 124-07-2 | 0.06b | 0.01a | 0.01a | - | <0.001 | - | - | - | - | - | - | - | - |
V123 | 2127 | Nonanoic acid | 112-05-0 | 0.03b | 0.01a | 0.005a | 0.01a | 0.001 | 0.01a | 0.004a | 0.01a | - | 0.544 | 13.68 | 16.57 | 12.93 |
Sulfides (3) | ||||||||||||||||
V124 | 624 | Methanethiol | 74-93-1 | 0.39a | 0.62b | 0.54ab | - | 0.039 | 0.370a | 0.417a | 0.377a | 0.243a | 0.159 | 4.83 | 10.43 | 1.78 |
V125 | 1061 | Dimethyl disulfide | 624-92-0 | 0.01a | 0.07b | 0.02a | 0.05b | <0.001 | 0.02a | 0.02a | 0.03a | 0.02a | 0.358 | 33.20 | 14.98 | 18.43 |
V126 | 1930 | Benzothiazole | 95-16-9 | 0.01a | 0.02bc | 0.01ab | 0.03c | 0.003 | - | - | - | - | - | - | - | - |
Others (6) | ||||||||||||||||
V127 | 864 | 2-Ethylfuran | 3208-16-0 | 0.07a | 0.16b | 0.14b | - | 0.039 | 0.18c | 0.06b | 0.05ab | 0.03a | <0.001 | 8.24 | 5.50 | 36.74 |
V128 | 1223 | 2-Pentylfuran | 3777-69-3 | 1.32b | 1.48b | 0.90a | 1.14ab | 0.008 | 0.71ab | 0.76b | 0.60a | 0.65ab | 0.020 | 12.03 | 133.1 | 3.75 |
V129 | 1294 | (E)-2-Pentenylfuran | 70424-14-5 | 0.37a | 0.89b | 0.38a | 0.18a | <0.001 | 0.56a | 0.38a | 0.47a | 0.35a | 0.087 | 15.10 | 0.28 | 18.63 |
V130 | 1664 | Estragole | 140-67-0 | 0.04a | 0.05a | 0.05a | - | 0.536 | 0.02 | - | - | - | - | - | - | - |
V131 | 1728 | Naphthalene | 91-20-3 | 0.13a | 0.21b | 0.26b | 0.24b | 0.001 | - | - | - | - | - | - | - | - |
V132 | 1835 | 2-Methylnaphthalene | 91-57-6 | 0.01a | 0.01a | 0.02a | 0.05b | 0.001 | - | - | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Ramirez, J. Watermelon Rind and Flesh Volatile Profiles and Cultivar Difference. Horticulturae 2022, 8, 99. https://doi.org/10.3390/horticulturae8020099
Du X, Ramirez J. Watermelon Rind and Flesh Volatile Profiles and Cultivar Difference. Horticulturae. 2022; 8(2):99. https://doi.org/10.3390/horticulturae8020099
Chicago/Turabian StyleDu, Xiaofen, and Jessica Ramirez. 2022. "Watermelon Rind and Flesh Volatile Profiles and Cultivar Difference" Horticulturae 8, no. 2: 99. https://doi.org/10.3390/horticulturae8020099
APA StyleDu, X., & Ramirez, J. (2022). Watermelon Rind and Flesh Volatile Profiles and Cultivar Difference. Horticulturae, 8(2), 99. https://doi.org/10.3390/horticulturae8020099