Extraction Optimization of Crocin from Gardenia (Gardenia jasminoides Ellis)Fruits Using Response Surface Methodology and Quality Evaluation of Foam-Mat Dried Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Box–Behnken Design
2.3. Extraction of Crocin from Gardenia Fruits
2.4. Foam-Mat Drying
2.5. Crocin Content Determination
2.6. Data Analysis
3. Results and Discussion
3.1. Crocin Content of Gardenia
3.2. Extraction Optimization of Crocin—Modeling the Effects
3.3. Effect of Drying Temperature (Foam-Mat Drying Method Was Employed) on the Quality of Gardenia Powder
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, N.; Bian, Y.; Yao, L. Essential Oils of Gardenia jasminoides J. Ellis and Gardenia jasminoides f. longicarpa Z.W. Xie & M. Okada Flowers: Chemical Characterization and Assessment of Anti-Inflammatory Effects in Alveolar Macrophage. Pharmaceutics 2022, 14, 966. [Google Scholar] [CrossRef]
- Chen, L.; Li, M.; Yang, Z.; Tao, W.; Wang, P.; Tian, X.; Li, X.; Wang, W. Gardenia jasminoides Ellis: Ethnopharmacology, phytochemistry, and pharmacological and industrial applications of an important traditional Chinese medicine. J. Ethnopharmacol. 2020, 257, 112829. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, H.; Tian, X.; Zhao, C.; Cai, L.; Liu, Y.; Jia, L.; Yin, H.-X.; Chen, C. Antioxidant potential of crocins and ethanol extracts of Gardenia jasminoides ELLIS and Crocus sativus L.: A relationship investigation between antioxidant activity and crocin contents. Food Chem. 2008, 109, 484–492. [Google Scholar] [CrossRef]
- He, M.-L.; Cheng, X.-W.; Chen, J.-K.; Zhou, T.-S. Simultaneous Determination of Five Major Biologically Active Ingredients in Different Parts of Gardenia jasminoides Fruits by HPLC with Diode-Array Detection. Chromatographia 2006, 64, 713–717. [Google Scholar] [CrossRef]
- Ochiai, T.; Shimeno, H.; Mishima, K.-i.; Iwasaki, K.; Fujiwara, M.; Tanaka, H.; Shoyama, Y.; Toda, A.; Eyanagi, R.; Soeda, S. Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2007, 1770, 578–584. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Jahanian, Z. Effect of Crocus sativus L. (saffron) stigma and its constituents, crocin and safranal, on morphine withdrawal syndrome in mice. Phytother. Res. 2010, 24, 726–730. [Google Scholar] [CrossRef]
- Magesh, V.; Singh, J.P.V.; Selvendiran, K.; Ekambaram, G.; Sakthisekaran, D. Antitumour activity of crocetin in accordance to tumor incidence, antioxidant status, drug metabolizing enzymes and histopathological studies. Mol. Cell. Biochem. 2006, 287, 127–135. [Google Scholar] [CrossRef]
- Sarfarazi, M.; Jafari, S.M.; Rajabzadeh, G.; Feizi, J. Development of an environmentally-friendly solvent-free extraction of saffron bioactives using subcritical water. LWT 2019, 114, 108428. [Google Scholar] [CrossRef]
- Tong, Y.; Jiang, Y.; Guo, D.; Yan, Y.; Jiang, S.; Lu, Y.; Bathaie, S.Z.; Wang, P. Homogenate Extraction of Crocins from Saffron Optimized by Response Surface Methodology. J. Chem. 2018, 2018, 9649062. [Google Scholar] [CrossRef] [Green Version]
- Budisa, N.; Schulze-Makuch, D. Supercritical Carbon Dioxide and Its Potential as a Life-Sustaining Solvent in a Planetary Environment. Life 2014, 4, 331–340. [Google Scholar] [CrossRef]
- Karasu, S.; Bayram, Y.; Ozkan, K.; Sagdic, O. Extraction optimization crocin pigments of saffron (Crocus sativus) using response surface methodology and determination stability of crocin microcapsules. J. Food Meas. Charact. 2019, 13, 1515–1523. [Google Scholar] [CrossRef]
- Maran, J.P.; Sivakumar, V.; Thirugnanasambandham, K.; Sridhar, R. Extraction of natural anthocyanin and colors from pulp of jamun fruit. J. Food Sci. Technol. 2015, 52, 3617–3626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thuy, N.M.; Ben, T.C.; Minh, V.Q.; Van Tai, N. Effect of extraction techniques on anthocyanin from butterfly pea flowers (Clitoria ternatea L.) cultivated in Vietnam. J. Appl. Biol. Biotechnol. 2021, 9, 173–180. [Google Scholar] [CrossRef]
- Thuy, N.M.; Han, D.H.N.; Minh, V.Q.; Van Tai, N. Effect of extraction methods and temperature preservation on total anthocyanins compounds of Peristrophe bivalvis L. Merr leaf. J. Appl. Biol. Biotechnol. 2022, 10, 146–153. [Google Scholar] [CrossRef]
- Hadizadeh, F.; Mohajeri, S.A.; Seifi, M. Extraction and purification of crocin from saffron stigmas employing a simple and efficient crystallization method. Pak. J. Biol. Sci. 2010, 13, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.; Paridhi, G.; JD, B.; DM, K. Optimization of process conditions for the development of tomato foam by box-behnken design. Food Nutr. Sci. 2012, 3, 925–930. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.A.; Kadam, D.M.; Chadha, S.; Sharma, M. Foam mat drying characteristics of mango pulp. Int. J. Food Sci. Nutr. Eng. 2012, 2, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Bien, T.; Luyen, B.; Han, N. Preparative separation and purification of geniposide from Gardenia jasminoides ellis fruit using macroporous adsorption resin D101. Pharm. Sci. Asia 2018, 42, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Thuy, N.T.T.; Hien, N.T. Extraction and study of stability of crocin colorant from gardenia fruit. Vietnam J. Agric. Sci. 2016, 14, 1978–1985. [Google Scholar]
- Huang, H.; Zhu, Y.; Fu, X.; Zou, Y.; Li, Q.; Luo, Z. Integrated natural deep eutectic solvent and pulse-ultrasonication for efficient extraction of crocins from gardenia fruits (Gardenia jasminoides Ellis) and its bioactivities. Food Chem. 2022, 380, 132216. [Google Scholar] [CrossRef]
- Van Tai, N.; Linh, M.N.; Thuy, N.M. Optimization of extraction conditions of phytochemical compounds in “Xiem” banana peel powder using response surface methodology. J. Appl. Biol. Biotechnol. 2021, 9, 56–62. [Google Scholar] [CrossRef]
- Al-Farsi, M.A.; Lee, C.Y. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem. 2008, 108, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, M.; Ali, M.; Ahmad, A. Modelling for extraction of major phytochemical components from Eurycoma longifolia. J. Appl. Sci. 2010, 10, 2572–2577. [Google Scholar] [CrossRef] [Green Version]
- Cracolice, M.S.; Peters, E.I. Introductory Chemistry: An Active Learning Approach; Cengage Learning: Singapore, 2020. [Google Scholar]
- Silva, E.M.; Rogez, H.; Larondelle, Y. Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Sep. Purif. Technol. 2007, 55, 381–387. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. J. Chromatogr. A 2004, 1054, 95–111. [Google Scholar] [CrossRef]
- Shi, J.; Mazza, G.; Le Maguer, M. Functional Foods: Biochemical and Processing Aspects, Volume 2; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Chaves, J.O.; de Souza, M.C.; da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Machado, A.P.d.F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-de-Peredo, A.V.; Barbero, G.F.; et al. Extraction of Flavonoids From Natural Sources Using Modern Techniques. Front. Chem. 2020, 8, 507887. [Google Scholar] [CrossRef]
- Bathaie, S.Z.; Farajzade, A.; Hoshyar, R. A review of the chemistry and uses of crocins and crocetin, the carotenoid natural dyes in saffron, with particular emphasis on applications as colorants including their use as biological stains. Biotech. Histochem. 2014, 89, 401–411. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [Green Version]
- Sharmila, G.; Muthukumaran, C.; Suriya, E.; Muppidathi Keerthana, R.; Kamatchi, M.; Kumar, N.M.; Anbarasan, T.; Jeyanthi, J. Ultrasound aided extraction of yellow pigment from Tecoma castanifolia floral petals: Optimization by response surface method and evaluation of the antioxidant activity. Ind. Crops Prod. 2019, 130, 467–477. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Toledo, R.T. Oxygen radical absorbance capacities of grape/wine industry byproducts and effect of solvent type on extraction of grape seed polyphenols. J. Food Compos. Anal. 2006, 19, 41–48. [Google Scholar] [CrossRef]
- Asami, D.K.; Hong, Y.-J.; Barrett, D.M.; Mitchell, A.E. Comparison of the Total Phenolic and Ascorbic Acid Content of Freeze-Dried and Air-Dried Marionberry, Strawberry, and Corn Grown Using Conventional, Organic, and Sustainable Agricultural Practices. J. Agric. Food Chem. 2003, 51, 1237–1241. [Google Scholar] [CrossRef] [PubMed]
- Kandasamy, P.; Varadharaju, N.; Shaik, K.; Moitra, R. Preparation of Papaya Powder under Foam-Mat Drying Technique using Egg Albumin as Foaming Agent. Int. J. Bio.-Resour. Stress Manag. 2012, 3, 324–331. [Google Scholar]
- Thuy, N.M.; Tien, V.Q.; Tuyen, N.N.; Giau, T.N.; Minh, V.Q.; Tai, N.V. Optimization of Mulberry Extract Foam-Mat Drying Process Parameters. Molecules 2022, 27, 8570. [Google Scholar] [CrossRef] [PubMed]
- Thuy, N.M.; Tien, V.Q.; Van Tai, N.; Minh, V.Q. Effect of Foaming Conditions on Foam Properties and Drying Behavior of Powder from Magenta (Peristropheroxburghiana) Leaves Extracts. Horticulturae 2022, 8, 546. [Google Scholar] [CrossRef]
- Wilkowska, A.; Ambroziak, W.; Czyżowska, A.; Adamiec, J. Effect of Microencapsulation by Spray Drying and Freeze Drying Technique on the Antioxidant Properties of Blueberry (Vaccinium myrtillus) Juice Polyphenolic Compounds. Pol. J. Food Nutr. Sci. 2016, 66, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Franceschinis, L.; Salvatori, D.M.; Sosa, N.; Schebor, C. Physical and Functional Properties of Blackberry Freeze- and Spray-Dried Powders. Dry. Technol. 2014, 32, 197–207. [Google Scholar] [CrossRef]
- Demir, V.; Gunhan, T.; Yagcioglu, A.K.; Degirmencioglu, A. Mathematical Modelling and the Determination of Some Quality Parameters of Air-dried Bay Leaves. Biosyst. Eng. 2004, 88, 325–335. [Google Scholar] [CrossRef]
- Perera, C.O. Selected Quality Attributes of Dried Foods. Dry. Technol. 2005, 23, 717–730. [Google Scholar] [CrossRef]
- Rao, M.A.; Rizvi, S.S.; Datta, A.K.; Ahmed, J. Engineering Properties of Foods; CRC press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Breda, C.A.; Sanjinez-Argandoña, E.J.; Correia, C.d.A.C. Shelf life of powdered Campomanesia adamantium pulp in controlled environments. Food Chem. 2012, 135, 2960–2964. [Google Scholar] [CrossRef]
Factor | Coding Level | ||
---|---|---|---|
−1 | 0 | 1 | |
X1: Temperature (°C) | 45 | 50 | 55 |
X2: Time (min) | 50 | 55 | 60 |
X3:Percent of raw materials in solvent (%) | 15 | 20 | 25 |
X4: Ethanol concentration (%) | 50 | 55 | 60 |
Run No. | X1 | X2 | X3 | X4 | Run No. | X1 | X2 | X3 | X4 |
---|---|---|---|---|---|---|---|---|---|
1 | (50) 0 | (60) 1 | (15)−1 | (55) 0 | 16 | (55) 1 | (50) 0 | (15)−1 | (55) 0 |
2 | (50) 0 | (50) 0 | (25) 1 | (50)−1 | 17 | (55) 1 | (50) 0 | (20) 0 | (60) 1 |
3 | (50) 0 | (50) 0 | (15)−1 | (60) 1 | 18 | (55) 1 | (40)−1 | (20) 0 | (55) 0 |
4 | (50) 0 | (50) 0 | (20) 0 | (55) 0 | 19 | (50) 0 | (40)−1 | (15)−1 | (55) 0 |
5 | (45)−1 | (50) 0 | (25) 1 | (55) 0 | 20 | (50) 0 | (50) 0 | (20) 0 | (55) 0 |
6 | (50) 0 | (50) 0 | (25) 1 | (60) 1 | 21 | (45)−1 | (60) 1 | (20) 0 | (55) 0 |
7 | (45)−1 | (50) 0 | (20) 0 | (50)−1 | 22 | (45)−1 | (50) 0 | (20) 0 | (60) 1 |
8 | (50) 0 | (50) 0 | (20) 0 | (55) 0 | 23 | (50) 0 | (60) 1 | (20) 0 | (50)−1 |
9 | (55) 1 | (60) 1 | (20) 0 | (55) 0 | 24 | (50) 0 | (40)−1 | (25) 1 | (55) 0 |
10 | (50) 0 | (40)−1 | (20) 0 | (60) 1 | 25 | (50) 0 | (50) 0 | (15)−1 | (50)−1 |
11 | (50) 0 | (50) 0 | (20) 0 | (55) 0 | 26 | (45)−1 | (50) 0 | (15)−1 | (55) 0 |
12 | (50) 0 | (60) 1 | (20) 0 | (60) 1 | 27 | (45)−1 | (40)−1 | (20) 0 | (55) 0 |
13 | (50) 0 | (50) 0 | (20) 0 | (55) 0 | 28 | (50) 0 | (40)−1 | (20) 0 | (50)−1 |
14 | (50) 0 | (50) 0 | (20) 0 | (55) 0 | 29 | (55) 1 | (50) 0 | (20) 0 | (50)−1 |
15 | (50) 0 | (60) 1 | (25) 1 | (55) 0 | 30 | (55) 1 | (50) 0 | (25) 1 | (55) 0 |
Source | Sum of Squares | Df | Mean Square | F-Ratio | p-Value |
---|---|---|---|---|---|
X1 | 251.619 | 1 | 251.619 | 483.27 | 0.0000 |
X2 | 1001.81 | 1 | 1001.81 | 1924.13 | 0.0000 |
X3 | 7466.95 | 1 | 7466.95 | 14,341.44 | 0.0000 |
X4 | 321.497 | 1 | 321.497 | 617.49 | 0.0000 |
X12 | 319.548 | 1 | 319.548 | 613.74 | 0.0000 |
X1X2 | 28.6845 | 1 | 28.6845 | 55.09 | 0.0000 |
X1X3 | 1.68675 | 1 | 1.68675 | 3.24 | 0.0765 |
X1X4 | 1.23072 | 1 | 1.23072 | 2.36 | 0.1290 |
X22 | 919.054 | 1 | 919.054 | 1765.19 | 0.0000 |
X2X3 | 106.72 | 1 | 106.72 | 204.97 | 0.0000 |
X2X4 | 3.73748 | 1 | 3.73748 | 7.18 | 0.0093 |
X32 | 2588.27 | 1 | 2588.27 | 4971.19 | 0.0000 |
X3X4 | 277.845 | 1 | 277.845 | 533.64 | 0.0000 |
X42 | 226.42 | 1 | 226.42 | 434.88 | 0.0000 |
Lackoffit | 539.839 | 10 | 53.9839 | 103.68 | 0.2401 |
Pure error | 33.8426 | 65 | 0.520655 | ||
Total (corr.) | 14,047.9 | 89 |
Temperature (°C) | Drying Time (hours) | Crocin Content (mg/g Dry Weight) | Moisture Content (%) | Water Activity |
---|---|---|---|---|
55 | 5 | 6.82 ± 0.11* | 6.64 ± 0.228 | 0.34 ± 0.001 |
60 | 4 | 6.64 ± 0.08 | 5.82 ± 0.20 | 0.33 ± 0.007 |
65 | 4 | 5.60 ± 0.09 | 5.78 ± 0.26 | 0.33 ± 0.002 |
70 | 3.5 | 4.17 ± 0.04 | 5.75 ± 0.07 | 0.31 ± 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thuy, N.M.; Nhu, P.H.; Tai, N.V.; Minh, V.Q. Extraction Optimization of Crocin from Gardenia (Gardenia jasminoides Ellis)Fruits Using Response Surface Methodology and Quality Evaluation of Foam-Mat Dried Powder. Horticulturae 2022, 8, 1199. https://doi.org/10.3390/horticulturae8121199
Thuy NM, Nhu PH, Tai NV, Minh VQ. Extraction Optimization of Crocin from Gardenia (Gardenia jasminoides Ellis)Fruits Using Response Surface Methodology and Quality Evaluation of Foam-Mat Dried Powder. Horticulturae. 2022; 8(12):1199. https://doi.org/10.3390/horticulturae8121199
Chicago/Turabian StyleThuy, Nguyen Minh, Pham Huynh Nhu, Ngo Van Tai, and Vo Quang Minh. 2022. "Extraction Optimization of Crocin from Gardenia (Gardenia jasminoides Ellis)Fruits Using Response Surface Methodology and Quality Evaluation of Foam-Mat Dried Powder" Horticulturae 8, no. 12: 1199. https://doi.org/10.3390/horticulturae8121199
APA StyleThuy, N. M., Nhu, P. H., Tai, N. V., & Minh, V. Q. (2022). Extraction Optimization of Crocin from Gardenia (Gardenia jasminoides Ellis)Fruits Using Response Surface Methodology and Quality Evaluation of Foam-Mat Dried Powder. Horticulturae, 8(12), 1199. https://doi.org/10.3390/horticulturae8121199