Organic Substrates Differentially Affect Growth and Macronutrient Concentrations of Lulo (Solanum quitoense Lam.) Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatments
2.2. Seed Extraction and Fermentation
2.3. Experiment Establishment
2.4. Growth Parameters
2.5. Macronutrient Analyses in Plant Tissues
2.6. Statistical Analyses
3. Results and Discussion
3.1. Plant Growth Analyses and Correlation among Variables
3.2. Macronutrient Concentrations in Plant Tissues
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Medina-Cano, C.I.; Lobo-Arias, M.; Martínez-Bustamante, E. State of knowledge review on the productive function of lulo (Solanum quitoense Lam.) in Colombia. Corpoica Cienc. Tecnol. Agropec. 2009, 10, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, F.; Davenport, T.L. Underutilized, Fruits of the Andes. In Advances in Environmental Research; Daniels, J.A., Ed.; Nova Science Publishers: New York, NY, USA, 2014; pp. 69–88. [Google Scholar]
- Criollo-Escobar, H.; Moncayo-Palacios, M.F.; Lagos-Burbano, T.C. Phenology and growth of lulo (Solanum quitoense Lam.) plants grafted onto Solanum hirtum Vahl. Rev. Colomb. Cienc. Hortíc. 2020, 14, 291–300. [Google Scholar] [CrossRef]
- IICA. Naranjilla. Guía Práctica para la Exportación a Estados Unidos. Instituto Interamericano de Cooperación para la Agricultura. 2007. Available online: http://repositorio.iica.int/bitstream/handle/11324/7813/BVE19040120e.pdf?sequence=1&isAllowed=y (accessed on 7 May 2022).
- Gómez-Merino, F.C.; Trejo-Téllez, L.I.; García-Albarado, J.C.; Cadena-Íñiguez, J. Lulo (Solanum quitoense [Lamarck]) as a new landscape crop in the Mexican agro-ecosystem. Rev. Mex. Cienc. Agríc. 2014, 9, 1741–1753. [Google Scholar]
- Jaime-Guerrero, M.; Álvarez-Herrera, J.; Fischer, G. Physiology and crop aspects of lulo (Solanum quitoense Lam.) in Colombia: A review. Rev. Investig. Agra. Amb. 2022, 13, 131–148. [Google Scholar] [CrossRef]
- Pérez-López, H.; Gómez-Merino, F.C.; Trejo-Téllez, L.I.; García-Morales, S.; Rivera-Olivares, L.Y. Agricultural lignocellulosic waste and volcanic rock combinations differentially affect seed germination and growth of pepper (Capsicum annuum L.). BioResources 2014, 9, 3977–3992. [Google Scholar] [CrossRef] [Green Version]
- Trejo-Téllez, L.I.; García-Albarado, J.C.; Méndez-Urbano, D.; Pérez-Sato, J.A.; Gómez-Merino, F.C. Plant growth and nitrogen concentration of Tillandsia species produced in organic, volcanic, and lignocellulosic substrates. J. Plant Nutr. 2018, 41, 2547–2559. [Google Scholar] [CrossRef] [Green Version]
- Jackson, B.E.; Wright, R.D.; Seiler, J.R. Changes in chemical and physical properties of pine tree substrate and pine bark during long-term nursery crop production. HortScience 2009, 44, 791–799. [Google Scholar] [CrossRef] [Green Version]
- Jackson, B.E.; Wright, R.D.; Barnes, M.C. Methods of constructing a pine tree substrate from various wood particle sizes, organic amendments, and sand for desired physical properties and plant growth. HortScience 2010, 45, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Quinchia, C.F.; Cabrera, C.A. Manual Técnico del Cultivo del Lulo (Solanum quitoense Lam.) en el Departamento de Huila; Gobernación del Huila: Neiva, Colombia, 2002; 34p. [Google Scholar]
- Gómez-Merino, F.C.; Trejo-Téllez, L.I.; García-Albarado, J.C.; Morales-Ramos, V. Lulo (Solanum quitoense [Lamarck]) as a new element of the landscape in Mexico: Germination and growth on organic soils. Rev. Mex. Cienc. Agríc. 2013, 5, 877–887. [Google Scholar]
- Oda, M. Raising of vigorous and valuable seedlings. Regul. Plant Growth Dev. 2007, 42, 176–182. [Google Scholar]
- Ramírez, V.H.; Duque, N.N. Response of the lulo fruit cv. La Selva (Solanum quitoense × Solanum hirtum) at the aerobic organic and inorganic fertilizer applications. Acta Agron. 2010, 59, 155–161. [Google Scholar]
- Parra-Coronado, A.; Ardila-Roa, G.H.; Restrepo-Díaz, H. The physiological response of lulo plants (Solanum quitoense var. septentrionale) to soil and foliar applications of nutrients. Int. J. Fruit Sci. 2014, 15, 148–160. [Google Scholar] [CrossRef]
- Gómez-Merino, F.C.; Trejo-Téllez, L.I.; Ladewig, P. Seedlings growth rates of lulo (Solanum quitoense [Lamarck]) in organic substrates. Rev. Mex. Cienc. Agríc. 2014, 9, 1787–1793. [Google Scholar]
- Carlile, W.R.; Cattivello, C.; Zaccheo, P. Organic growing media: Constituents and properties. Vadose Zone J. 2015, 14, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Fortis-Hernández, M.; Antonio-Ordóñez, E.; Preciado-Rangel, P.; Gallegos-Robles, M.A.; Vázquez-Vázquez, C.; Reyes-Gonzáles, A.; Esparza-Rivera, J.R. Effect of substrates formulated with organic materials on yielding, commercial and phytochemical quality, and benefit-cost ratio of tomato (Solanum lycopersicum L.) produced under greenhouse conditions. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 11999. [Google Scholar] [CrossRef]
- Bartley, P.C.; Fonteno, W.C.; Jackson, B.E. A Review and analysis of horticultural substrate characterization by sieve analysis. HortScience 2022, 57, 715–725. [Google Scholar] [CrossRef]
- Soto-Esparza, M. Localidades y Climas del Estado de Veracruz; Instituto Nacional de Investigaciones sobre Recursos Bióticos: Xalapa, Mexico, 1986; 137p. [Google Scholar]
- Alcántar-González, G.; Sandoval-Villa, M. Handbook of Chemical Analyses of Plant Tissues; Mexican Society of Soil Science: Chapingo, Mexico, 1999; 156p. [Google Scholar]
- SAS Institute. SAS/STAT 13.2 Users Guide. What’s New in SAS/STAT 13.2; SAS Institute Inc.: Cary, NC, USA, 2014. [Google Scholar]
- Gil, M.V.; Carballo, M.T.; Calvo, L.F. Fertilization of maize with compost from cattle manure supplemented with additional mineral nutrients. Waste Manag. 2008, 28, 1432–1440. [Google Scholar] [CrossRef]
- Silva, M.E.F.; de Lemos, L.T.; Nunes, O.C.; Cunha-Queda, A.C. Influence of the composition of the initial mixtures on the chemical composition, physicochemical properties and humic-like substances content of composts. Waste Manag. 2013, 34, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Hernández, T.; Masciandaro, G.; Moreno, J.I.; García, C. Changes in organic matter composition during composting of two digested sewage sludges. Waste Manag. 2006, 26, 1370–1376. [Google Scholar] [CrossRef]
- Lasaridi, K.; Protopapa, I.; Kotsou, M.; Pilidis, G.; Manios, T.; Kyriacou, A. Quality assessment of composts in the Greek market: The need for standards and quality assurance. J. Environ. Manag. 2006, 80, 58–65. [Google Scholar] [CrossRef]
- Fundación Codesarrollo. Alianza Productiva de lulo en los Municipios de Santa Rosa y Dosquebradas en el Departamento de Risaralba; Ministerio de Cultura y Desarrollo, Fundación Codesarrollo: Pereira, Colombia, 2006; 172p. [Google Scholar]
- Cabrera, R.I. Properties, use and management of growing media for container plant production. Rev. Chapingo Ser. Hortic. 1999, 5, 5–11. [Google Scholar] [CrossRef]
- Berrospe-Ochoa, E.A.; Ordaz-Chaparro, V.M.; Rodríguez-Mendoza, M.N.; Quintero-Lizaola, R. Filter mud as growth medium on tomato seedling. Rev. Chapingo Ser. Hortic. 2012, 18, 141–156. [Google Scholar]
- Flórez, S.L.; Miranda-Larrispa, D.; Chaves, B. Growth of lulo (Solanum quitoense Lam.) plants affected by salinity and substrates. Rev. Bras. Frutic. Jaboticabal 2008, 30, 402–408. [Google Scholar] [CrossRef] [Green Version]
- Bláha, L. Importance of root-shoot ratio for crops production. J. Agron. Agric. Sci. 2019, 2, 12. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, F.; Bakhsh, R.; Qadir, I. Trade-off between shoot and root dry weight along with a steady CO2 assimilation rate ensures the survival of Eucalyptus camaldulensis under salt stress. J. For. Sci. 2020, 66, 452–460. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, Y.; Ding, Y.; Pan, R.; Shen, W.; Yu, X.; Xiong, F. The relationship between characteristics of root morphology and grain filling in wheat under drought stress. PeerJ 2021, 9, e12015. [Google Scholar] [CrossRef]
- Lynch, J.; Marschner, P.; Rengel, Z. Effect of internal and external factors on root growth and development. In Marschner´s Mineral Nutrition of Higher Plants; Marschner, P., Ed.; Academic Press: London, UK, 2012; pp. 331–346. [Google Scholar]
- Cruz-Crepo, E.; Can-Chulim, A.; Sandoval-Villa, M.; Bugarín-Montoya, R.; Robles-Bermúdez, A.; Juárez-López, P. Sustratos en la horticultura. Rev. BioCiencias 2013, 2, 17–26. [Google Scholar]
- Medina-Cano, C.I.; Martínez-Bustamante, E.; Lobo-Árias, M.; Vargas-Arcila, M.O. Distribución de la materia seca durante la ontogenia del lulo (Solanum quitoense Lam.) a plena exposición solar en el bosque húmedo montano bajo del oriente antioqueño, Colombia. Rev. Fac. Nac. Agron.-Medellín 2008, 61, 4256–4268. [Google Scholar]
- Páez, A.; Paz, V.; López, J.C. Growth and physiological responses of tomato plants cv. Río Grande during May to July season. Effect of shading. Rev. Fac. Agron. Univ. Zulia 2000, 17, 173–184. [Google Scholar]
- Morillo-Coronado, A.C.; Tovar-León, Y.P.; Morillo-Coronado, Y. Characterization of lulo (Solanum quitoense Lam.) genetic diversity in the department of Boyaca, Colombia. Acta Agron. 2017, 66, 430–435. [Google Scholar] [CrossRef]
- Morillo, A.; Rodríguez, A.; Morillo, Y. Morphological characterization of lulo (Solanum quitoense Lam.) in the municipality of Pachavita, Boyacá. Acta Biol. Colomb. 2019, 24, 291–298. [Google Scholar] [CrossRef]
- Vargas-Bolívar, M.I.; Calderón-Medellín, L.A.; Pérez-Trujillo, M.M. Efecto de las deficiencias de algunos nutrimentos en plantas de lulo (Solanum quitoense var. quitoense) en etapa de vivero. Rev. Fac. Cienc. Básicas 2009, 5, 64–81. [Google Scholar]
- Nasraoui-Hajaji, A.; Chaffei-Haouari, C.; Ghorbel, M.H.; Gouia, H. Growth and nitrate assimilation in tomato (Solanum lycopersicon) grown with different nitrogen source and treated with cadmium. Acta Bot. Gallica Bot. Lett. 2011, 158, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Sárdi, K. Nutrient Management; Szechenyi Terv: Pannonia, Hungary, 2011; 107p. [Google Scholar]
- Rivera-Espejel, E.A.; Sandoval-Villa, M.; Rodríguez-Mendoza, M.N.; Trejo-López, C.; Gasga-Peña, R. Tomato fertilization using ammonium and nitrate in split roots in hydroponics. Rev. Chapingo Ser. Hortic. 2014, 20, 57–70. [Google Scholar] [CrossRef]
- Martínez-Andújar, C.; Ghanem, M.E.; Albacete, A.; Pérez-Alfocea, F. Response to nitrate/ammonium nutrition of tomato (Solanum lycopersicum L.) plants overexpressing a prokaryotic NH4+-dependent asparagine synthetase. J. Plant Physiol. 2013, 170, 676–687. [Google Scholar] [CrossRef] [PubMed]
- Flórez, S.L.; Miranda, D.; Chaves, B. Nutrient dynamics in the vegetative growth phase of lulo (Solanum quitoense Lam.) in response to NaCl salinity. Agron. Colomb. 2008, 26, 205–216. [Google Scholar]
Treatment | Percentage Peatmoss/Compost (v/v) | Ratio Peatmoss/Compost (v/v) | N Total | NO3− | NH4+ | P | K |
---|---|---|---|---|---|---|---|
(%) | (mg kg−1) | (mg L−1) | |||||
T1 | 60/40 | 1.50 | 1.38 ± 0.015 | 1022 ± 1.84 | 42 ± 2.62 | 4.52 ± 0.06 | 233.43 ± 3.8 |
T2 | 40/60 | 0.66 | 1.47 ± 0.022 | 882 ± 4.92 | 119 ± 7.43 | 5.60 ± 0.22 | 256.89 ± 7.8 |
T3 | 20/80 | 0.25 | 1.51 ± 0.010 | 1316 ± 5.35 | 42 ± 0.70 | 6.58 ± 0.21 | 274.09 ± 3.3 |
Treatment | Bulk Density (g cm−3) | Total Porosity (%) | Air Space (%) | pH | EC (dS m−1) | CEC [cmol(+) kg−1] | OM (%) |
---|---|---|---|---|---|---|---|
T1 | 0.21 ± 0.009 | 86 ± 0.49 | 14 ± 0.49 | 6.36 ± 0.04 | 1.74 ± 0.019 | 20.73 ± 0.57 | 20.73 ± 0.56 |
T2 | 0.25 ± 0.005 | 82 ± 0.26 | 12 ± 0.10 | 6.51 ± 0.02 | 2.11 ± 0.008 | 17.62 ± 0.66 | 17.62 ± 0.25 |
T3 | 0.30 ± 0.010 | 81 ± 0.37 | 8 ± 0.04 | 6.54 ± 0.02 | 2.43 ± 0.021 | 16.72 ± 0.32 | 16.72 ± 0.29 |
Variable | ShDBW | RDBW | TDBW | PH | SD |
---|---|---|---|---|---|
ShDBW | 1 | −0.335 * | 0.840 ** | 0.593 * | −0.552 ** |
RDBW | 1 | 0.228 ns | −0.423 * | 0.628 ** | |
TDBW | 1 | 0.321 ns | 0.225 ns | ||
PH | 1 | 0.590 ** | |||
SD | 1 |
Treatment | N | P | K | Ca | Mg | S |
---|---|---|---|---|---|---|
(g kg−1 DBW) | ||||||
T1 | 19.3 ± 0.029 a | 2.38 ± 0.015 c | 5.55 ± 0.122 c | 4.28 ± 0.043 c | 1.93 ± 0.005 c | 2.03 ± 0.018 c |
T2 | 14.5 ±0.058 c | 3.48 ± 0.025 b | 7.97 ± 0.043 b | 5.32 ± 0.038 b | 2.92 ± 0.026 b | 3.05 ± 0.027 b |
T3 | 16.2 ± 0.153 b | 3.98 ± 0.037 a | 9.29 ± 0.038 a | 7.05 ± 0.021 a | 3.12 ± 0.040 a | 3.59 ± 0.045 a |
Treatment | N | P | K | Mg |
---|---|---|---|---|
(g kg−1 DBW) | ||||
T1 | 25.37 ± 4.01 | 4.67 ± 0.53 | 10.71 ± 1.04 | 4.17 ± 0.07 |
T2 | 16.30 ± 0.09 | 5.88 ± 0.11 | 13.89 ± 0.36 | 5.49 ± 0.01 |
T3 | 24.77 ± 0.16 | 6.43 ± 0.12 | 13.49 ± 0.19 | 5.33 ± 0.56 |
p-value | 0.2381 | 0.0549 | 0.0822 | 0.1076 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trejo-Téllez, L.I.; Gómez-Merino, F.C.; García-Albarado, J.C.; Peralta-Sánchez, M.G. Organic Substrates Differentially Affect Growth and Macronutrient Concentrations of Lulo (Solanum quitoense Lam.) Seedlings. Horticulturae 2022, 8, 1200. https://doi.org/10.3390/horticulturae8121200
Trejo-Téllez LI, Gómez-Merino FC, García-Albarado JC, Peralta-Sánchez MG. Organic Substrates Differentially Affect Growth and Macronutrient Concentrations of Lulo (Solanum quitoense Lam.) Seedlings. Horticulturae. 2022; 8(12):1200. https://doi.org/10.3390/horticulturae8121200
Chicago/Turabian StyleTrejo-Téllez, Libia Iris, Fernando Carlos Gómez-Merino, J. Cruz García-Albarado, and María Guadalupe Peralta-Sánchez. 2022. "Organic Substrates Differentially Affect Growth and Macronutrient Concentrations of Lulo (Solanum quitoense Lam.) Seedlings" Horticulturae 8, no. 12: 1200. https://doi.org/10.3390/horticulturae8121200
APA StyleTrejo-Téllez, L. I., Gómez-Merino, F. C., García-Albarado, J. C., & Peralta-Sánchez, M. G. (2022). Organic Substrates Differentially Affect Growth and Macronutrient Concentrations of Lulo (Solanum quitoense Lam.) Seedlings. Horticulturae, 8(12), 1200. https://doi.org/10.3390/horticulturae8121200