Survey on Yeast Assimilable Nitrogen Status of Musts from Native and International Grape Varieties: Effect of Variety and Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Enological Parameters and Yeast Assimilable Nitrogen Analysis
2.3. Meteorological Data
2.4. Statistical Analysis
3. Results
3.1. YAN Status of Grape Samples
3.2. Grape Variety
3.3. Region and Effect of Climate
- ▪
- Thrace/Rodopi: high temperatures over 25 °C during July–August, rainfall of 5 mm during July–September, and rainfall of 62 mm during May–September.
- ▪
- Eastern Macedonia/Kavala: high temperatures over 25 °C during July–August, rainfall of 18 mm during July–September, and rainfall of 62 mm in May–September.
- ▪
- Central Macedonia/Serres: high temperatures over 25 °C during July–August, rainfall of 254 mm during July–September, and high rainfall (357 mm) in May–September.
- ▪
- Central Macedonia/Kilkis: high temperatures over 25 °C during June–August, 27 mm of rainfall during June–August and >100 mm in September, and a total rainfall of 292 mm during May–September.
- ▪
- Central Macedonia/Thessaloniki: high temperatures over 25 °C during June–August, rainfall of 47 mm during June–August and >90 mm in September, and a total rainfall 245 mm in May–September.
- ▪
- Central Macedonia/Chalkidiki: high temperatures > 25 °C July–August, rainfall of 43 mm during June–August and >350 mm in September, and a total rainfall 460 mm in May–September.
- ▪
- Central Macedonia/Athos: high temperatures > 25 °C July–August, rainfall of 16 mm during June–August and >75 mm in September, and a total rainfall of 233 mm in May–September.
- ▪
- Central Macedonia/Imathia: high temperatures > 25 °C July–August, rainfall of 42 mm during June–August and >100 mm in September, total rainfall < 250 mm in May–September.
- ▪
- Central Macedonia/Pella: high temperatures > 25 °C July–August, rainfall of 78 mm during June–September, 10 mm in September, and a total rainfall of 186 mm in May–September.
- ▪
- Western Macedonia/Florina: low temperatures below 25 °C during all months, rainfall of 300 mm during July–September, 150 mm in September, and a total rainfall of 420 mm in May–September.
- ▪
- Thessaly/Larissa: high temperatures over 25 °C during June–August and low total rainfall of 150 mm during May and September (none during July–August, and nearly 100 mm in September).
- ▪
- North Aegean/Lemnos: high temperatures during June–August, no rainfall during June–September, and a total rainfall of 45 mm in May–September.
3.3.1. White Grape Varieties
3.3.2. Red Grape Varieties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sponholz, W. Nitrogen compounds in grapes, must, and wine. In Proceedings of the International Symposium on Nitrogen in Grapes and Wine, Seattle, WA, USA, 18–19 June 1991; pp. 67–77. [Google Scholar]
- Nicolini, G.; Larcher, R.; Versini, G. Status of yeast assimilable nitrogen in Italian grape musts and effects of variety, ripening and vintage. Vitis 2004, 43, 89–96. [Google Scholar] [CrossRef]
- Garde-Cerdan, T.; Lorenzo, C.; Lara, J.F.; Pardo, F.; Ancin-Azpilicueta, C.; Salinas, M.R. Study of the evolution of nitrogen compounds during grape ripening. Application to differentiate grape varieties and cultivated systems. J. Agric. Food Chem. 2009, 57, 2410–2419. [Google Scholar] [CrossRef] [PubMed]
- Bisson, L. Yeast and biochemistry of ethanol formation. In Principles and Practices of Winemaking; Boulton, R.B., Singleton, V.L., Bisson, L.F., Kunkee, R.E., Eds.; Chapman & Hall: New York, NY, USA, 1996; pp. 140–172. [Google Scholar]
- Henschke, P.A.; Jiranek, V. Yeasts-metabolism of nitrogen compounds. In Wine Microbiology Biotechnology; Fleet, G.H., Ed.; Harwood Academic: Chur, Switzerland, 1993; Volume 77, pp. 77–164. [Google Scholar]
- Su, Y.; Heras, J.M.; Gamero, A.; Querol, A.; Guillamón, J.M. Impact of nitrogen addition on wine fermentation by S. cerevisiae strains with different nitrogen requirements. J. Agric. Food Chem. 2021, 69, 6022–6031. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, C.; Mendes-Faia, A.; Mendes-Ferreira, A. The nitrogen source impacts major volatile compounds released by Saccharomyces cerevisiae during alcoholic fermentation. Int. J. Food Microbiol. 2012, 160, 87–93. [Google Scholar] [CrossRef]
- Bely, M.; Sablayrolles, J.-M.; Barre, P. Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions. J. Ferment. Bioeng. 1990, 70, 246–252. [Google Scholar] [CrossRef]
- Hernandez-Orte, P.; Bely, M.; Cacho, J.; Ferreira, V. Impact of ammonium additions on volatile acidity, ethanol, and aromatic compound production by different Saccharomyces cerevisiae strains during fermentation in controlled synthetic media. Aust. J. Grape Wine R. 2006, 12, 150–160. [Google Scholar] [CrossRef]
- Barbosa, C.; Falco, V.; Mendes-Faia, A.; Mendes-Ferreira, A. Nitrogen addition influences formation of aroma compounds, volatile acidity and ethanol in nitrogen deficient media fermented by Saccharomyces cerevisiae wine strains. J. Biosci. Bioeng. 2009, 108, 99–104. [Google Scholar] [CrossRef]
- Christofi, S.; Papanikolaou, S.; Dimopoulou, M.; Terpou, A.; Cioroiu, I.B.; Cotea, V.; Kallithraka, S. Effect of yeast assimilable nitrogen content on fermentation kinetics, wine chemical composition and sensory character in the production of assyrtiko wines. Appl. Sci. 2022, 12, 1405. [Google Scholar] [CrossRef]
- Bell, S.J.; Henschke, P.A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine R. 2005, 11, 242–295. [Google Scholar] [CrossRef]
- Webster, D.R.; Edwards, C.G.; Spayd, S.E.; Peterson, J.C.; Seymour, B.J. Influence of vineyard nitrogen fertilization on the concentrations of monoterpenes, higher alcohols, and esters in aged riesling wines. Am. J. Enol. Vitic. 1993, 44, 275–284. [Google Scholar] [CrossRef]
- Butzke, C.E. Survey of yeast assimilable nitrogen status in musts from California, Oregon, and Washington. Am. J. Enol. Vitic. 1998, 49, 220–224. [Google Scholar] [CrossRef]
- EU. European Commission Delegated Regulation (EU) 2019/934 of 12 March 2019 Supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as Regards Wine-Growing Areas Where the Alcoholic Strength May Be Increased, Authorised Oenological Practices and Restrictions Applicable to the Production and Conservation of Grapevine Products, the Minimum Percentage of Alcohol for By-Products and Their Disposal, and Publication. OJ 2019, 149, 1–52. [Google Scholar]
- Henschke, P.A.; Ough, C.S. Urea accumulation in fermenting grape juice. Am. J. Enol. Vitic. 1991, 42, 317. [Google Scholar] [CrossRef]
- Miliordos, D.E.; Kanapitsas, A.; Lola, D.; Goulioti, E.; Kontoudakis, N.; Leventis, G.; Tsiknia, M.; Kotseridis, Y. Effect of nitrogen fertilization on Savvatiano (Vitis vinifera L.) grape and wine composition. Beverages 2022, 8, 29. [Google Scholar] [CrossRef]
- Hannam, K.D.; Neilsen, G.H.; Forge, T.; Neilsen, D. The concentration of yeast assimilable nitrogen in Merlot grape juice is increased by N fertilization and reduced irrigation. Can. J. Plant Sci. 2013, 93, 37–45. [Google Scholar] [CrossRef]
- Linsenmeier, A.W.; Loos, U.; Löhnertz, O. Must composition and nitrogen uptake in a long-term trial as affected by timing of nitrogen fertilization in a cool-climate Riesling vineyard. Am. J. Enol. Vitic. 2008, 59, 255. [Google Scholar] [CrossRef]
- Hilbert, G.; Soyer, J.; Molot, C.; Giraudon, J.; Milin, M.; Gaudillere, J. Effects of nitrogen supply on must quality and anthocyanin accumulation in berries of cv. Merlot. Vitis 2015, 42, 69. [Google Scholar] [CrossRef]
- Nisbet, M.A.; Martinson, T.E.; Mansfield, A.K. Accumulation and prediction of yeast assimilable nitrogen in New York winegrape cultivars. Am. J. Enol. Vitic. 2014, 65, 325. [Google Scholar] [CrossRef]
- Petrovic, G.; Kidd, M.; Buica, A. A statistical exploration of data to identify the role of cultivar and origin in the concentration and composition of yeast assimilable nitrogen. Food Chem. 2019, 276, 528–537. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Martínez-Gil, A.M.; Lorenzo, C.; Lara, J.F.; Pardo, F.; Salinas, M.R. Implications of nitrogen compounds during alcoholic fermentation from some grape varieties at different maturation stages and cultivation systems. Food Chem. 2011, 124, 106–116. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Friant, P.; Soyer, J.-P.; Molot, C.; Choné, X.; Dubourdieu, D. Measurement of total nitrogen and assimilable nitrogen in grape juice to assess vine nitrogen status. J. Int. Sci. Vigne Vin. 2000, 34, 75–82. [Google Scholar] [CrossRef]
- Baron, M. Yeast assimilable nitrogen in South Moravian grape musts and its effect on acetic acid production during fermentation. Czech J. Food Sci. 2011, 29, 603–609. [Google Scholar] [CrossRef]
- Berger, S.; Schober, V.; Korntheuer, K.U.; Eder, R. Einfluss des hefeverwertbaren Stickstoffes auf die Gärung in Mosten der Sorten Grüner Veltliner, Rheinriesling, Welschriesling und Neuburger. Mitt. Klosterneubg. 1999, 49, 117–123. [Google Scholar]
- Nicolini, G.; Versini, G.; Corradin, L.; Larcher, R.; Beretta, C.; Olivari, A.; Eccli, E. Misura dell’azoto prontamente assimilabile dal lievito nei mosti d’uva ed esempi di applicazione. Riv. Vitic. Enol. 2004, 1–2, 13–27. Available online: http://hdl.handle.net/10449/17619 (accessed on 17 August 2023).
- Hagen, K.M.; Keller, M.; Edwards, C.G. Survey of biotin, pantothenic acid, and assimilable nitrogen in winegrapes from the Pacific Northwest. Am. J. Enol. Vitic. 2008, 59, 432. [Google Scholar] [CrossRef]
- Nisbet, M.A.; Martinson, T.E.; Mansfield, A.K. Preharvest prediction of yeast assimilable nitrogen in Finger Lakes Riesling using linear and multivariate modeling. Am. J. Enol. Vitic. 2013, 64, 485. [Google Scholar] [CrossRef]
- Petropoulos, S.; Metafa, M.; Kotseridis, Y.; Paraskevopoulos, I.; Kallithraka, S. Amino acid content of Agiorgitiko (Vitis vinifera L. cv.) grape cultivar grown in representative regions of Nemea. Eur. Food Res. Technol. 2018, 244, 2041–2050. [Google Scholar] [CrossRef]
- OIV. Compendium of International Methods of Wine and Must Analysis; OIV, International Organisation of Vine and Wine: Paris, France, 2018; Volume 1–2. [Google Scholar]
- Dukes, B.C.; Butzke, C.E. Rapid determination of primary amino acids in grape juice using an o-Phthaldialdehyde/N-Acetyl-L-Cysteine spectrophotometric assay. Am. J. Enol. Vitic. 1998, 49, 125. [Google Scholar] [CrossRef]
- Hernández-Orte, P.; Guitart, A.; Cacho, J.F. Changes in the concentration of amino acids during the ripening of Vitis vinifera Tempranillo variety from the denomination d’origine Somontano (Spain). Am. J. Enol. Vitic. 1999, 20, 144–154. [Google Scholar] [CrossRef]
- Sowalsky, R.A.; Noble, A.C. Comparison of the effects of concentration, pH and anion species on astringency and sourness of organic acids. Chem. Senses 1998, 23, 343–349. [Google Scholar] [CrossRef]
- Panzeri, V.; Ipinge, H.N.; Buica, A. Evaluation of South African Chenin Blanc wines made from six different Trellising systems using a chemical and sensorial approach. S. Afr. J. Enol. Vitic. 2020, 41, 133–150. [Google Scholar] [CrossRef]
- Bouloumpasi, E.; Koutsouridou, V.; Soufleros, E.; Greveniotis, V. Nitrogen status of grapes cultivated under conventional and organic farming systems (PoS2-82). In Proceedings of the XV European Society for Agronomy Congress, Geneva, Switzerland, 27–31 August 2018; p. 164. [Google Scholar]
- Bouloumpasi, E.; Soufleros, E.H.; Tsarchopoulos, C.; Biliaderis, C.G. Primary amino acid composition and its use in discrimination of Greek red wines with regard to variety and cultivation region. Vitis 2015, 41, 195–202. [Google Scholar] [CrossRef]
- Etiévant, P.; Schlich, P.; Bouvier, J.-C.; Symonds, P.; Bertrand, A. Varietal and geographic classification of French red wines in terms of elements, amino acids and aromatic alcohols. J. Sci. Food Agr. 1988, 45, 25–41. [Google Scholar] [CrossRef]
- Soufleros, E.H.; Bouloumpasi, E.; Tsarchopoulos, C.; Biliaderis, C.G. Primary amino acid profiles of Greek white wines and their use in classification according to variety, origin and vintage. Food Chem. 2003, 80, 261–273. [Google Scholar] [CrossRef]
- Huang, Z.; Ough, C.S. Effect of vineyard locations, varieties, and rootstocks on the juice amino acid composition of several cultivars. Am. J. Enol. Vitic. 1989, 40, 135. [Google Scholar] [CrossRef]
- Verdenal, T.; Dienes-Nagy, Á.; Spangenberg, J.E.; Zufferey, V.; Spring, J.-L.; Viret, O.; Marin-Carbonne, J.; van Leeuwen, C. Understanding and managing nitrogen nutrition in grapevine: A review. OENO One 2021, 55, 1–43. [Google Scholar] [CrossRef]
- AWRI. Yeast Assimilable Nitrogen. Available online: https://www.awri.com.au/industry_support/winemaking_resources/wine_fermentation/yan/ (accessed on 16 August 2023).
- Stines, A.P.; Grubb, J.; Gockowiak, H.; Henschke, P.A.; HØJ, P.B.; van Heeswijck, R. Proline and arginine accumulation in developing berries of Vitis vinifera L. in Australian vineyards: Influence of vine cultivar, berry maturity and tissue type. Aust. J. Grape Wine R. 2000, 6, 150–158. [Google Scholar] [CrossRef]
- Skendi, A.; Papageorgiou, M.; Stefanou, S. Preliminary study of microelements, phenolics as well as antioxidant activity in local, homemade wines from North-East Greece. Foods 2020, 9, 1607. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Ipsilandis, C.G. Stability, the last frontier: Forage yield dynamics of peas under two cultivation systems. Plants 2022, 11, 892. [Google Scholar] [CrossRef]
- Greveniotis, V.; Giourieva, V.; Bouloumpasi, E.; Sioki, E.; Mitlianga, P. Morpho-physiological characteristics and molecular markers of maize crosses under multi-location evaluation. J. Agric. Sci. 2018, 10, 79–90. [Google Scholar] [CrossRef]
- Ganopoulos, I.; Moysiadis, T.; Xanthopoulou, A.; Ganopoulou, M.; Avramidou, E.V.; Aravanopoulos, F.A.; Tani, E.; Madesis, P.; Tsaftaris, A.; Kazantzis, K. Diversity of morpho-physiological traits in worldwide sweet cherry cultivars of GeneBank collection using multivariate analysis. Sci. Hortic. 2015, 197, 381–391. [Google Scholar] [CrossRef]
- Lakso, A.N.; Kliewer, W.M. The influence of temperature on malic acid metabolism in grape berries: I. Enzyme responses. Plant Physiol. 1975, 56, 370–372. [Google Scholar] [CrossRef] [PubMed]
- Schrader, U.; Lemperle, E.; Becker, N.J.; Bergner, K.E. Der Aminosäure-Zucker, Saure-, and Mineralstoffgehalt von Weinbeeren in Abhängigkeit vom Kleinklima des Standortes der Rebe. Wein-Wissensch 1976, 31, 160–175. [Google Scholar]
Grape Variety | Variety Color | Origin of Variety | Number of Samples | Regional Units |
---|---|---|---|---|
Assyrtiko | 1 | N | 5 | Chalkidiki |
Cabernet Sauvignon | 2 | I | 2 | Chalkidiki |
Chardonnay | 1 | I | 11 | Pella, Rodopi |
Cinsault | 2 | I | 16 | Serres |
Debina | 1 | N | 8 | Larissa |
Grenache Rouge | 2 | I | 4 | Chalkidiki |
Limnio | 2 | N | 6 | Rodopi |
Merlot | 2 | I | 74 | Chalkidiki, Kavala, Kilkis, Larissa, Thessaloniki, Rodopi |
Muscat Hamburg | 2 | I | 4 | Larissa |
Muscat of Alexandria | 1 | I | 12 | Lemnos |
Roditis | 1/2 | N | 33 | Chalkidiki, Larissa, Mount Athos, Thessaloniki |
Sauvignon Blanc | 1 | I | 54 | Chalkidiki, Kavala, Mount Athos, Rodopi, Thessaloniki |
Syrah | 2 | I | 12 | Imathia, Kilkis, Larissa, Rodopi |
Ugni Blanc | 1 | I | 6 | Larissa |
Xinomavro | 2 | N | 23 | Chalkidiki, Florina, Kilkis |
Zoumiatiko | 1 | N | 4 | Serres |
Samples | No of Samples | YAN (N L−1) | FAN (N L−1) | NH4-N Ammonia (N L−1) | Baume (Be) | pH | Total Acidity (g L−1 Tartaric Acid) |
---|---|---|---|---|---|---|---|
All samples | 274 | 39.79–277.50 | 30.58–222.90 | 0.70–142.86 | 9.10–16.10 | 2.87–3.79 | 3.51–10.59 |
(161.20/158.90) | (107.77/103.90) | (53.43/56.15) | (11.85/11.90) | (3.42/3.44) | (6.41/6.34) | ||
White grapes | 132 | 39.79–277.50 | 30.58–222.90 | 0.70–142.86 | 9.10–16.10 | 3.15–3.65 | 4.46–8.81 |
(166.68/172.67) | (117.44/117.25) a | (49.24/47.14) a | (11.39/11.35) a | (3.40/3.41) a | (6.46/6.51) | ||
Red grapes | 142 | 41.73–265.55 | 30.77–193.00 | 2.30–112.40 | 9.96–14.10 | 2.87–3.79 | 3.51–10.59 |
(156.11/155.39) | (98.77/94.36) a | (57.33/59.59) a | (12.28/12.30) a | (3.44/3.47) a | (6.36/6.14) |
Variety | No of Samples | YAN (N L−1) | FAN (N L−1) | NH4-N Ammonia (N L−1) | Baume (Be) | pH | Total Acidity (g L−1 Tartaric Acid) |
---|---|---|---|---|---|---|---|
Sauvignon blanc | 54 | 110.02–271.86 (190.43/187.99) aeksw | 61.36–176.90 (119.88/119.10) elm | 15.56–142.86 (70.55/81.33) ek | 9.10–13.00 (10.80/10.60) abc | 3.15–3.58 (3.34/3.36) f | 5.02–8.81 (6.87/6.73) af |
Chardonnay | 11 | 178.14–277.50 (235.67/228.20) bfiloqtxz | 136.80–222.90 (186.55/194.80) bchkl | 10.61–79.51 (49.11/47.10) | 10.50–12.49 (11.56/11.70) i | 3.26–3.61 (3.43/3.40) | 6.19–8.44 (7.27/7.16) b |
Ugni blanc | 6 | 89.60–176.40 (124.55/111.14) op | 54.71–160.60 (95.14/68.58) | 10.00–63.18 (29.41/22.21) | 9.80–11.67 (10.80/10.65) | 3.32–3.45 (3.38/3.37) | 5.43–6.64 (6.00/5.95) |
Muscat of Alexandria | 12 | 39.79–174.94 (104.01/86.86) klmn | 30.58–145.60 (82.40/66.64) cd | 9.21–31.67 (21.62/20.92) fghijk | 10.90–13.20 (12.55/12.65) aeg | 3.33–3.58 (3.49/3.50) a | 4.87–7.39 (5.93/5.97) |
Zoumiatiko | 4 | 84.00–120.40 (100.10/98.00) efgh | 51.53–89.14 (66.34/62.35) | 31.26–35.76 (33.76/34.01) | 9.11–10.40 (10.00/10.25) | 3.34–3.40 (3.38/3.39) | 5.17–5.48 (5.39/5.45) |
Debina | 8 | 107.80–192.96 (135.20/126.00) qr | 46.33–95.32 (67.41/66.13) ab | 47.17–97.64 (67.79/61.96) i | 11.30–12.50 (11.97/12.00) | 3.41–3.55 (3.48/3.50) b | 5.17–7.20 (5.81/5.66) |
Assyrtiko | 5 | 100.80–154.00 (133.45/133.25) | 44.84–76.33 (65.73/67.14) | 55.96–77.94 (67.72/68.98) | 11.80–13.80 (12.80/12.80) | 3.17–3.35 (3.23/3.20) | 7.09–8.4 (7.68/7.54) |
Roditis | 33 | 70.00–275.41 (156.85/154.00) zα | 62.04–212.10 (134.76/133.20) fi | 0.70–83.51 (22.09/14.90) abcde | 10.20–16.10 (11.79/11.60) j | 3.24–3.65 (3.48/3.49) cg | 4.46–7.95 (5.86/5.85) f |
Merlot | 74 | 89.71–238.86 (152.66/150.05) wxy | 50.46–148.90 (89.72/85.49) efgh | 18.44–89.96 (62.94/61.53) bh | 10.80–14.00 (12.68/12.75) bdhij | 3.27–3.68 (3.48/3.50) dh | 3.51–8.78 (6.27/6.19) c |
Cinsault | 16 | 110.76–265.55 (211.75/217.00) cgjmpruyα | 92.72–193.00 (156.67/160.90) dgj | 18.04–81.87 (55.08/59.30) cg | 9.96–12.70 (11.17/11.10) def | 3.52–3.79 (3.60/3.59) fgh | 3.83–6.38 (4.93/4.91) abcde |
Grenache rouge | 4 | 73.06–124.60 (109.67/120.50) ij | 70.76–117.70 (94.06/93.89) | 2.30–30.43 (15.61/14.85) | 13.70–14.10 (13.83/13.75) | 3.45–3.49 (3.46/3.46) | 5.00–6.08 (5.54/5.53) |
Syrah | 12 | 148.40–252.00 (203.66/209.41) dhnv | 82.35–170.60 (130.53/140.65) a | 33.30–112.40 (73.14/71.44) dj | 11.50–13.70 (12.57/12.50) cf | 3.26–3.57 (3.45/3.47) e | 6.04–8.66 (7.00/6.73) d |
Cabernet Sauvignon | 2 | 105.21–123.20 (114.21/114.21) | 59.50–64.88 (62.19/62.19) | 45.71–58.32 (52.02/52.02) | 11.90–13.80 (12.85/12.85) | 3.41–3.52 (3.47/3.47) | 5.29–5.95 (5.62/5.62) |
Muscat Hamburg | 4 | 95.20–144.20 (118.35/117.00) | 87.62–128.10 (108.41/108.95) | 3.40–16.10 (9.95/10.14) | 12.20–12.60 (12.45/12.50) | 3.51–3.6 (3.57/3.58) | 3.60–4.56 (4.00/3.92) |
Xinomavro | 23 | 63.12–204.65 (142.08/149.33) stuv | 31.53–141.00 (86.07/95.25) ijkm | 17.08–87.49 (56.01/57.79) af | 10.30–12.80 (11.55/11.50) gh | 2.87–3.47 (3.19/3.15) abcde | 4.61–10.59 (8.00/7.61) e |
Limnio | 6 | 41.73–110.88 (72.53/76.55) abcd | 30.77–43.66 (39.33/41.15) | 4.12–67.59 (33.21/38.00) | 10.80–12.20 (11.38/11.30) | 3.21–3.43 (3.32/3.33) | 5.63–7.91 (6.40/6.19) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouloumpasi, E.; Skendi, A.; Soufleros, E.H. Survey on Yeast Assimilable Nitrogen Status of Musts from Native and International Grape Varieties: Effect of Variety and Climate. Fermentation 2023, 9, 773. https://doi.org/10.3390/fermentation9080773
Bouloumpasi E, Skendi A, Soufleros EH. Survey on Yeast Assimilable Nitrogen Status of Musts from Native and International Grape Varieties: Effect of Variety and Climate. Fermentation. 2023; 9(8):773. https://doi.org/10.3390/fermentation9080773
Chicago/Turabian StyleBouloumpasi, Elisavet, Adriana Skendi, and Evangelos H. Soufleros. 2023. "Survey on Yeast Assimilable Nitrogen Status of Musts from Native and International Grape Varieties: Effect of Variety and Climate" Fermentation 9, no. 8: 773. https://doi.org/10.3390/fermentation9080773
APA StyleBouloumpasi, E., Skendi, A., & Soufleros, E. H. (2023). Survey on Yeast Assimilable Nitrogen Status of Musts from Native and International Grape Varieties: Effect of Variety and Climate. Fermentation, 9(8), 773. https://doi.org/10.3390/fermentation9080773