Silkworm Pupae Coupled with Glucose Control pH Mediates GABA Hyperproduction by Lactobacillus hilgardii
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Growth Conditions
2.3. Fed-Batch Fermentation
2.4. Detection of Cell Growth, pH, and GABA Content
2.5. Real-Time Quantitative PCR
2.5.1. Extraction of Whole Cell RNA
2.5.2. RNA Reverse Transcription and Real-Time Quantitative PCR
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effect of Silkworm Pupae on Cell Growth and GABA Production
3.2. Effects of the Concentration of Silkworm on Cell Growth and GABA Production
3.3. Glucose Control pH Enhances GABA Production
3.4. Effects of Glucose and Monosodium Glutamate Concentrations on Cell Growth and GABA Production
3.5. Fed-Batch GABA Production via Silkworm Pupae Meal Replaces Tryptone Coupled with Glucose to the Control pH
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hou, D.; Tang, J.; Feng, Q.; Niu, Z.; Shen, Q.; Wang, L.; Zhou, S. Gamma-aminobutyric acid (GABA): A comprehensive review of dietary sources, enrichment technologies, processing effects, health benefits, and its applications. Crit. Rev. Food Sci. Nutr. 2023, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Ngo, D.H.; Vo, T.S. An updated review on pharmaceutical properties of gamma-aminobutyric acid. Molecules 2019, 24, 2678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Q.; Wang, J.; Hao, Y.; Zhao, F.; Fu, R.; Yu, Y.; Wang, J.; Niu, R.; Bian, S.; Sun, Z. Exercise ameliorates fluoride-induced anxiety- and depression-like behavior in mice: Role of GABA. Biol. Trace Elem. Res. 2022, 200, 678–688. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.H.; Cheng, P.W.; Ho, W.Y.; Lu, P.J.; Lai, C.C.; Tseng, Y.M.; Fang, H.C.; Sun, G.C.; Hsiao, M.; Liu, C.P.; et al. Renal denervation improves the baroreflex and GABA system in chronic kidney disease-induced hypertension. Sci. Rep. 2016, 6, 38447. [Google Scholar] [CrossRef] [Green Version]
- Sears, S.M.; Hewett, S.J. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp. Biol. Med. 2021, 246, 1069–1083. [Google Scholar] [CrossRef]
- Erlander, M.G.; Tobin, A.J. The structural and functional heterogeneity of glutamic acid decarboxylase a review. Neurochem. Res. 1991, 16, 215–226. [Google Scholar] [CrossRef]
- Zhang, L.; Yue, Y.; Wang, X.; Dai, W.; Piao, C.; Yu, H. Optimization of fermentation for gamma-aminobutyric acid (GABA) production by yeast Kluyveromyces marxianus C21 in okara (soybean residue). Bioprocess Biosyst. Eng. 2022, 45, 1111–1123. [Google Scholar] [CrossRef]
- Kadir, S.A.; Wan-Mohtar, W.A.Q.R.; Mohammad, R.; Lim, S.A.H.; Mohammed, A.S.; Saari, N. Evaluation of commercial soy sauce koji strains of Aspergillus oryzae for gamma-aminobutyric acid (GABA) production. J. Ind. Microbiol. Biotechnol. 2016, 43, 1387–1395. [Google Scholar] [CrossRef]
- Li, H.X.; Cao, Y.S. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 2010, 39, 1107–1116. [Google Scholar] [CrossRef]
- Xiao, T.; Shah, N.P. Lactic acid produced by Streptococcus thermophilus activated glutamate decarboxylase (GadA) in c NPS-QW 145 to improve γ-amino butyric acid production during soymilk fermentation. LWT-Food Sci. Technol. 2021, 137, 110474. [Google Scholar] [CrossRef]
- Zhao, A.Q.; Hu, X.Q.; Pan, L.; Wang, X.Y. Isolation and characterization of a gamma-aminobutyric acid producing strain Lactobacillus buchneri WPZ001 that could efficiently utilize xylose and corncob hydrolysate. Appl. Microbiol. Biotechnol. 2015, 99, 3191–3200. [Google Scholar] [CrossRef]
- Pannerchelvan, S.; Rios-Solis, L.; Faizal Wong, F.W.; Zaidan, U.H.; Wasoh, H.; Mohamed, M.S.; Tan, J.S.; Mohamad, R.; Halim, M. Strategies for improvement of gamma-aminobutyric acid (GABA) biosynthesis via lactic acid bacteria (LAB) fermentation. Food Funct. 2023, 14, 3929–3948. [Google Scholar] [CrossRef] [PubMed]
- Devi, P.B.; Rajapuram, D.R.; Jayamanohar, J.; Verma, M.; Kavitake, D.; Meenachi Avany, B.A.; Rani, P.U.; Ravi, R.; Shetty, P.H. Gamma-aminobutyric acid (GABA) production by potential probiotic strains of indigenous fermented foods origin and RSM based production optimization. LWT-Food Sci. Technol. 2023, 176, 114511. [Google Scholar] [CrossRef]
- Amatachaya, A.; Siramolpiwat, S.; Kraisorn, M.; Yasiri, A. Gamma-aminobutyric acid (GABA) producing probiotic Lactiplantibacillus pentosus isolated from fermented spider plant (Pak Sian Dong) in Thailand. J. Pure Appl. Microbiol. 2023, 17, 354–361. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Dong, Y.; Xiang, F.; Zhang, Y.; Zhang, H.; Sun, Y.; Guo, Z. Characterization of two novel pentose-fermenting and GABA-producing species: Levilactobacillus tujiorum sp. nov. and Secundilactobacillus angelensis sp. nov. isolated from a solid-state fermented zha-chili. Syst. Appl. Microbiol. 2022, 45, 126344. [Google Scholar] [CrossRef] [PubMed]
- Di Cagno, R.; Mazzacane, F.; Rizzello, C.G.; De Angelis, M.; Giuliani, G.; Meloni, M.; De Servi, B.; Gobbetti, M. Synthesis of gamma-aminobutyric acid (GABA) by Lactobacillus plantarum DSM19463: Functional grape must beverage and dermatological applications. Appl. Microbiol. Biotechnol. 2010, 86, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Li, H.X.; Gao, D.D.; Cao, Y.S.; Xu, H.Y. A high γ-aminobutyric acid-producing Lactobacillus brevis isolated from Chinese traditional paocai. Ann. Microbiol. 2008, 58, 649–653. [Google Scholar] [CrossRef]
- Komatsuzaki, N.; Shima, J.; Kawamoto, S.; Momose, H.; Kimura, T. Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol. 2005, 22, 497–504. [Google Scholar] [CrossRef]
- Lacroix, N.; St-Gelais, D.; Champagne, C.P.; Vuillemard, J.C. Gamma-aminobutyric acid-producing abilities of lactococcal strains isolated from old-style cheese starters. Dairy Sci.Technol. 2013, 93, 315–327. [Google Scholar] [CrossRef] [Green Version]
- Somkuti, G.A.; Renye, J.A., Jr.; Steinberg, D.H. Molecular analysis of the glutamate decarboxylase locus in Streptococcus thermophilus ST110. J. Ind. Microbiol. Biotechnol. 2012, 39, 957–963. [Google Scholar] [CrossRef]
- Li, H.X.; Qiu, T.; Huang, G.D.; Cao, Y.S. Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb. Cell Factories 2010, 9, 85–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.J.; Kim, D.H.; Kang, H.J.; Shin, M.; Yang, S.Y.; Yang, J.; Jung, Y.H. Enhanced production of γ-aminobutyric acid (GABA) using Lactobacillus plantarum EJ2014 with simple medium composition. LWT-Food Sci. Technol. 2021, 137, 110443. [Google Scholar] [CrossRef]
- Aspmo, S.I.; Horn, S.J.; Eijsink, V.G. Use of hydrolysates from Atlantic cod (Gadus morhua L.) viscera as a complex nitrogen source for lactic acid bacteria. FEMS Microbiol. Lett. 2005, 248, 65–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safari, R.; Motamedzadegan, A.; Ovissipour, M.; Regenstein, J.M.; Gildberg, A.; Rasco, B. Use of hydrolysates from Yellowfin Tuna (Thunnus albacares) heads as a complex nitrogen source for lactic acid bacteria. Food Bioprocess Technol. 2009, 5, 73–79. [Google Scholar] [CrossRef]
- Utami, T.; Kusuma, E.N.; Satiti, R.; Rahayu, E.S.; Cahyanto, M.N. Hydrolyses of meat and soybean proteins using crude bromelain to produce halal peptone as a complex nitrogen source for the growth of lactic acid bacteria. Int. Food Res. J. 2019, 26, 117–122. [Google Scholar]
- Gong, L.C.; Ren, C.; Xu, Y. Deciphering the crucial roles of transcriptional regulator GadR on gamma-aminobutyric acid production and acid resistance in Lactobacillus brevis. Microb. Cell Factories 2019, 18, 108. [Google Scholar] [CrossRef]
- Bian, Y.; Xu, Y.; Qi, Z.; Wang, J.; Wu, F. Effects of fermented silkworm pupa meal on grow th performance of Micropterus salmonides. Sci. Sericul. 2021, 47, 575–580. [Google Scholar]
- Wang, J.Z.; Liu, X.; Li, W.J.; Song, W.M.; Herman, R.A.; Sheng, S.; Wu, F.A.; Wang, J. One hour enzymatic synthesis of structure lipids enriched unsaturated fatty acids from silkworm pupae oil under microwave irradiation. J. Chem. Technol. Biotechnol. 2019, 95, 363–372. [Google Scholar] [CrossRef]
- Hu, M.B.; Wang, J.L.; Liu, Y.J.; Yuan, X.; Li, J.H.; Wu, C.J.; Li, L. Structure characterization and antioxidant properties of proteins extracted from the larva of Bombyx mori L. Trop. J. Pharm. Res. 2019, 17, 2177. [Google Scholar] [CrossRef] [Green Version]
- Ray, M.; Gangopadhyay, D. Effect of maturation stage and sex on proximate, fatty acid and mineral composition of eri silkworm (Samia ricini) from India. J. Food Compost. Anal. 2021, 100, 103898. [Google Scholar] [CrossRef]
- Wu, X.; He, K.; Velickovic, T.C.; Liu, Z. Nutritional, functional, and allergenic properties of silkworm pupae. Food Sci. Nutr. 2021, 9, 4655–4665. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Zhang, L.L.; Chen, M.; Dai, J.J.; Wu, C.H.; Liu, J.; Fan, T. Research progress of value, extraction and application of silkworm chrysalis protein. Anim. Husb. Feed Sci. 2018, 10, 241–245. [Google Scholar] [CrossRef]
- Wang, W.; Wang, N.; Liu, C.; Jin, J. Effect of silkworm pupae peptide on the fermentation and quality of yogurt. J. Food Process. Preserv. 2017, 41, e12893. [Google Scholar] [CrossRef]
- Miah, M.Y.; Singh, Y.; Cullere, M.; Tenti, S.; Dalle Zotte, A. Effect of dietary supplementation with full-fat silkworm (Bombyx mori L.) chrysalis meal on growth performance and meat quality of Rhode Island Red × Fayoumi crossbred chickens. Ital. J. Anim. Sci. 2020, 19, 447–456. [Google Scholar] [CrossRef]
- Shi, X.Y.; Li, T.Y.; Wang, M.; Wu, W.W.; Li, W.J.; Wu, Q.Y.; Wu, F.A.; Wang, J. Converting defatted silkworm pupae by Yarrowia lipolytica for enhanced lipid production. Eur. J. Lipid Sci. Technol. 2016, 119, 1600120. [Google Scholar] [CrossRef]
- Li, Z.N.; Li, W.J.; Wang JZ You, S.; Wang, J.; Wu, F.A. Defatted silkworm pupae hydrolysates as a nitrogen source to produce polysaccharides and flavonoids using Phellinus baumii. Biomass Convers. Biorefin. 2020, 11, 527–537. [Google Scholar] [CrossRef]
- Guo, L.; Li, K.; Kang, J.S.; Kang, N.J.; Son, B.G.; Choi, Y.W. Strawberry fermentation with Cordyceps militaris has anti-adipogenesis activity. Food Biosci. 2020, 35, 100576. [Google Scholar] [CrossRef]
- Rea, K.; Cremers, T.I.F.H.; Westerink, B.H.C. HPLC conditions are critical for the detection of GABA by microdialysis. J. Neurochem. 2005, 94, 672–679. [Google Scholar] [CrossRef]
- Miranda, M.H.; Nader-Macias, M.E.F. Low-cost culture media designed for biomass production of beneficial lactic acid bacteria for their inclusion in a formula to treat bovine reproductive infections. FEMS Microbiol. Lett. 2023, 370, fnad033. [Google Scholar] [CrossRef]
- Hussin, F.S.; Chay, S.Y.; Hussin, A.S.M.; Wan Ibadullah, W.Z.; Muhialdin, B.J.; Abd Ghani, M.S.; Saari, N. GABA enhancement by simple carbohydrates in yoghurt fermented using novel, self-cloned Lactobacillus plantarum Taj-Apis362 and metabolomics profiling. Sci. Rep. 2021, 11, 9417. [Google Scholar] [CrossRef]
- Papadimitriou, K.; Alegría, Á.; Bron, P.A.; de Angelis, M.; Gobbetti, M.; Kleerebezem, M.; Lemos, J.A.; Linares, D.M.; Ross, P.; Stanton, C.; et al. Stress physiology of lactic acid bacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 837–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capitani, G.; De Biase, D.; Aurizi, C.; Gut, H.; Bossa, F.; Grütter, M.G. Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. EMBO J. 2003, 22, 4027–4037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hăbeanu, M.; Gheorghe, A.; Mihalcea, T. Nutritional value of silkworm pupae (Bombyx mori) with emphases on fatty acids profile and their potential applications for humans and animals. Insects 2023, 14, 254. [Google Scholar] [CrossRef]
- Jia, M.; Zhu, Y.; Wang, L.; Sun, T.; Pan, H.; Li, H. pH auto-sustain-based fermentation supports efficient gamma-aminobutyric acid production by Lactobacillus brevis CD0817. Fermentation 2022, 8, 208. [Google Scholar] [CrossRef]
- Lyu, C.; Zhao, W.; Peng, C.; Hu, S.; Fang, H.; Hua, Y.; Yao, S.; Huang, J.; Mei, L. Exploring the contributions of two glutamate decarboxylase isozymes in Lactobacillus brevis to acid resistance and γ-aminobutyric acid production. Microb. Cell Factories 2018, 17, 180. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.Y.; Kim, S.-K.; Ra, C.H. Evaluation of gamma-aminobutyric acid (GABA) production by Lactobacillus plantarum using two-step fermentation. Bioprocess Biosyst. Eng. 2021, 44, 2099–2108. [Google Scholar] [CrossRef] [PubMed]
Procedure | Operation |
---|---|
1 | Five microliters of 0.4 mol/L boric acid buffer (pH 10.2) was drawn. |
2 | One microliter of the fermentation supernatant was taken. |
3 | The six microliters was thoroughly mixed in air. |
4 | One microliter of o-phthaldialdehyde was added to the mixture. |
5 | The sample was thoroughly mixed 15 times in air. |
6 | Thirty-two microliters of ultrapure water was added to the mixture. |
7 | The sample was thoroughly mixed five times in air. |
Primers | Sequence (5′-3′) |
---|---|
qF-gadR | ATGAGTCGAGTGCTTCCAGTC |
qR-gadR | TTCCTCCCCGAAACCAACTC |
qF-gadC | CTTGCACCTTCAGCACAACG |
qR-gadC | TCCTTGGAAAGCTCCTGTGC |
qF-gadB | AAGCATGGTTGGCAAGTACC |
qR-gadB | TTTGTGGTGCTGGGTGTTCT |
qF-16S | AACCAGAAAGCCACGGCTAA |
qR-16S | AAGTCTCCCGGTTTCCGATG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, L.; Li, T.; Lv, S.; Zou, X.; Wang, J.; Wang, B. Silkworm Pupae Coupled with Glucose Control pH Mediates GABA Hyperproduction by Lactobacillus hilgardii. Fermentation 2023, 9, 691. https://doi.org/10.3390/fermentation9070691
Gong L, Li T, Lv S, Zou X, Wang J, Wang B. Silkworm Pupae Coupled with Glucose Control pH Mediates GABA Hyperproduction by Lactobacillus hilgardii. Fermentation. 2023; 9(7):691. https://doi.org/10.3390/fermentation9070691
Chicago/Turabian StyleGong, Luchan, Tingting Li, Shuyi Lv, Xiaozhou Zou, Jun Wang, and Bowen Wang. 2023. "Silkworm Pupae Coupled with Glucose Control pH Mediates GABA Hyperproduction by Lactobacillus hilgardii" Fermentation 9, no. 7: 691. https://doi.org/10.3390/fermentation9070691
APA StyleGong, L., Li, T., Lv, S., Zou, X., Wang, J., & Wang, B. (2023). Silkworm Pupae Coupled with Glucose Control pH Mediates GABA Hyperproduction by Lactobacillus hilgardii. Fermentation, 9(7), 691. https://doi.org/10.3390/fermentation9070691