Fermentation Regulation and Ethanol Production of Total Mixed Ration Containing Apple Pomace
Abstract
:1. Introduction
2. Materials and Methods
2.1. TMR Preparation
2.2. Sampling and Chemical Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perussello, C.A.; Zhang, Z.; Marzocchella, A.; Tiwari, B.K. Valorization of apple pomace by extraction of valuable compounds. Food Sci. Food Safe 2017, 16, 776–796. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Domínguez, R.; Pateiro, M.; Nawaz, A.; Hano, C.; Walayat, N.; Lorenzo, J.M. Strategies to increase the value of pomaces with fermentation. Fermentation 2021, 7, 299. [Google Scholar] [CrossRef]
- Shalini, R.; Gupta, D.K. Utilization of pomace from apple processing industries: A review. J. Food Sci. Technol. 2010, 47, 365–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Promotion Committee of Alcohol Feed. Alcohol feed (Manual). Jpn. Anim. Sci. Technol. 1991, 62, 781–805. (In Japanese) [Google Scholar]
- Pedroso, A.F.; Nussio, L.G.; Paziani, S.F.; Loures, D.R.S.; Igarasi, M.S.; Coelho, R.M.; Packer, I.H.; Horii, J.; Gomes, L.H. Fermentation and epiphytic microflora dynamics in sugar cane silage. Sci. Agric. 2005, 62, 427–432. [Google Scholar] [CrossRef]
- Fang, J.; Cao, Y.; Matsuzaki, M.; Suzuki, H. Effects of apple pomace proportion levels on the fermentation quality of total mixed ration silage and its digestibility, preference and ruminal fermentation in beef cows. Anim. Sci. J. 2016, 87, 217–223. [Google Scholar] [CrossRef]
- Emery, R.S.; Lewis, T.R.; Everett, J.P.; Lassiter, C.A. Effect of ethanol on rumen fermentation. J. Dairy Sci. 1959, 42, 1182–1186. [Google Scholar] [CrossRef]
- Fang, J.; Xia, G.; Cao, Y. Effects of replacing commercial material with apple pomace on the fermentation quality of total mixed ration silage and its digestibility, nitrogen balance and rumen fermentation in wethers. Grass Sci. 2020, 66, 124–131. [Google Scholar] [CrossRef]
- Randby, A.T.; Selmer-olsen, I.; Bavere, L. Effect of ethanol in feed on milk flavor and chemical composition. J. Dairy Sci. 1999, 82, 420–428. [Google Scholar] [CrossRef]
- Bovard, K.; Rumsey, T.S.; Oltjen, R.R.; Fontenot, J.P.; Priode, B.M. Supplementation of apple pomace with non-protein nitrogen for gestating beef cows. II. Skeletal abnormalities of calves. J. Anim. Sci. 1977, 45, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Weiss, K.; Kroschewski, B.; Auerbach, H. Effects of air exposure, temperature and additives on fermentation characteristics, yeast count, aerobic stability and volatile organic compounds in corn silage. J. Dairy Sci. 2016, 99, 8053–8069. [Google Scholar] [CrossRef] [Green Version]
- Weinberga, Z.G.; Chen, Y.; Miron, D.; Ravivb, Y.; Nahim, E.; Bloch, A.; Yosef, E.; Nikbahat, C.; Mironc, J. Preservation of total mixed rations for dairy cows in bales wrapped with polyethylene stretch film—A commercial scale experiment. Anim. Feed Sci. Technol. 2011, 164, 125–129. [Google Scholar] [CrossRef]
- Antonio, V.I.B.; Gustavo, L.; Cloves, C.J.; Joao, L.P.D. Ensiling total mixed ration for ruminants: A review. Agronomy 2020, 10, 879. [Google Scholar] [CrossRef]
- Carvalho, B.F.; Avila, C.L.S.; Pinto, J.C.; Pereira, M.N.; Schwan, R.F. Effects of propionic acid and Lactobacillus buchneri (UFLA SIL 72) addition on fermentative and microbiological characteristics of sugar cane silage treated with and without calcium oxide. Grass Forage Sci. 2012, 67, 462–471. [Google Scholar] [CrossRef]
- Andre de, F.P.; Armandode, A.R.; Waldomiro, B.J.; Gilberto, B.S. Fermentation parameters, quality and losses in sugarcane silages treated with chemical additives and a bacterial inoculant. R. Bras. Zootec. 2011, 40, 2318–2322. [Google Scholar]
- Xu, C.; Cai, Y.; Fukasawa, M.; Matsuyama, H.; Moriya, N. The effect of replacing brewers’ grains with barley tea grounds in total mixed ration silage on feed intake, digestibility and ruminal fermentation in wethers. Anim. Sci. J. 2008, 79, 575–581. [Google Scholar] [CrossRef]
- Dewar, W.A.; McDonald, P. Determination of dry matter in silage by distillation with toluene. J. Sci. Food Agric. 1961, 12, 790–795. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y. Analysis method for silage. In Japanese Society of Grassland Science, Field and Laboratory Methods for Grassland Science; Tosho Printing Co., Ltd.: Tokyo, Japan, 2004; pp. 279–282. [Google Scholar]
- Xu, C.; Suzuki, H.; Toyokawa, K. Characteristics of ruminal fermentation of sheep fed tofu cake silage with ethanol. Nihon Chikusan Gakkaiho 2001, 72, 299–305. (In Japanese) [Google Scholar] [CrossRef]
- Tudisco, R.; Morittu, V.M.; Musco, N.; Grossi, M.; Iommelli, P.; D’Aniello, B.; Ferrara, M.; Infascelli, F.; Lombardi, P. Effects of sorghum silage in lactating buffalo cow diet: Biochemical profile, milk yield, and quality. Agriculture 2021, 11, 57. [Google Scholar] [CrossRef]
- Frank, D.; Piet, G.W. The occurrence and prevention of ethanol fermentation in high-dry-matter grass silage. J. Sci. Food Agric. 2000, 80, 711–718. [Google Scholar]
- Suto, R.; Horiguchi, K.; Takahsshi, T.; Toyokawa, K. Effect of mixing proportion of green tea waste and moisture content on the fermentation quality and the rate of in situ degradation of TMR silage. Jpn. J. Grassi Sci. 2007, 53, 127–132. (In Japanese) [Google Scholar] [CrossRef]
- Avila, C.L.S.; Pinto, J.C.; Figueiredo, H.C.P.; Schwan, R.F. Effects of an indigenous and a commercial Lactobacillus buchneri strain on quality of sugar cane silage. Grass Forage Sci. 2009, 6, 384–394. [Google Scholar] [CrossRef]
- Yang, J.; Cao, Y.; Cai, Y.; Terada, F. Natural populations of lactic acid bacteria isolated from vegetable residues and silage fermentation. J. Dairy Sci. 2010, 93, 3136–3145. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, B.F.; Avila, C.L.S.; Pinto, J.C.; Neri, J.; Schwan, R.F. Microbiological and chemical profile of sugarcane silage fermentation inoculated with wild strains of lactic acid bacteria. Anim. Feed Sci. Technol. 2014, 195, 1–13. [Google Scholar] [CrossRef] [Green Version]
Item | DM (%) | OM | CP | EE | ADF | NDF | GE (kcal/kg DM) |
---|---|---|---|---|---|---|---|
(% DM) | |||||||
Apple pomace | 21.8 | 97.4 | 4.6 | 3.4 | 25.7 | 34.7 | 4.7 |
Soybean meal | 86.2 | 92.7 | 51.8 | 1.4 | 8.5 | 14.5 | 5.0 |
Corn | 85.4 | 98.7 | 9.0 | 2.6 | 3.6 | 16.1 | 4.7 |
Wheat bran | 85.9 | 94.2 | 18.4 | 4.5 | 15.7 | 51.3 | 4.8 |
Timothy hay | 88.3 | 93.5 | 7.1 | 0.4 | 41.3 | 65.6 | 4.6 |
Alfalfa hay | 87.9 | 90.8 | 19.0 | 1.3 | 34.3 | 46.6 | 4.6 |
Material | Dry Matter (%) | Fresh Matter (%) | |||
---|---|---|---|---|---|
Control | M45 | M50 | M55 | ||
Apple pomace | 15.0 | 41.6 | 38.1 | 34.6 | 31.1 |
Soybean meal | 8.0 | 5.6 | 5.1 | 4.7 | 4.2 |
Corn | 13.3 | 9.4 | 8.6 | 7.8 | 7.0 |
Wheat bran | 12.9 | 9.0 | 8.2 | 7.5 | 6.7 |
Timothy hay | 24.5 | 16.6 | 15.3 | 13.9 | 12.6 |
Alfalfa hay | 24.9 | 16.9 | 15.5 | 14.1 | 12.7 |
Vitamin/mineral supplement | 1.4 | 0.9 | 0.8 | 0.7 | 0.6 |
Water | 0.0 | 0.0 | 8.4 | 16.7 | 25.1 |
Item | Control | M45 | M50 | M55 | SEM | p-Value |
---|---|---|---|---|---|---|
Fermentation characteristics | ||||||
Moisture, % | 40.4 d | 45.2 c | 50.4 b | 55.1 a | 3.182 | <0.001 |
pH | 4.1 | 4.1 | 4.1 | 4.1 | 0.006 | 0.073 |
Lactic acid, % DM | 3.1 c | 3.6 a | 3.3 b | 3.2 c | 0.124 | 0.016 |
Acetic acid, % DM | 0.8 d | 1.1 c | 1.4 b | 3.1 a | 0.512 | <0.001 |
Propionic acid, % DM | ND | ND | ND | ND | - | - |
Butyric acid, % DM | ND | ND | ND | ND | - | - |
Ammonia nitrogen, % TN | 1.9 c | 2.2 b | 2.4 b | 3.1 a | 0.263 | 0.021 |
Chemical composition, % DM | ||||||
Organic matter | 94.0 | 94.1 | 93.8 | 93.9 | 0.060 | 0.149 |
Crude protein | 14.8 | 15.0 | 14.9 | 15.0 | 0.040 | 0.343 |
Ether extract | 2.2 | 2.0 | 2.2 | 2.1 | 0.060 | 0.432 |
Acid detergent fiber | 25.7 | 24.9 | 26.4 | 25.2 | 0.320 | 0.824 |
Neutral detergent fiber | 43.2 | 41.5 | 43.0 | 43.0 | 0.390 | 0.535 |
Ethanol | 3.6 a | 0.9 c | 0.4 d | 1.9 b | 0.701 | <0.001 |
Item | Control | LP | LB | CaP | SEM | p-Value |
---|---|---|---|---|---|---|
Fermentation characteristics | ||||||
Moisture, % | 55.4 | 55.2 | 55.4 | 55.1 | 0.075 | 0.141 |
pH | 4.1 a | 3.9 b | 4.2 a | 4.1 a | 0.053 | 0.031 |
Lactic acid, % DM | 3.3 b | 5.1 a | 3.3 b | 3.1 b | 0.459 | <0.001 |
Acetic acid, % DM | 3.0 a | 0.7 c | 3.0 a | 1.6 b | 0.576 | <0.001 |
Propionic acid, % DM | ND | ND | ND | ND | - | - |
Butyric acid, % DM | ND | ND | ND | ND | - | - |
Ammonia nitrogen, % TN | 2.9 a | 1.2 b | 2.9 a | 3.1 a | 0.436 | <0.001 |
Chemical composition, % DM | ||||||
Organic matter | 93.8 | 94.1 | 93.8 | 94.0 | 0.080 | 0.286 |
Crude protein | 15.1 | 15.0 | 14.9 | 15.1 | 0.050 | 0.486 |
Ether extract | 2.1 | 2.0 | 2.0 | 2.0 | 0.030 | 0.446 |
Acid detergent fiber | 25.9 | 26.1 | 25.4 | 24.9 | 0.270 | 0.738 |
Neutral detergent fiber | 42.2 | 41.6 | 42.3 | 41.9 | 0.160 | 0.637 |
Ethanol | 1.8 a | 1.8 a | 1.7 a | 0.2 b | 0.431 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, J.; Du, Z.; Cai, Y. Fermentation Regulation and Ethanol Production of Total Mixed Ration Containing Apple Pomace. Fermentation 2023, 9, 692. https://doi.org/10.3390/fermentation9070692
Fang J, Du Z, Cai Y. Fermentation Regulation and Ethanol Production of Total Mixed Ration Containing Apple Pomace. Fermentation. 2023; 9(7):692. https://doi.org/10.3390/fermentation9070692
Chicago/Turabian StyleFang, Jiachen, Zhumei Du, and Yimin Cai. 2023. "Fermentation Regulation and Ethanol Production of Total Mixed Ration Containing Apple Pomace" Fermentation 9, no. 7: 692. https://doi.org/10.3390/fermentation9070692
APA StyleFang, J., Du, Z., & Cai, Y. (2023). Fermentation Regulation and Ethanol Production of Total Mixed Ration Containing Apple Pomace. Fermentation, 9(7), 692. https://doi.org/10.3390/fermentation9070692