Application of an Exhausted Fermentation Broth Obtained from Biohydrogen Production in an Apple Orchard: Assessment of Fruit Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Exhausted Fermentation Broth Obtained in the H2 Production Process According to the BIH2 Technology
2.2. Chemical Broth Characterization
2.3. Experimental Trial in the Orchard
2.4. Fruit Quality Assessments
2.5. Statistical Analysis
3. Results and Discussion
3.1. Exhausted Broth Characterization
3.2. Experimental Trial in the Orchard and Fruit Quality
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marbán, G.; Valdés-Solís, T. Towards the hydrogen economy? Int. J. Hydrogen Energy 2007, 32, 1625–1637. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, A.; Frunzo, L.; Pirozzi, F.; Trably, E.; Escudie, R.; Lens, P.N.; Esposito, G. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Appl. Energy 2015, 144, 73–95. [Google Scholar] [CrossRef]
- Ferraren-De Cagalitan, D.D.T.; Abundo, M.L.S. A review of biohydrogen production technology for application towards hydrogen fuel cells. Renew. Sustain. Energy Rev. 2021, 151, 111413. [Google Scholar] [CrossRef]
- Singla, M.K.; Nijhawan, P.; Oberoi, A.S. Hydrogen fuel and fuel cell technology for cleaner future: A review. Environ. Sci. Pollut. Res. 2021, 28, 15607–15626. [Google Scholar] [CrossRef]
- Lucia, U. Overview on fuel cells. Renew. Sustain. Energy Rev. 2014, 30, 164–169. [Google Scholar] [CrossRef]
- Hren, R.; Vujanović, A.; Van Fan, Y.; Klemeš, J.J.; Krajnc, D.; Čuček, L. Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment. Renew. Sustain. Energy Rev. 2023, 173, 113113. [Google Scholar] [CrossRef]
- Riera, J.A.; Lima, R.M.; Knio, O.M. A review of hydrogen production and supply chain modeling and optimization. Int. J. Hydrogen Energy 2023, 48, 13731–13755. [Google Scholar] [CrossRef]
- Maroušek, J. Nanoparticles can change (bio) hydrogen competitiveness. Fuel 2022, 328, 125318. [Google Scholar] [CrossRef]
- Islam, A.K.; Dunlop, P.S.; Hewitt, N.J.; Lenihan, R.; Brandoni, C. Bio-hydrogen production from wastewater: A comparative study of low energy intensive production processes. Clean Technol. 2021, 3, 156–182. [Google Scholar] [CrossRef]
- Bastidas-Oyanedel, J.R.; Bonk, F.; Thomsen, M.H.; Schmidt, J.E. Dark fermentation biorefinery in the present and future (bio) chemical industry. Rev. Environ. Sci. Bio/Technol. 2015, 14, 473–498. [Google Scholar] [CrossRef]
- Gerardi, M.H. The Microbiology of Anaerobic Digesters; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Cappai, G.; De Gioannis, G.; Friargiu, M.; Massi, E.; Muntoni, A.; Polettini, A.; Pomi, R.; Spiga, D. An experimental study on fermentative H2 production from food waste as affected by pH. Waste Manag. 2014, 34, 1510–1519. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Kim, S.H.; Shin, H.S. Hydrogen fermentation of food waste without inoculum addition. Enzym. Microb. Technol. 2009, 45, 181–187. [Google Scholar] [CrossRef]
- Guo, X.M.; Trably, E.; Latrille, E.; Carrère, H.; Steyer, J.P. Hydrogen production from agricultural waste by dark fermentation: A review. Int. J. Hydrogen Energy 2010, 35, 10660–10673. [Google Scholar] [CrossRef]
- Alibardi, L.; Cossu, R. Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Manag. 2015, 36, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Montanarella, L.; Panagos, P. The relevance of sustainable soil management within the European Green Deal. Land Use Policy 2021, 100, 104950. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A New Circular Economy Action Plan. For a Cleaner and more Competitive Europe. Brussels, 11.03.2020. COM (2020) 98 Final; 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1583933814386&uri=COM:2020:98:FIN (accessed on 10 February 2023).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Innovating for Sustainable Growth: A Bioeconomy for Europe, SWD(2012) 11 Final. Brussels, 13.2.2012. COM (2012) 60 Final; 2012. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52012DC0060 (accessed on 10 February 2023).
- Sandoval-Espinola, W.J.; Chinn, M.; Bruno-Barcena, J.M. Inoculum optimization of Clostridium beijerinckii for reproducible growth. FEMS Microbiol. Lett. 2015, 362, fnv164. [Google Scholar] [CrossRef] [Green Version]
- Piccirella, S.; Uberti, D.; Xiong, C.; Fowler, C.; Doecke, J.; Fagan, A.; Frisoni, G.; Kinnon, P. Performance of a non-invasive blood test for a conformational variant of p53 to predict Alzheimer’s disease within 6 years of clinical diagnosis. Preprints.org 2021, 2021050267. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Li, X.; Zhang, J.; Li, Y.; Wu, X.M.; Yang, Y.Z.; Zhang, X.F.; Ma, L.Z.; Liu, Y.D.; Wang, Z.; et al. Plasma metabolomic characterization of premature ovarian insufficiency. J. Ovarian Res. 2023, 16, 2. [Google Scholar] [CrossRef]
- Ribeiro, J.C.; Mota, V.T.; de Oliveira, V.M.; Zaiat, M. Hydrogen and organic acid production from dark fermentation of cheese whey without buffers under mesophilic condition. J. Environ. Manag. 2022, 304, 114253. [Google Scholar] [CrossRef]
- Sarangi, P.K.; Nanda, S. Biohydrogen production through dark fermentation. Chem. Eng. Technol. 2020, 43, 601–612. [Google Scholar] [CrossRef]
- Penning, H.; Conrad, R. Carbon isotope effects associated with mixed-acid fermentation of saccharides by Clostridium papyrosolvens. Geochim. Cosmochim. Acta 2006, 70, 2283–2297. [Google Scholar] [CrossRef]
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial fermentation and its role in quality improvement of fermented foods. Fermentation 2020, 6, 106. [Google Scholar] [CrossRef]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colla, G.; Rouphael, Y.; Canaguier, R.; Svecova, E.; Cardarelli, M. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 2014, 5, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales-Payan, J.P.; Stall, W. Passion fruit (Passiflora edulis) transplant production is affected by selected biostimulants. In Proceedings of the Florida State Horticultural Society; Florida State Horticultural Society: Gainesville, FL, USA, 2004; Volume 117, pp. 224–227. [Google Scholar]
- Marfà, O.; Cáceres, R.; Polo, J.; Ródenas, J. Animal protein hydrolysate as a biostimulant for transplanted strawberry plants subjected to cold stress. In VI International Strawberry Symposium 842; ISHS: Bierbeek, Belgium, 2008; pp. 315–318. [Google Scholar]
- Botta, A. Enhancing plant tolerance to temperature stress with amino acids: An approach to their mode of action. In I World Congress on the Use of Biostimulants in Agriculture 1009; ISHS: Bierbeek, Belgium, 2012; pp. 29–35. [Google Scholar]
- Gurav, R.G.; Jadhav, J.P. A novel source of biofertilizer from feather biomass for banana cultivation. Environ. Sci. Pollut. Res. 2013, 20, 4532–4539. [Google Scholar] [CrossRef] [PubMed]
- Ertani, A.; Schiavon, M.; Muscolo, A.; Nardi, S. Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil 2013, 364, 145–158. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacou, M.C.; De Pascale, S. Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar] [CrossRef]
- Ertani, A.; Cavani, L.; Pizzeghello, D.; Brandellero, E.; Altissimo, A.; Ciavatta, C.; Nardi, S. Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. J. Plant Nutr. Soil Sci. 2009, 172, 237–244. [Google Scholar] [CrossRef]
- Cohen, J.D.; Bandurski, R.S. Chemistry and physiology of the bound auxins. Annu. Rev. Plant Physiol. 1982, 33, 403–430. [Google Scholar] [CrossRef]
- Ohmiya, A. Effects of auxin on growth and ripening of mesocarp discs of peach fruit. Sci. Hortic. 2000, 84, 309–319. [Google Scholar] [CrossRef]
- Parrado, J.; Bautista, J.; Romero, E.J.; García-Martínez, A.M.; Friaza, V.; Tejada, M. Production of a carob enzymatic extract: Potential use as a biofertilizer. Bioresour. Technol. 2008, 99, 2312–2318. [Google Scholar] [CrossRef] [PubMed]
- Gillooly, M.; Bothwell, T.H.; Torrance, J.D.; MacPhail, A.P.; Derman, D.P.; Bezwoda, W.R.; Mills, W.; Charlton, R.W.; Mayet, F. The effects of organic acids, phytates and polyphenols on the absorption of iron from vegetables. Br. J. Nutr. 1983, 49, 331–342. [Google Scholar] [CrossRef] [PubMed]
Compound | Formula | m/z * | Concentration (g L−1) |
---|---|---|---|
Glycan 3′-Galactosyllactose | C18H32O16 | 527.1 | 2.20 ± 0.31 |
His-Pro | C11H16N4O3 | 235.1 | 0.80 ± 0.78 |
Trolox | C14H18O4 | 250.8 | 3.11 ± 0.14 |
Phe-Pro-Lys | C20H30N4O4 | 244.1 | 2.03 ± 0.21 |
Trp-Glu-Lys | C22H31N5O6 | 462.1 | 3.12 ± 0.34 |
3-[N,N-Bis(2-hydroxyethyl)amino]-2-hydroxypropanesulfonic acid | C7H17NO6S | 730.2 | 4.98 ± 0.23 |
Ile-Pro-Ile | C17H31N3O4 | 552.2 | 2.11 ± 0.16 |
2-Naphtyl-D-alanine | C13H13NO2 | 197.4 | 12.8 ± 1.25 |
2′-Deoxyadenosine 5′-monophosphate | C10H14N5O6P | 177.8 | 1.87 ± 0.14 |
CAY10410 | C20H30O3 | 299.4 | 15.5 ± 1.75 |
Butanedioic acid, 2-(4,4-dimethyl-2-methylenepentyl) | C12H20O4 | 227.4 | 3.58 ± 0.26 |
13(S)-HpODE | C18H32O4 | 294.0 | 5.21 ± 0.41 |
Formic Acid Cluster | CH2O2 | 46.03 | 89.5 ± 2.87 |
Butyric acid | C4H8O2 | 88.11 | 7.45 ± 0.31 |
Chemical Parameters | Concentration (mg L−1) |
---|---|
Total organic Carbon (TOC) | 10,565 |
Cl | 134.8 |
SO4 | 180.9 |
PO4 | 342.7 |
N-NH4 | 562.2 |
HNO2 | 1.58 |
N-NO3 | 1.20 |
NTOT | 1090 |
Fe | 0.36 |
As | n.d. * |
Cd | n.d. * |
Ca | <50 |
Cr | n.d. * |
Ni | n.d. * |
Mg | <50 |
Hg | n.d. * |
Pb | n.d. * |
K | 280.6 |
Cu | n.d. * |
Na | 1534 |
Zn | n.d. * |
Treatment | Diameter (mm) | Weight (g) | SSC °Brix | DA-Index | Dry Matter (%) | Firmness (kg cm−2) | Yield (kg Tree−1) |
---|---|---|---|---|---|---|---|
CTRL | 78.2 | 201 b | 14.4 a | 0.98 b | 30.3 b | 3.57 | 15.1 |
BEFB1 | 78.4 | 212 a | 14.0 b | 1.10 a | 40.1 a | 3.48 | 14.3 |
BEFB2 | 78.7 | 215 a | 13.9 b | 1.06 a | 32.1 b | 3.55 | 16.7 |
Significance | ns | * | * | *** | *** | ns | ns |
Treatment | L* (Sun) | a* (Sun) | b* (Sun) | L* (Shade) | a* (Shade) | b* (Shade) |
---|---|---|---|---|---|---|
CTRL | 50.6 | 21.7 | 19.7 | 69.5 | −7.01 a | 34.5 ab |
BEFB1 | 50.0 | 21.6 | 18.6 | 70.6 | −9.92 b | 34.7 a |
BEFB2 | 51.1 | 20.7 | 18.8 | 69.4 | −7.43 ab | 33.0 b |
Significance | ns | ns | ns | ns | * | * |
Treatment | Ca (mg g−1) | Cl (mg g−1) | K (mg g−1) | Mg (mg g−1) | N (mg g−1) | Na (mg g−1) | P (mg g−1) | S (mg g−1) | Fe (µg g−1) |
CTRL | 0.31 | 0.32 | 4.73 a | 0.26 | 2.35 | 0.11 b | 1.00 | 0.17 | 9.75 b |
BEFB1 | 0.33 | 0.57 | 4.38 b | 0.30 | 2.49 | 0.14 a | 1.06 | 0.18 | 10.2 b |
BEFB2 | 0.35 | 0.38 | 4.33 b | 0.26 | 2.66 | 0.12 ab | 1.04 | 0.17 | 18.1 a |
Significance | ns | ns | * | ns | ns | * | ns | ns | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galiano, M.; Perulli, G.D.; Morandi, B.; Di Gioia, D. Application of an Exhausted Fermentation Broth Obtained from Biohydrogen Production in an Apple Orchard: Assessment of Fruit Quality. Fermentation 2023, 9, 628. https://doi.org/10.3390/fermentation9070628
Galiano M, Perulli GD, Morandi B, Di Gioia D. Application of an Exhausted Fermentation Broth Obtained from Biohydrogen Production in an Apple Orchard: Assessment of Fruit Quality. Fermentation. 2023; 9(7):628. https://doi.org/10.3390/fermentation9070628
Chicago/Turabian StyleGaliano, Michele, Giulio Demetrio Perulli, Brunella Morandi, and Diana Di Gioia. 2023. "Application of an Exhausted Fermentation Broth Obtained from Biohydrogen Production in an Apple Orchard: Assessment of Fruit Quality" Fermentation 9, no. 7: 628. https://doi.org/10.3390/fermentation9070628
APA StyleGaliano, M., Perulli, G. D., Morandi, B., & Di Gioia, D. (2023). Application of an Exhausted Fermentation Broth Obtained from Biohydrogen Production in an Apple Orchard: Assessment of Fruit Quality. Fermentation, 9(7), 628. https://doi.org/10.3390/fermentation9070628