Co-Treatment with Single and Ternary Mixture Gas of Dimethyl Sulfide, Propanethiol, and Toluene by a Macrokinetic Analysis in a Biotrickling Filter Seeded with Alcaligenes sp. SY1 and Pseudomonas Putida S1
Abstract
:1. Introduction
2. Experimental Methods
2.1. Microorganism Culture and Medium Preparation
2.2. BTF Setup and Operation Condition
2.3. Analytical Method
2.4. Biofilm Formation and Microbial Analyses
2.5. Operation Parameters of BTF
2.6. BTFs Operation and Startup Period
2.7. Kinetic Analysis
3. Results and Discussion
3.1. Performance of BTF for Mixed Gas during Different Phases
3.1.1. Effect of ILR (Inlet Loading Rate) on the EC of Mixture Treatment
3.1.2. Effect of ILR on the RE
3.2. Performance of BTF for Single Pollutant Degradation
3.3. Carbon Dioxide Production
3.4. Biodegradation Kinetics for Single and Ternary Mixture Gas
3.5. Analysis of Microbial Communities
3.5.1. Bacterial Community Diversity and Composition
3.5.2. Microbial Community Structures at the Phylum Level
3.5.3. Microscopic Observations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Giri, B.S.; Mudliar, S.N.; Deshmukh, S.C.; Banerjee, S.; Pandey, R.A. Treatment of Waste Gas Containing Low Concentration of Dimethyl Sulphide (DMS) in a Bench-Scale Biofilter. Bioresour. Technol. 2010, 101, 2185–2190. [Google Scholar] [CrossRef]
- Fortuny, M.; Gamisans, X.; Deshusses, M.A.; Lafuente, J.; Casas, C.; Gabriel, D. Operational Aspects of the Desulfurization Process of Energy Gases Mimics in Biotrickling Filters. Water Res. 2011, 45, 5665–5674. [Google Scholar] [CrossRef]
- Rappert, S.; Muller, R. Microbial Degradation of Selected Odorous Substances. Waste Manag. 2005, 25, 940–954. [Google Scholar] [CrossRef]
- Karine, K.; Magali, P.; Dimitry, Y.S.; Jelmer, D.; Johannes, B.M.; Pawel, R. Effect of Dimethyl Disulfide on the Sulfur Formation and Microbial Community Composition during the Biological H2S Removal from Sour Gas Streams. J. Hazard. Mater. 2020, 385, 121916. [Google Scholar]
- Bruneel, J.; Walgraeve, C.; Dumortier, S.; Stockman, J.; Demeyer, P.; Van Langenhove, H. Increasing Mass Transfer of Volatile Organic Compounds in Air Scrubbers: A Fundamental Study for Different Gas–liquid systems. J. Chem. Technol. Biotechnol. 2017, 93, 1468–1476. [Google Scholar] [CrossRef]
- Dobslaw, D.; Schulz, A.; Helbich, S.; Dobslaw, C.; Engesser, K.H. Voc Removal and Odor Abatement by a Low-Cost Plasma Enhanced Biotrickling Filter Process. J. Environ. Chem. Eng. 2017, 5, 5501–5511. [Google Scholar] [CrossRef]
- Dobslaw, D.; Ortlinghaus, O. Biological Waste Air and Waste Gas Treatment: Overview, Challenges, Operational Efficiency, and Current Trends. Sustainability 2020, 12, 8577. [Google Scholar] [CrossRef]
- Chan, W.C.; Lai, T.Y. Interaction of Compounds on Biodegradation of Ketone Mixtures in a Biofilter. J. Chem. Technol. Biotechnol. 2011, 85, 416–422. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Liu, J.X. Investigation of Factors on a Fungal Biofilter to Treat Waste Gas with Ethyl Mercaptan. J. Environ. Sci. 2004, 16, 898–900. [Google Scholar]
- Hernandez, J.; Lafuente, J.; Prado, Q.J.; Gabriel, D. Simultaneous Removal of H2S, NH3, and Ethyl Mercaptan in Biotrickling Filters Packed with Poplar Wood and Polyurethane Foam: Impact of pH During Startup and Crossed Effects Evaluation. Water Air Soil Pollut. 2012, 223, 3485–3497. [Google Scholar] [CrossRef]
- Liu, J.; Liu, J.; Li, L. Performance of Two Biofilters with Neutral and Low pH Treating Off-Gases. J. Environ. Sci. 2008, 20, 1409–1414. [Google Scholar] [CrossRef]
- Leszek, T.; Anna, C.K.; Agata, D.; Czestawa, S.; Jolanta, S.; Grazyna, C. Efficacy of a Novel Biofilter in Hatchery Sanitation: II. Removal of Odorogenous Pollutants. Ann. Agric. Environ. Med. 2007, 14, 151–157. [Google Scholar]
- García-Peña, E.I.; Hernández, S.; Favela-Torres, E.; Auria, R.; Revah, S. Toluene Biofiltration by the Fungus Scedosporium apiospermum TB1. Biotechnol. Bioeng. 2001, 76, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Pol, A.; Op den Camp, H.M.; Mees, S.M.; Kersten, M.S.H.; van der Drift, C. Isolation of a Dimethylsulfide-Utilizing Hyphomicrobium Species and Its Application in Biofiltration of Polluted Air. Biodegradation 1994, 5, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Tresse, O.; Lorrain, M.J.; Rho, D. Population Dynamics of Free-Floating and Attached Bacteria in a Styrene-Degrading Biotrickling Filter Analyzed by Denaturing Gradient Gel Electrophoresis. Appl. Microbiol. Biotechnol. 2002, 59, 585–590. [Google Scholar]
- Park, B.G.; Shin, W.S.; Chung, J.S. Simultaneous Biofiltration of H2S, NH3 and Toluene Using an Inorganic/Polymeric Composite Carrier. Environ. Eng. Res. 2008, 13, 19–27. [Google Scholar] [CrossRef]
- Amarsanaa, A.; Shin, W.S.; Choi, A.; Choi, S.J. Biofiltration of Gaseous Toluene Using Adsorbent Containing Polyurethane from Media. Environ. Eng. Res. 2006, 11, 1–13. [Google Scholar] [CrossRef]
- Kim, J.H.; Rene, E.R.; Park, S.H.; Park, H.S. Effect of Inlet Loading Rate on the Elimination of Hydrogen Sulfide and Ammonia in Immobilized Cell Biofilters. Environ. Eng. Res. 2006, 11, 285–291. [Google Scholar] [CrossRef]
- Zhang, L.L.; Leng, S.Q.; Zhu, R.Y.; Chen, J.M. Degradation of Chlorobenzene by Strain Ralstonia Pickettii L2 Isolated from a Biotrickling Filter Treating a Chlorobenzene-Contaminated Gas Stream. Appl. Microbiol. Biotechnol. 2011, 91, 407. [Google Scholar] [CrossRef]
- Dobslaw, D.; Engesser, K.H. Biodegradation of Gaseous Emissions of 2-Chlorotoluene by Strains of Rhodococcus sp. in Polyurethane Foam Packed Biotrickling Filters. Sci. Total Environ. 2018, 639, 1491–1500. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, A.; Bernal, P.; Maureira, D.; Ramos, N.; Vásquez, J.; Urrutia, H. Biofiltration of Trimethylamine in Biotrickling Filter Inoculated with Aminobacter Aminovorans. Electron. J. Biotechnol. 2018, 33, 63–67. [Google Scholar] [CrossRef]
- Sercu, B.; Núñez, D.; Van Langenhove, H.; Aroca, G.; Verstraete, W. Operational and Microbiological Aspects of a Bioaugmented Two-Stage Biotrickling Filter Removing Hydrogen Sulfide and Dimethyl Sulfide. Biotechnol. Bioeng. 2005, 90, 259–269. [Google Scholar] [CrossRef]
- Bentley, R.; Chasteen, T.G. Environmental VOSCs—Formation and Degradation of Dimethyl Sulfide, Methanethiol and Related Materials. Chemosphere 2004, 55, 291–317. [Google Scholar] [CrossRef]
- Wan, S.; Li, G.; An, T.; Guo, B.; Sun, L.; Lei, Z. Biodegradation of Ethanethiol in Aqueous Medium by a New Lysinibacillus Sphaericus Strain Rg-1 Isolated from Activated Sludge. Biodegradation 2010, 21, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- Tu, X.; Xu, M.; Li, J.; Li, E.; Feng, R.; Zhao, G. Enhancement of Using Combined Packing Materials on the Removal of Mixed Sulfur Compounds in a Biotrickling Filter and Analysis of Microbial Communities. BMC Biotechnol. 2019, 19, 52. [Google Scholar] [CrossRef]
- Chen, D.Z.; Sun, Y.M.; Han, L.; Chen, J.; Ye, J.; Chen, J. A Newly Isolated Pseudomonas putida S-1 Strain for Batch-Mode-Propanethiol Degradation and Continuous Treatment of Propanethiol-Containing Waste Gas. J. Hazard. Mater. 2016, 302, 232–240. [Google Scholar] [CrossRef]
- Arellano-García, L.; Revah, S.; Ramírez, M.; Gómez, J.M.; Cantero, D. Dimethyl Sulphide Degradation Using Immobilized Thiobacillus Thioparus in a Biotrickling Filter. Environ. Technol. 2009, 30, 1273–1279. [Google Scholar] [CrossRef] [PubMed]
- Arellano-García, L.; González-Sánchez, A.; Langenhove, H.V.; Kumar, A.; Revah, S. Removal of Odorant Dimethyl Disulfide under Alkaline and Neutral Conditions in Biotrickling Filters. Water Sci. Technol. 2012, 66, 1641–1646. [Google Scholar] [CrossRef]
- Liang, Z.; An, T.; Li, G.; Zhang, Z. Aerobic Biodegradation of Odorous Dimethyl Disulfide in Aqueous Medium by Isolated Bacillus Cereus Gigan2 and Identification of Transformation Intermediates. Bioresour. Technol. 2015, 175, 563–568. [Google Scholar] [CrossRef]
- Chen, X.Q.; Liang, G.Y.; Zhi, S.; Tai, C. Comparative Elimination of Dimethyl Disulfide by Maifanite and Ceramic-Packed Biotrickling Filters and Their Response to Microbial Community. Bioresour. Technol. Biomass Bioenerg. Biowastes Convers. Technol. Biotransform. Prod. Technol. 2016, 202, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Luvsanjamba, M.; Sercu, B.; Peteghem, J.V.; Langenhove, H.V. Long-Term Operation of a Thermophilic Biotrickling Filter for Removal of Dimethyl Sulfide. Chem. Eng. J. 2008, 142, 248–255. [Google Scholar] [CrossRef]
- Chen, J.M.; Zhu, R.Y.; Yang, W.B.; Zhang, L. Treatment of a BTo-X-Contaminated Gas Stream with a Biotrickling Filter Inoculated with Microbes Bound to a Wheat Bran/Red Wood Powder/Diatomaceous Earth Carrier. Bioresour Technol. 2010, 101, 8067–8073. [Google Scholar] [CrossRef]
- Wu, H.; Yan, H.Y.; Quan, Y.; Zhao, H.Z.; Jiang, N.Z.; Yin, C.R. Recent Progress and Perspectives in Biotrickling Filters for VOCs and Odorous Gases Treatment. J. Environ. Manag. 2018, 222, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Veiga, M.C.; Kennes, C. Co-Treatment of Hydrogen Sulfide and Methanol in a Single-Stage Biotrickling Filter under Acidic Conditions. Chemosphere 2007, 68, 1186–1193. [Google Scholar] [CrossRef]
- Álvarez-Hornos, F.J.; Gabaldón, C.; Martínez-Soria, V.; Marzal, P.; Penya-roja, J.M. Mathematical Modeling of the Biofiltration of Ethyl Acetate and Toluene and Their Mixture. Biochem. Eng. J. 2009, 43, 169–177. [Google Scholar] [CrossRef]
- Das, K.; Melear, N.; Kastner, J.; Buquoi, J. Influence of Ash Amendment on Odor Emissions and Aerobic Biodegradation of Biosolids Mixes. Trans. ASAE 2003, 46, 1185–1191. [Google Scholar]
- Estrada, J.M.; Quijano, G.; Lebrero, R.; Munoz, R. Step-Feed Biofiltration: A Low-Cost Alternative Configuration for Off-Gas Treatment. Water Res. 2013, 47, 4312–4321. [Google Scholar] [CrossRef]
- Wang, X.; Wu, C.; Liu, N.; Li, S.; Li, W.; Chen, J. Degradation of Ethyl Mercaptan and Its Major Intermediate Diethyl Disulfide by Pseudomonas sp. Strain WL2. Appl. Microbiol. Biotechnol. 2015, 99, 3211–3220. [Google Scholar] [CrossRef]
- Jung, I.G.; Lee, I.H.; Choung, S.J.; Chang, N.K.; Koo, Y.M.; Kim, E. Biodegradation of Toluene and Dimethyl Sulfide in a Cocultured Biofilter. Korean J. Chem. Eng. 2006, 23, 34–37. [Google Scholar] [CrossRef]
- Yang, C.; Hui, Q.; Xiang, L.; Yan, C.; Xi, J. Simultaneous Removal of Multicomponent Vocs in Biofilters. Trends Biotechnol. 2018, 36, 673–685. [Google Scholar] [CrossRef]
- Sun, Y.; Qiu, J.; Chen, D.; Ye, J.; Chen, J. Characterization of the Novel Dimethyl Sulfide-Degrading Bacterium Alcaligenes sp. SY1 and Its Biochemical Degradation Pathway. J. Hazard. Mater. 2016, 304, 543–552. [Google Scholar] [CrossRef]
- Dorado, A.D.; Baeza, J.A.; Lafuente, J.; Gabriel, D.; Gamisans, X. Biomass Accumulation in a Biofilter Treating Toluene at High Loads—Part 1: Experimental Performance from Inoculation to Clogging. Chem. Eng. J. 2012, 209, 661–669. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N. Ultra-High-Throughput Microbial Community Analysis on the Illumina HiSeq and MiSeq Platforms. ISME J. 2012, 6, 1621–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, X.; Chen, C.; Zhang, J.; Dai, Y.; Zhang, X.; Xie, S. Operational Performance, Biomass and Microbial Community Structure: Impacts of Backwashing on Drinking Water Biofilter. Environ. Sci. Pollut. Res. Int. 2015, 22, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Gallastegui, G.; Avalos Ramirez, A.; Elias, A.; Jones, J.P.; Heitz, M. Performance and Macrokinetic Analysis of Biofiltration of Toluene and P-Xylene Mixtures in a Conventional Biofilter Packed with Inert Material. Bioresour. Technol. 2011, 102, 7657–7665. [Google Scholar] [CrossRef]
- Ménard, C.; Ramirez, A.A.; Heitz, M. Kinetics of Simultaneous Methane and Toluene Biofiltration in an Inert Packed Bed. J. Chem. Technol. Biotechnol. 2014, 89, 597–602. [Google Scholar] [CrossRef]
- Hamdi, M. Biofilm Thickness Effect on the Diffusion Limitation in the Bioprocess Reaction: Biofloc Critical Diameter Significance. Bioprocess. Eng. 1995, 12, 193–197. [Google Scholar] [CrossRef]
- Willaert, R.; Smets, A.; De Vuyst, L. Mass Transfer Limitations in Diffusion-Limited Isotropic Hollow Fiber Bioreactors. Bioprocess. Eng. 1999, 13, 317–323. [Google Scholar]
- Zhang, T.; Pabst, B.; Klapper, I.; Stewart, P.S. General Theory for Integrated Analysis of Growth, Gene, and Protein Expression in Biofilms. PLoS ONE 2013, 8, e83626. [Google Scholar] [CrossRef]
- Amani, T.; Nosrati, M.; Mousavi, S.M. Using Enriched Cultures for Elevation of Anaerobic Syntrophic Interactions between Acetogens and Methanogens in a High-Load Continuous Digester. Bioresour. Technol. 2011, 102, 3716–3723. [Google Scholar] [CrossRef]
- Cox, H.H.; Deshusses, M.A. Co-Treatment of H2S and Toluene in a Biotrickling Filter. Chem. Eng. J. 2002, 87, 101–110. [Google Scholar] [CrossRef]
- Shu, C.; Chen, C. Enhanced Removal of Dimethyl Sulfide from a Synthetic Waste Gas Stream Using a Bioreactor Inoculated with Microbacterium sp. NTUT26 and Pseudomonas putida. J. Ind. Microbiol. Biotechnol. 2009, 36, 95–104. [Google Scholar] [CrossRef]
- Andriamanohiarisoamanana, F.; Yasui, S.; Iwasaki, M.; Yamashiro, T.; Ihara, I.; Umetsu, K. Performance Study of a Bio-Trickling Filter to Remove High Hydrogen Sulfide Concentration from Biogas: A Pilot-Scale Experiment. J. Mater. Cycles Waste Manag. 2020, 22, 1390–1398. [Google Scholar] [CrossRef]
- Alonso, C.; Suidan, M.T.; Kim, B.R.; Kim, B.J. Dynamic Mathematical Model for the Biodegradation of VOCs in a Biofilter: Biomass Accumulation Study. Environ. Sci. Technol. 1998, 32, 3118–3123. [Google Scholar] [CrossRef]
- De Zwart, J.; Sluis, J.; Kuenen, J.G. Competition for Dimethyl Sulfide and Hydrogen Sulfide by Methylophaga sulfidovorans and Thiobacillus thioparus T5 in Continuous Cultures. Appl. Environ. Microbiol. 1997, 63, 3318–3322. [Google Scholar] [CrossRef] [Green Version]
- Wan, S.; Li, G.; An, T.; Guo, B. Co-Treatment of Single, Binary and Ternary Mixture Gas of Ethanethiol, Dimethyl Disulfide and Thioanisole in a Biotrickling Filter Seeded with Lysinibacillus sphaericus RG-1. J. Hazard. Mater. 2011, 186, 1050–1057. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.M.; Murugesan, K.; Schmidt, S.; Bokare, V.; Jeon, J.R.; Kim, E.J. Triclosan Susceptibility and Co-Metabolism—A Comparison for Three Aerobic Pollutant-Degrading Bacteria. Bioresour. Technol. 2011, 102, 2206–2212. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Qu, Y.Y.; Zhang, X.W.; Shen, W.L.; Liu, Z.Y.; Wang, J.W. Identification of the Microbial Community Composition and Structure of Coal-Mine Wastewater Treatment Plants. Microbiol. Res. 2015, 175, 1–5. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y.; Dai, Y.; Xie, S. Anaerobic Biodegradation of Nonylphenol in River Sediment under Nitrate- or Sulfate-Reducing Conditions and Associated Bacterial Community. J. Hazard. Mater. 2015, 286, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Q.; Li, S.; Li, W. Degradation Pathway and Kinetic Analysis for P-Xylene Removal by a Novel Pandoraea sp. Strain WL1 and Its Application in a Biotrickling Filter. J. Hazard. Mater. 2015, 288, 17–24. [Google Scholar] [CrossRef]
- Acuña, M.E.; Pérez, F.; Auria, R.; Revah, S. Microbiological and Kinetic Aspects of a Biofilter for the Removal of Toluene from Waste Gases. Biotechnol. Bioeng. 1999, 63, 175–184. [Google Scholar] [CrossRef]
- Sardessai, Y.; Bhosle, S. Tolerance of Bacteria to Organic Solvents. Res. Microbiol. 2002, 153, 263–268. [Google Scholar] [CrossRef]
- Kim, C.W.; Park, J.S.; Cho, S.K.; Oh, K.J.; Kim, Y.S.; Kim, D. Removal of Hydrogen Sulfide, Ammonia, and Benzene by Fluidized Bed Reactor and Biofilter. J. Microbiol. Biotechnol. 2003, 13, 301–304. [Google Scholar]
- Ryu, H.; Kim, S.; Cho, K.S.; Lee, T. Toluene Degradation in a Polyurethane Biofilter at High Loading. Biotechnol. Progr. Eng. 2008, 13, 360–365. [Google Scholar] [CrossRef]
- Acuña, M.E.; Villanueva, C.; Cárdenas, B.; Christen, P.; Revah, S. The Effect of Nutrient Concentration on Biofilm Formation on Peat and Gas Phase Toluene Biodegradation under Biofiltration Conditions. Process. Biochem. 2002, 38, 7–13. [Google Scholar] [CrossRef]
Substrate | rmax | Ks | Equation | R2 |
---|---|---|---|---|
DMS (single) | ||||
EBRT 56 s | 103.09 | 0.40 | Y = 0.00399x + 0.00802 | 0.996 |
EBRT 28 s | 256.41 | 0.67 | Y = 0.00265x + 0.00375 | 0.999 |
EBRT 20 s | 232.56 | 0.44 | Y = 0.00259x + 0.00153 | 0.995 |
Propanethiol (single) | ||||
EBRT 56 s | 149.25 | 0.88 | Y = 0.00602x + 0.00511 | 0.997 |
EBRT 28 s | 204.08 | 0.65 | Y = 0.00319x + 0.00439 | 0.989 |
EBRT 20 s | 196.08 | 0.53 | Y = 0.00274x + 0.00388 | 0.964 |
Toluene (single) | ||||
EBRT 56 s | 39.84 | 0.22 | Y = 0.00554x + 0.02399 | 0.994 |
EBRT 28 s | 90.91 | 0.33 | Y = 0.00357x + 0.01099 | 0.990 |
EBRT 20 s | 82.64 | 0.31 | Y = 0.00385x + 0.00865 | 0.982 |
DMS (mixture) | ||||
EBRT 56 s | 57.80 | 0.28 | Y = 0.00493x + 0.01730 | 0.982 |
EBRT 28 s | 114.94 | 0.38 | Y = 0.00328x + 0.00917 | 0.999 |
EBRT 20 s | 97.09 | 0.19 | Y = 0.00510x + 0.00319 | 0.999 |
Propanethiol (mixture) | ||||
EBRT 56 s | 63.69 | 0.34 | Y = 0.00534x + 0.01566 | 0.990 |
EBRT 28 s | 76.34 | 0.27 | Y = 0.00404x + 0.00713 | 0.980 |
EBRT 20 s | 104.17 | 0.31 | Y = 0.00296x + 0.00964 | 0.983 |
Toluene (mixture) | ||||
EBRT 56 s | 47.39 | 0.27 | Y = 0.00585x + 0.02111 | 0.985 |
EBRT 28 s | 99.01 | 0.33 | Y = 0.00430x + 0.00400 | 0.985 |
EBRT 20 s | 88.50 | 0.21 | Y = 0.00274x + 0.00881 | 0.986 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Lin, X.; Zhu, S.; Chen, J.; He, Y.; Shi, Y.; Liu, H.; Qin, L. Co-Treatment with Single and Ternary Mixture Gas of Dimethyl Sulfide, Propanethiol, and Toluene by a Macrokinetic Analysis in a Biotrickling Filter Seeded with Alcaligenes sp. SY1 and Pseudomonas Putida S1. Fermentation 2021, 7, 309. https://doi.org/10.3390/fermentation7040309
Sun Y, Lin X, Zhu S, Chen J, He Y, Shi Y, Liu H, Qin L. Co-Treatment with Single and Ternary Mixture Gas of Dimethyl Sulfide, Propanethiol, and Toluene by a Macrokinetic Analysis in a Biotrickling Filter Seeded with Alcaligenes sp. SY1 and Pseudomonas Putida S1. Fermentation. 2021; 7(4):309. https://doi.org/10.3390/fermentation7040309
Chicago/Turabian StyleSun, Yiming, Xiaowei Lin, Shaodong Zhu, Jianmeng Chen, Yi He, Yao Shi, Hua Liu, and Lei Qin. 2021. "Co-Treatment with Single and Ternary Mixture Gas of Dimethyl Sulfide, Propanethiol, and Toluene by a Macrokinetic Analysis in a Biotrickling Filter Seeded with Alcaligenes sp. SY1 and Pseudomonas Putida S1" Fermentation 7, no. 4: 309. https://doi.org/10.3390/fermentation7040309
APA StyleSun, Y., Lin, X., Zhu, S., Chen, J., He, Y., Shi, Y., Liu, H., & Qin, L. (2021). Co-Treatment with Single and Ternary Mixture Gas of Dimethyl Sulfide, Propanethiol, and Toluene by a Macrokinetic Analysis in a Biotrickling Filter Seeded with Alcaligenes sp. SY1 and Pseudomonas Putida S1. Fermentation, 7(4), 309. https://doi.org/10.3390/fermentation7040309