Fermentation-Driven Generation of α-Glucosidase Inhibitory Whey Peptides by Marine-Derived Probiotic Lacticaseibacillus casei DS31: Activity Enrichment and Peptidomics
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Activation and Cultivation of Strains and Preparation of Whey Protein Medium
2.3. α-Glucosidase Inhibitory Activity
- is the absorbance of the negative control group (PBS buffer + α-glucosidase solution + PNPG solution);
- is the absorbance of the test sample group (sample supernatant + α-glucosidase solution + PNPG solution);
- is the absorbance of the blank control group (sample supernatant + PBS buffer + PNPG solution);
- is the absorbance of the negative control group (PBS buffer + inactivated α-glucosidase solution + PNPG solution).
2.4. Preparation of Fermented Peptides
2.5. Characterization of the Most Active Fraction
2.6. Virtual Screening and Molecular Docking of Short Peptides
2.7. Statistical Analysis
3. Results and Discussion
3.1. Determination of Biomass and α-Glucosidase Inhibition Rate at Different Fermentation Times
3.2. Purification of Potential α-Glucosidase Inhibitory Peptides
3.3. Peptide Composition Characterization and Screening
3.4. Molecular Docking Visualization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Diabetes Association Professional Practice Committee. 12. Retinopathy, Neuropathy, and Foot Care: Standards of Care in Diabetes-2025. Diabetes Care 2025, 48, S252–S265. [Google Scholar] [CrossRef]
- DECODE Study Group; the European Diabetes Epidemiology Group. Glucose Tolerance and Cardiovascular Mortality: Comparison of Fasting and 2-Hour Diagnostic Criteria. Arch. Intern. Med. 2001, 161, 397–405. [Google Scholar] [CrossRef]
- Gericke, B.; Schecker, N.; Amiri, M.; Naim, H.Y. Structure-Function Analysis of Human Sucrase-Isomaltase Identifies Key Residues Required for Catalytic Activity. J. Biol. Chem. 2017, 292, 11070–11078. [Google Scholar] [CrossRef] [PubMed]
- Akmal, M.; Patel, P.; Wadhwa, R. Alpha Glucosidase Inhibitors. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- van de Laar, F.A.; Lucassen, P.L.; Akkermans, R.P.; van de Lisdonk, E.H.; Rutten, G.E.; van Weel, C. Alpha-Glucosidase Inhibitors for Patients with Type 2 Diabetes: Results from a Cochrane Systematic Review and Meta-Analysis. Diabetes Care 2005, 28, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Xie, T.; Wu, Q.; Hu, Z.; Luo, Y.; Luo, F. Alpha-Glucosidase Inhibitory Peptides: Sources, Preparations, Identifications, and Action Mechanisms. Nutrients 2023, 15, 4267. [Google Scholar] [CrossRef]
- Jahandideh, F.; Bourque, S.L.; Wu, J. A Comprehensive Review on the Glucoregulatory Properties of Food-Derived Bioactive Peptides. Food Chem. X 2022, 13, 100222. [Google Scholar] [CrossRef]
- Hamadou, M. Bioactive Peptides and Metabolic Health: A Mechanistic Review of the Impact on Insulin Sensitivity, Lipid Profiles, and Inflammation. Appl. Food Res. 2025, 5, 101056. [Google Scholar] [CrossRef]
- Miguéns-Gómez, A.; Casanova-Martí, À.; Blay, M.T.; Terra, X.; Beltrán-Debón, R.; Rodríguez-Gallego, E.; Ardévol, A.; Pinent, M. Glucagon-like Peptide-1 Regulation by Food Proteins and Protein Hydrolysates. Nutr. Res. Rev. 2021, 34, 259–275. [Google Scholar] [CrossRef] [PubMed]
- Mirzakulova, A.; Sarsembaeva, T.; Suleimenova, Z.; Kowalski, Ł.; Gajdzik, B.; Wolniak, R.; Bembenek, M. Whey: Composition, Processing, Application, and Prospects in Functional and Nutritional Beverages—A Review. Foods 2025, 14, 3245. [Google Scholar] [CrossRef]
- Sousa, G.T.; Lira, F.S.; Rosa, J.C.; de Oliveira, E.P.; Oyama, L.M.; Santos, R.V.; Pimentel, G.D. Dietary Whey Protein Lessens Several Risk Factors for Metabolic Diseases: A Review. Lipids Health Dis. 2012, 11, 67. [Google Scholar] [CrossRef]
- Lacroix, I.M.E.; Li-Chan, E.C.Y. Inhibition of Dipeptidyl Peptidase (DPP)-IV and α-Glucosidase Activities by Pepsin-Treated Whey Proteins. J. Agric. Food Chem. 2013, 61, 7500–7506. [Google Scholar] [CrossRef]
- Bandara, T.A.; Munasinghe-Arachchige, S.P.; Gamlath, C.J. Fermented Whey Beverages: A Review of Process Fundamentals, Recent Developments and Nutritional Potential. Int. J. Dairy Technol. 2023, 76, 737–757. [Google Scholar] [CrossRef]
- Nwachukwu, I.D.; Aluko, R.E. Structural and Functional Properties of Food Protein-Derived Antioxidant Peptides. J. Food Biochem. 2019, 43, e12761. [Google Scholar] [CrossRef]
- Anumudu, C.K.; Miri, T.; Onyeaka, H. Multifunctional Applications of Lactic Acid Bacteria: Enhancing Safety, Quality, and Nutritional Value in Foods and Fermented Beverages. Foods 2024, 13, 3714. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.A.; Bester, M.J.; Neitz, A.W.H.; Gaspar, A.R.M. Structural Properties of Bioactive Peptides with α-Glucosidase Inhibitory Activity. Chem. Biol. Drug Des. 2018, 91, 370–379. [Google Scholar] [CrossRef]
- Holliday, G.L.; Mitchell, J.B.O.; Thornton, J.M. Understanding the Functional Roles of Amino Acid Residues in Enzyme Catalysis. J. Mol. Biol. 2009, 390, 560–577. [Google Scholar] [CrossRef]
- Ashrafi, A.M.; Sýs, M.; Sedláčková, E.; Shaaban Farag, A.; Adam, V.; Přibyl, J.; Richtera, L. Application of the Enzymatic Electrochemical Biosensors for Monitoring Non-Competitive Inhibition of Enzyme Activity by Heavy Metals. Sensors 2019, 19, 2939. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, S.; Meng, W.; Zhang, J.; Zhang, D. Food-Derived α-Glucosidase Inhibitory Peptides: Research Progress on Structure-Activity Relationship, Safety and Bioavailability. Food Sci. 2023, 44, 298–320. [Google Scholar]
- De Chiara, I.; Marasco, R.; Della Gala, M.; Alfano, A.; Parecha, D.; Costanzo, N.; Schiraldi, C.; Muscariello, L. Isolation and Partial Characterization of Lactic Acid Bacteria from Natural Whey Starter Culture. Fermentation 2025, 11, 668. [Google Scholar] [CrossRef]
- Rosa, L.S.; Santos, M.L.; Abreu, J.P.; Rocha, R.S.; Esmerino, E.A.; Freitas, M.Q.; Mársico, E.T.; Campelo, P.H.; Pimentel, T.C.; Cristina Silva, M.; et al. Probiotic Fermented Whey-Milk Beverages: Effect of Different Probiotic Strains on the Physicochemical Characteristics, Biological Activity, and Bioactive Peptides. Food Res. Int. 2023, 164, 112396. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Yoon, Y.; Choi, K.-H. Development and Evaluation of Bioconverted Milk with Anti-Microbial Effect against Periodontal Pathogens and α-Glucosidase Inhibitory Activity. Microorganisms 2024, 12, 1290. [Google Scholar] [CrossRef]
- Rejdlová, A.; Lorencová, E.; Míšková, Z.; Salek, R.N. Techno-Functional Properties and Recent Advances in the Manufacturing of Whey Beverages: A Review. Appl. Sci. 2025, 15, 1846. [Google Scholar] [CrossRef]
- Lambuk, F.; Mazlan, N.; Thung, T.Y.; New, C.Y.; Rinai, K.R.; Son, R. A Review of Lactic Acid Bacteria Isolated from Marine Animals: Their Species, Isolation Site and Applications. Food Res. 2022, 6, 311–323. [Google Scholar] [CrossRef]
- Fukuchi, S.; Yoshimune, K.; Wakayama, M.; Moriguchi, M.; Nishikawa, K. Unique Amino Acid Composition of Proteins in Halophilic Bacteria. J. Mol. Biol. 2003, 327, 347–357. [Google Scholar] [CrossRef]
- Shahidi, F.; Saeid, A. Bioactivity of Marine-Derived Peptides and Proteins: A Review. Mar. Drugs 2025, 23, 157. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, P.; Li, Y.; Chen, X.; Wang, L.; Su, Y.; Luo, L.; Cai, Y.; Huang, Q.; Tang, X. Probiotics and Amelioration of Periodontitis: Significant Roles of Lacticaseibacillus Casei DS31. Front. Microbiol. 2025, 16, 1715664. [Google Scholar] [CrossRef]
- Solieri, L.; Sola, L.; Vaccalluzzo, A.; Randazzo, C.L.; Martini, S.; Tagliazucchi, D. Characterization of Cell-Envelope Proteinases from Two Lacticaseibacillus Casei Strains Isolated from Parmigiano Reggiano Cheese. Biology 2022, 11, 139. [Google Scholar] [CrossRef]
- Mulaw, G.; Sisay Tessema, T.; Muleta, D.; Tesfaye, A. In Vitro Evaluation of Probiotic Properties of Lactic Acid Bacteria Isolated from Some Traditionally Fermented Ethiopian Food Products. Int. J. Microbiol. 2019, 2019, 7179514. [Google Scholar] [CrossRef] [PubMed]
- Pescuma, M.; Hébert, E.M.; Mozzi, F.; de Valdez, G.F. Functional Fermented Whey-Based Beverage Using Lactic Acid Bacteria. Int. J. Food Microbiol. 2010, 141, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Díaz, A.; Mata-Haro, V.; Hernández, J.; González-Córdova, A.F.; Hernández-Mendoza, A.; Reyes-Díaz, R.; Torres-Llanez, M.J.; Beltrán-Barrientos, L.M.; Vallejo-Cordoba, B. Milk Fermented by Specific Lactobacillus Strains Regulates the Serum Levels of IL-6, TNF-α and IL-10 Cytokines in a LPS-Stimulated Murine Model. Nutrients 2018, 10, 691. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Xiao, Y.; Fu, X.; Long, Z.; Wu, Y.; Lin, Q.; Ren, K.; Jiang, L. Identification of Novel α-Glucosidase and ACE Inhibitory Peptides from Douchi Using Peptidomics Approach and Molecular Docking. Food Chem. X 2023, 19, 100779. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.-H.; Wayal, V.; Hsieh, C.-C. Goat Whey Protein Hydrolysate Mitigates High-Fructose Corn Syrup-Induced Hepatic Steatosis in a Murine Model. Nutrients 2025, 17, 2011. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Xu, W.; Liu, K.; Xia, Y.; Shuangquan. Angiotensin-Converting Enzyme Inhibitory Peptides from Lactobacillus Delbrueckii QS306 Fermented Milk. J. Dairy Sci. 2019, 102, 5913–5921. [Google Scholar] [CrossRef]
- Bird, L.E.; Xu, B.; Hobbs, A.D.; Ziegler, A.R.; Scott, N.E.; Newton, P.; Thomas, D.R.; Edgington-Mitchell, L.E.; Newton, H.J. Coxiella Burnetii Manipulates the Lysosomal Protease Cathepsin B to Facilitate Intracellular Success. Nat. Commun. 2025, 16, 3844. [Google Scholar] [CrossRef]
- Hau, E.H.; Chew, L.Y.; Yeo, S.K.; Owatworakit, A.; Teh, S.S.; Mah, S.H. Oil Palm Leaf Protein Hydrolysate and Its Novel Peptides as Alternative Plant-Based α-Glucosidase Inhibitors. Int. J. Biol. Macromol. 2025, 291, 138897. [Google Scholar] [CrossRef]
- Dang, D.X.; Xu, S.Q.; Li, D.; Wang, H.; Xia, X.; Xu, S. Identification of Potential Dual α-Amylase and α-Glucosidase Inhibitory Peptides from Humulus scandens through Multi-Step Virtual Screening, Molecular Docking, Ligand Efficiency Analysis, and Molecular Dynamics Simulation. Results Chem. 2025, 16, 102448. [Google Scholar] [CrossRef]
- Sar, T.; Bogovic Matijasic, B.; Danilovic, B.; Gamero, A.; Gandía, M.; Krausova, G.; Martínez-Villaluenga, C.; Peñas, E.; Bagherzadehsurbagh, E.; Cemali, Ö.; et al. A Systematic Review of Health Promoting Effects of Consumption of Whey-Based Fermented Products on Adults. Front. Nutr. 2025, 12, 1651365. [Google Scholar] [CrossRef]
- Meleti, E.; Koureas, M.; Manouras, A.; Giannouli, P.; Malissiova, E. Bioactive Peptides from Dairy Products: A Systematic Review of Advances, Mechanisms, Benefits, and Functional Potential. Dairy 2025, 6, 65. [Google Scholar] [CrossRef]
- Helal, A.; Nasuti, C.; Sola, L.; Sassi, G.; Tagliazucchi, D.; Solieri, L. Impact of Spontaneous Fermentation and Inoculum with Natural Whey Starter on Peptidomic Profile and Biological Activities of Cheese Whey: A Comparative Study. Fermentation 2023, 9, 270. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, Y.; Yang, S.; Liu, Y.; Li, X.; Liu, D. The Functionalities and Applications of Whey/Whey Protein in Fermented Foods: A Review. Food Sci. Biotechnol. 2024, 33, 769–790. [Google Scholar] [CrossRef]
- Konrad, B.; Anna, D.; Marek, S.; Marta, P.; Aleksandra, Z.; Józefa, C. The Evaluation of Dipeptidyl Peptidase (DPP)-IV, α-Glucosidase and Angiotensin Converting Enzyme (ACE) Inhibitory Activities of Whey Proteins Hydrolyzed with Serine Protease Isolated from Asian Pumpkin (Cucurbita ficifolia). Int. J. Pept. Res. Ther. 2014, 20, 483–491. [Google Scholar] [CrossRef]
- Hau, E.H.; Huang, W.; Huang, L.; Zeng, X.; Huang, Z.; Dan, X.; Fan, X.; Mah, S.H.; Li, L. Antidiabetic Potential of Buffalo Milk Casein Hydrolysates through Enzymatic Hydrolysis and Bioactive Peptide Identification as α-Glucosidase Inhibitors. Food Chem. 2025, 493, 145780. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Ma, R.; Cui, G.; Wen, Y.; Li, H.; Wang, J.; Sun, B. Rice Bran Peptide with α-Glucosidase Inhibition Activity: Preparation, Evaluation and Molecular Mechanism. J. Cereal Sci. 2024, 115, 103837. [Google Scholar] [CrossRef]
- Al-Bukhaiti, W.Q.; Al-Dalali, S.; Li, H.; Yao, L.; Abed, S.M.; Zhao, L.; Qiu, S.-X. Identification and in Vitro Characterization of Novel Antidiabetic Peptides Released Enzymatically from Peanut Protein. Plant Foods Hum. Nutr. 2024, 79, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Y.; Liu, X.; Wang, W.; Wang, J.; Li, X.; Sun, S. Preparation and Identification of Peptides with α-Glucosidase Inhibitory Activity from Shiitake Mushroom (Lentinus edodes) Protein. Foods 2023, 12, 2534. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Liang, Y.; Lei, Y.; Xiong, S.; Rong, J.; Hu, Y. Development and Identification of Novel α-Glucosidase Inhibitory Peptides from Mulberry Leaves. Foods 2023, 12, 3917. [Google Scholar] [CrossRef]
- Khademian, A.; Halimi, M.; Azarbad, R.; Alaedini, A.H.; Noori, M.; Dastyafteh, N.; Mojtabavi, S.; Faramarzi, M.A.; Mohammadi-Khanaposhtani, M.; Mahdavi, M. Quinoline-Thiosemicarbazone-1,2,3-Triazole-Acetamide Derivatives as New Potent α-Glucosidase Inhibitors. Sci. Rep. 2024, 14, 30876. [Google Scholar] [CrossRef]







| Peptide Sequence | PeptideRanker |
|---|---|
| GEPGPEGPAG | 0.549308 |
| PFPGPIPN | 0.890369 |
| VVVPPFL | 0.622409 |
| VYPFPGPI | 0.849683 |
| Ligand (Peptide/Compound) | −CDOCKER INTERACTION ENERGY |
|---|---|
| GEPGPEGPAG | −82.5008 |
| PFPGPIPN | −60.7204 |
| VVVPPFL | −57.3323 |
| VYPFPGPI | −26.998 |
| Acarbose | −69.31 |
| Ligand | Hydrogen-Bonding Interactions | Electrostatic Interactions | Hydrophobic and π-Related Interactions |
|---|---|---|---|
| Acarbose | Asp327, Asp542, Arg526, Thr205, Asp203, His600 | none | Trp406, Tyr299, Phe575 |
| GEPGPEGPAG | Arg526, Asp443, His600, Asp327, Thr205, Arg202 | Lys480, Asp203, Asp542, Arg598 | Tyr299, Phe450, Met444, Trp406 |
| PFPGPIPN | Asp542, Asp443, Asp327 | Arg526 | Trp406, Ala576 |
| VVVPPFL | Thr205 | Asp542, Asp203 | Phe450, Lys480, Tyr299, Trp406, Met444, Phe575, Tyr605, Ala576 |
| VYPFPGPI | Thr205, Asp327 | none | Phe450, Trp406, Met444, Tyr299, His600, Trp539, Phe575, Ala576 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, H.; Tang, X.; Yang, L.; Yang, S.; Wu, P. Fermentation-Driven Generation of α-Glucosidase Inhibitory Whey Peptides by Marine-Derived Probiotic Lacticaseibacillus casei DS31: Activity Enrichment and Peptidomics. Fermentation 2026, 12, 74. https://doi.org/10.3390/fermentation12020074
Zhang H, Tang X, Yang L, Yang S, Wu P. Fermentation-Driven Generation of α-Glucosidase Inhibitory Whey Peptides by Marine-Derived Probiotic Lacticaseibacillus casei DS31: Activity Enrichment and Peptidomics. Fermentation. 2026; 12(2):74. https://doi.org/10.3390/fermentation12020074
Chicago/Turabian StyleZhang, Han, Xu Tang, Longhe Yang, Shen Yang, and Peng Wu. 2026. "Fermentation-Driven Generation of α-Glucosidase Inhibitory Whey Peptides by Marine-Derived Probiotic Lacticaseibacillus casei DS31: Activity Enrichment and Peptidomics" Fermentation 12, no. 2: 74. https://doi.org/10.3390/fermentation12020074
APA StyleZhang, H., Tang, X., Yang, L., Yang, S., & Wu, P. (2026). Fermentation-Driven Generation of α-Glucosidase Inhibitory Whey Peptides by Marine-Derived Probiotic Lacticaseibacillus casei DS31: Activity Enrichment and Peptidomics. Fermentation, 12(2), 74. https://doi.org/10.3390/fermentation12020074
