Benefits of Kombucha Consumption: A Systematic Review of Clinical Trials Focused on Microbiota and Metabolic Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol, Eligibility Criteria, and Search Strategy
2.2. Search Strategy and Eligibility Criteria
2.3. Study Selection and Data Extraction
2.4. Assessment of Risk of Bias
3. Results
3.1. Description of Included Studies
3.2. Characteristics of Included Studies
3.3. Kombucha Production and Characterization
Study | Type of Tea | Fermentation Details | Additional Ingredients | Key Components per Serving |
---|---|---|---|---|
Pilipenko et al. (2022) [29] | Black tea | Pasteurized non-alcoholic kombucha-based beverage with inulin and B vitamins. Fermentation details are not provided. | Inulin, B1, B2, B3, B6, folic acid, and natural flavor additives such as blackcurrant berries, juniper, strawberry, lemon leaves, mango, and passion fruit | 2.57 g of carbohydrates (sucrose: 0.22 g; glucose: 1.32 g; fructose: 1.03 g), 1.15 g inulin, 0.4 mg of vitamin B1, 0.21 mg of B2, 2.74 mg of B3, 0.48 mg of B6, and 24 mcg of folic acid, and 13 kcal per 100 mL |
Atkinson et al. (2023) [34] | 75% green tea and 25% oolong tea | Commercial organic kombucha (The Good Brew Kombucha Company Pty Ltd., Brunswick, VIC, Australia) | None reported | ~200 probiotic species, high concentration of polyphenols, and 3 g of available carbohydrates (1.7 g sugars) per 330 mL |
Mendelson et al. (2023) [35] | Green tea | Traditional fermentation with SCOBY + second fermentation in barrels. Produced by Craft Kombucha (Washington, DC, USA). | 10% sucrose, 0.6% freeze-dried ginger powder | Not specified |
Fraiz et al. (2024a) [31]; Costa et al. (2025) [30] | Black tea | Following Brazilian MAPA guidelines. 12 g tea + 50 g sugar/L. 7 days at 25 °C in BOD incubator | None | 2.6 g of sucrose, 138 mg of total phenolic, 0.24 g of theaflavin, and 3.8 g of thearubigin per 200 mL |
Fraiz et al. (2024b) [32]; Fraiz et al. (2024c) [33] | Green tea | Following MAPA guidelines. 12 g tea + 50 g sugar/L. pH adjusted to 4.2–4.4 with fermented kombucha. 5 days at 25 °C in BOD incubator. | None | 4.5 g of sucrose, 64 mg of total phenolics, and 92 phenolic compounds per 200 mL |
Ecklu-Mensah et al. (2024) [36] | Commercial kombucha with patented probiotic mix: Bacillus coagulans, Saccharomyces boulardii, Lactobacillus sp. | Kiwi and ginger juice | Bacillus coagulans (1 billion), S. boulardii (4 billion), Lactobacillus (1 billion) 100 mg lactic, 75 mg acetic, 1400 mg glucuronic, and 650 mg gluconic acids per 16 oz |
3.4. Dietary Interventions
3.5. Risk of Bias Assessment
3.6. Evaluated Outcomes
3.6.1. Gastrointestinal Symptoms and Intestinal Health Markers
3.6.2. Changes in Fecal and Salivary Microbiota and Metabolic Functional Pathways
3.6.3. Cardiometabolic Health and Inflammation
3.6.4. Anthropometry and Body Composition
Author (Year) | Study Design and Duration | Kombucha Type and Dosage | Sample Characteristics | Groups | Main Health Outcomes |
---|---|---|---|---|---|
Pilipenko et al. (2022) [29] | Clinical trial 10 days | Pasteurized black tea kombucha, enriched with inulin and B vitamins (220 mL) | Individuals with constipation-predominant IBS Age: 18 to 80 years | G1: Kombucha; n = 20 G2: Control (water); n = 20 | G1 vs. G2: improves stool consistency and ↓ sensation of incomplete evacuation G1 vs. baseline: ↑ stool frequency G1 vs. baseline: ↔ bilirubin, creatinine, urea, ALT, AST, GGT, FBG, total protein, potassium, sodium, iron |
Atkinson et al. (2023) [34] | Randomized, placebo-controlled, crossover study Acute | Organic green tea and oolong kombucha (330 mL) | Healthy individuals Age: 18 to 45 years | G1: Kombucha; n = 11 G2: Control (sparkling water); n = 11 G3: Placebo (diet lemonade soda); n = 11 | G1 vs. G2 and G3: ↓ glycemic index G1 vs. G2: ↓ insulin index |
Mendelson et al. (2023) [35] | Randomized, double-blind, crossover clinical trial 4 weeks | Green tea kombucha (240 mL) | Individuals with type 2 diabetes mellitus Age: >18 years | G1: Kombucha; n = 12 G2: Placebo (unfermented carbonated beverage); n = 12 | G1 vs. baseline: ↓ FBG G1 vs. G2: ↔ FBG |
Fraiz et al. (2024a) [31] | Clinical trial 8 weeks | Black tea kombucha (200 mL) | Individuals with or without obesity Age: 18 to 45 years | G1: Kombucha—without obesity; n = 20 G2: Kombucha—with obesity; n = 16 | G1 vs. baseline: ↑ total cholesterol, ALP G1 vs. baseline: ↔ ALT, AST, FBG, FLI, GGT, HDL, HOMA-IR, LDL, TG, TyG, insulin, creatinine, urea G2 vs. baseline: ↓ insulin, HOMA-IR, GGT G2 vs. baseline: ↔ ALP, ALT, AST, TC, FLI, FBG, HDL, LDL, TG, TyG, creatinine, urea |
Fraiz et al. (2024b) [32] | Randomized clinical trial 10 weeks | Green tea kombucha (200 mL) | Individuals with excess body weight Age: 18 to 45 years | G1: Kombucha + energy-restricted diet; n = 30 G2: Control (energy-restricted diet); n = 29 | G1 vs. G2: ↑ salivary alpha and beta diversity G1 vs. G2: ↓ IL-6, Bacillota/Bacteroidota ratio, and bacterial species (e.g., Schaalia odontolytica, Lachnoanaerobaculum umeaense, Veillonella dispar, Prevotella pallens) G1 vs. baseline: ↓ weight, BMI, WC, HC, NC, waist-to-height ratio, conicity-index, ABSI, AVI, BRI, LAP, trunk BF, android BF, gynoid BF, total BF, android MM, gynoid MM, total MM, trunk BF, android BF, gynoid BF, total BF, IL-1β, IL-8 |
Fraiz et al. (2024c) [33] | Randomized clinical trial 10 weeks | Green tea kombucha (200 mL) | Individuals with excess body weight Age: 18 to 45 years | G1: Kombucha (+energy-restricted diet); n = 30 G2: Control (energy-restricted diet); n = 29 | G1 vs. G2: ↓ gastrointestinal symptoms (total score, reflux, having a stomach full of air, hard stools, and not completely emptying the intestine), ↑ putative metabolites G1 vs. baseline: ↑ total score of quality of life and domains (general health, vitality, and role of emotional), alpha diversity (Chao1), ↓ mannitol excretion and butyric acid G1 vs. G2: ↔ quality of life, intestinal permeability markers, fecal microbiota abundance, Bacillota/Bacteroidota ratio, alpha and beta diversity |
Costa et al. (2025) [30] | Clinical trial 8 weeks | Black tea kombucha (200 mL) | Healthy individuals or those with excess body weight Age: 18 to 45 years | G1: Kombucha—without obesity; n = 21 G2: Kombucha—with obesity; n = 17 | G1 vs. baseline: ↑ fungal diversity and bacterial and fungal abundance (↑ Pichia, Dekkera, Saccharomyces) G2 vs. baseline: ↑ fungal diversity and bacterial and fungal abundance (↑ Bacteroidota, Akkermanciaceae, Subdoligranulum, Pichia, Dekkera, Saccharomyces;↓ Ruminococcus, Dorea, Exophiala, Rhodotorula) G1 and G2 vs. baseline: ↓ Bacillota/Bacteroidota ratio G1 and G2 vs. baseline: ↔ lactulose and mannitol excretion, zonulin, LBP, SFCA, alpha and beta diversity |
Ecklu-Mensah et al. (2024) [36] | Randomized clinical trial 8 weeks | Kombucha from a mixture of green tea and black tea (473.18 mL) | Healthy individuals Age: 21 to 55 years | G1: Kombucha; n = 16 G2: Control (without kombucha); n = 8 | G1 vs. baseline: ↑ insulin, HOMA-IR, and bacterial abundance (Weizmannia coagulans), ↓ Shannon index G1 vs. G2 and vs. baseline: ≠ beta diversity G1 vs. G2: ↔ anthropometric/body composition parameters, cardiometabolic and inflammation markers, alpha diversity and OGUs |
3.6.5. Quality of Life and Metabolomics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACOX1 | Acyl-CoA oxidase 1 |
AMPK | AMP-activated protein kinase |
BSS | Bristol Stool Scale |
CAT | Catalase |
CD36 | Cluster of differentiation 36 |
CRP | C-reactive protein |
CPT1 | Carnitine palmitoyltransferase 1 |
DGAT2 | Diacylglycerol acyltransferase 2 |
DSL | D-saccharic-1,4-lactone |
FABP1 | Fatty acid-binding protein 1 |
FBG | Fasting blood glucose |
FFQ | Food Frequency Questionnaire |
GlcUA | Glucuronic acid |
GGT | Gamma-glutamyl transferase |
GLP-1 | Glucagon-like peptide-1 |
GLUT-1 | Glucose transporter 1 |
HOMA-IR | Homeostasis model assessment for insulin resistance |
HbA1c | Hemoglobin A1c |
IBS | Irritable bowel syndrome |
IL | Interleukin |
LBP | LPS-binding protein |
LPS | Lipopolysaccharide |
MAPA | Ministry of Agriculture, Livestock and Food Supply (Brazil) |
MCAD | Medium-chain acyl-CoA dehydrogenase |
NCDs | Non-communicable diseases |
NF-κB | Nuclear factor kappa B |
PGE2 | Prostaglandin E2 |
PPAR | Peroxisome proliferator-activated receptor |
GSH | Reduced glutathione |
GST | Glutathione S-transferase |
ROS | Reactive oxygen species |
SCFA | Short-chain fatty acids |
SCOBY | Symbiotic culture of bacteria and yeasts |
SOD | Superoxide dismutase |
SREBP-1C | Sterol regulatory element-binding protein-1C |
T2D | Type 2 diabetes |
TNF | Tumor necrosis factor |
TyG | Triglyceride-glucose index |
eGFR | Estimated glomerular filtration rate |
Appendix A
Appendix A.1. Gastrointestinal Health
Appendix A.2. Fecal and Salivary Microbiota
Appendix A.3. Cardiometabolic and Inflammation Markers
Appendix A.4. Anthropometry and Body Composition
Appendix A.5. Quality of Life and Metabolomics
References
- Lobstein, T.; Jackson-Leach, R.; Powis, J.; Thompson, R.; Jackson-Leach, R. World Obesity Atlas 2025; World Obesity Federation: London, UK, 2025; Available online: https://www.worldobesity.org/resources/resource-library/world-obesity-atlas-2025 (accessed on 9 January 2025).
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose Tissue Inflammation and Metabolic Dysfunction in Obesity. Am. J. Physiol.-Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef] [PubMed]
- Gasmi Benahmed, A.; Gasmi, A.; Doşa, A.; Chirumbolo, S.; Mujawdiya, P.K.; Aaseth, J.; Dadar, M.; Bjørklund, G. Association between the Gut and Oral Microbiome with Obesity. Anaerobe 2021, 70, 102248. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Zou, Z.-P.; Ye, B.-C.; Zhou, Y. Gut Microbiota and Associated Metabolites: Key Players in High-Fat Diet-Induced Chronic Diseases. Gut Microbes 2025, 17, 2494703. [Google Scholar] [CrossRef] [PubMed]
- D’Almeida, A.P.; Neta, A.A.I.; de Andrade-Lima, M.; de Albuquerque, T.L. Plant-Based Probiotic Foods: Current State and Future Trends. Food Sci. Biotechnol. 2024, 33, 3401–3422. [Google Scholar] [CrossRef]
- Andrade, D.K.A.; Wang, B.; Lima, E.M.F.; Shebeko, S.K.; Ermakov, A.M.; Khramova, V.N.; Ivanova, I.V.; Rocha, R.d.S.; Vaz-Velho, M.; Mutukumira, A.N.; et al. Kombucha: An Old Tradition into a New Concept of a Beneficial, Health-Promoting Beverage. Foods 2025, 14, 1547. [Google Scholar] [CrossRef]
- Shi, S.; Wei, Y.; Lin, X.; Liang, H.; Zhang, S.; Chen, Y.; Dong, L.; Ji, C. Microbial Metabolic Transformation and Antioxidant Activity Evaluation of Polyphenols in Kombucha. Food Biosci. 2023, 51, 102287. [Google Scholar] [CrossRef]
- de Noronha, M.C.; Cardoso, R.R.; dos Santos D’Almeida, C.T.; Vieira do Carmo, M.A.; Azevedo, L.; Maltarollo, V.G.; Júnior, J.I.R.; Eller, M.R.; Cameron, L.C.; Ferreira, M.S.L.; et al. Black Tea Kombucha: Physicochemical, Microbiological and Comprehensive Phenolic Profile Changes during Fermentation, and Antimalarial Activity. Food Chem. 2022, 384, 132515. [Google Scholar] [CrossRef]
- Zailani, N.S.; Adnan, A. Substrates and metabolic pathways in symbiotic culture of bacteria and yeast (SCOBY) fermentation: A mini review. J. Teknol. 2022, 84, 155–165. [Google Scholar] [CrossRef]
- Esatbeyoglu, T.; Sarikaya Aydin, S.; Gültekin Subasi, B.; Erskine, E.; Gök, R.; Ibrahim, S.A.; Yilmaz, B.; Özogul, F.; Capanoglu, E. Additional Advances Related to the Health Benefits Associated with Kombucha Consumption. Crit. Rev. Food Sci. Nutr. 2022, 64, 6102–6119. [Google Scholar] [CrossRef]
- Chong, A.Q.; Lau, S.W.; Chin, N.L.; Talib, R.A.; Basha, R.K. Fermented Beverage Benefits: A Comprehensive Review and Comparison of Kombucha and Kefir Microbiome. Microorganisms 2023, 11, 1344. [Google Scholar] [CrossRef]
- Vargas, B.K.; Fabricio, M.F.; Záchia Ayub, M.A. Health Effects and Probiotic and Prebiotic Potential of Kombucha: A Bibliometric and Systematic Review. Food Biosci. 2021, 44, 101332. [Google Scholar] [CrossRef]
- Antolak, H.; Piechota, D.; Kucharska, A. Kombucha Tea—A Double Power of Bioactive Compounds from Tea and Symbiotic Culture of Bacteria and Yeasts (SCOBY). Antioxidants 2021, 10, 1541. [Google Scholar] [CrossRef] [PubMed]
- Chaluvadi, S.; Hotchkiss, A.T.; Smith, B.; McVaugh, B.; White, A.K.; Guron, G.K.P.; Renye, J.A.; Yam, K.L. Key Kombucha Process Parameters for Optimal Bioactive Compounds and Flavor Quality. Fermentation 2024, 10, 605. [Google Scholar] [CrossRef]
- Sogin, J.H.; Worobo, R.W. Primary Metabolites and Microbial Diversity in Commercial Kombucha Products. Fermentation 2024, 10, 385. [Google Scholar] [CrossRef]
- Alves, R.O.; de Oliveira, R.L.; de Moraes, M.M.; Santos, W.W.V.; Gomes da Câmara, C.A.; da Silva, S.P.; Porto, C.S.; Porto, T.S. Evaluation of the Impact of Fermentation Conditions, Scale Up and Stirring on Physicochemical Parameters, Antioxidant Capacity and Volatile Compounds of Green Tea Kombucha. Fermentation 2025, 11, 201. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Kupnicka, P.; Melkis, K.; Mielczarek, O.; Walczyńska, J.; Chlubek, D.; Janda-Milczarek, K. Effects of Fermentation Time and Type of Tea on the Content of Micronutrients in Kombucha Fermented Tea. Nutrients 2022, 14, 4828. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Kałduńska, J.; Kochman, J.; Janda, K. Chemical Profile and Antioxidant Activity of the Kombucha Beverage Derived from White, Green, Black and Red Tea. Antioxidants 2020, 9, 447. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, Y.; Wang, W.; Wang, Z.; Han, S.; Zhou, P. Kombucha Enables to Inhibit Digestive Enzymes Activity and Adipocyte Differentiation of OP9 Cells. J. Food Sci. 2024, 89, 10053–10063. [Google Scholar] [CrossRef]
- Wang, P.; Feng, Z.; Sang, X.; Chen, W.; Zhang, X.; Xiao, J.; Chen, Y.; Chen, Q.; Yang, M.; Su, J. Kombucha Ameliorates LPS-Induced Sepsis in a Mouse Model. Food Funct. 2021, 12, 10263–10280. [Google Scholar] [CrossRef]
- Costa, M.A.D.C.; Dias Moreira, L.D.P.; Duarte, V.D.S.; Cardoso, R.R.; São José, V.P.B.D.; Silva, B.P.D.; Grancieri, M.; Corich, V.; Giacomini, A.; Bressan, J.; et al. Kombuchas from Green and Black Tea Modulate the Gut Microbiota and Improve the Intestinal Health of Wistar Rats Fed a High-Fat High-Fructose Diet. Nutrients 2022, 14, 5234. [Google Scholar] [CrossRef]
- Permatasari, H.K.; Nurkolis, F.; Ben Gunawan, W.; Yusuf, V.M.; Yusuf, M.; Kusuma, R.J.; Sabrina, N.; Muharram, F.R.; Taslim, N.A.; Mayulu, N.; et al. Modulation of Gut Microbiota and Markers of Metabolic Syndrome in Mice on Cholesterol and Fat Enriched Diet by Butterfly Pea Flower Kombucha. Curr. Res. Food Sci. 2022, 5, 1251–1265. [Google Scholar] [CrossRef] [PubMed]
- Dey, P.; Sasaki, G.Y.; Wei, P.; Li, J.; Wang, L.; Zhu, J.; McTigue, D.; Yu, Z.; Bruno, R.S. Green Tea Extract Prevents Obesity in Male Mice by Alleviating Gut Dysbiosis in Association with Improved Intestinal Barrier Function That Limits Endotoxin Translocation and Adipose Inflammation. J. Nutr. Biochem. 2019, 67, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, R.R.; Moreira, L.D.P.D.; de Campos Costa, M.A.; Toledo, R.C.L.; Grancieri, M.; do Nascimento, T.P.; Ferreira, M.S.L.; da Matta, S.L.P.; Eller, M.R.; Duarte Martino, H.S.; et al. Kombuchas from Green and Black Teas Reduce Oxidative Stress, Liver Steatosis and Inflammation, and Improve Glucose Metabolism in Wistar Rats Fed a High-Fat High-Fructose Diet. Food Funct. 2021, 12, 10813–10827. [Google Scholar] [CrossRef] [PubMed]
- Moreira, G.V.; Araujo, L.C.C.; Murata, G.M.; Matos, S.L.; Carvalho, C.R.O. Kombucha Tea Improves Glucose Tolerance and Reduces Hepatic Steatosis in Obese Mice. Biomed. Pharmacother. 2022, 155, 113660. [Google Scholar] [CrossRef]
- Costa, M.A.d.C.; Vilela, D.L.d.S.; Fraiz, G.M.; Lopes, I.L.; Coelho, A.I.M.; Castro, L.C.V.; Martin, J.G.P. Effect of Kombucha Intake on the Gut Microbiota and Obesity-Related Comorbidities: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 3851–3866. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Aromataris, E.; Munn, Z. (Eds.) JBI Manual for Evidence Synthesis; JBI: Adelaide, Australia, 2024; Available online: https://synthesismanual.jbi.global (accessed on 17 February 2025).
- Pilipenko, V.I.; Isakov, V.A.; Morozov, S.V.; Vlasova, A.V.; Kochetkova, A.A. Efficacy of Newly Developed Kombucha-Based Specialized Food Product for Treatment of Constipation-Predominant Irritable Bowel Syndrome. Probl. Nutr. 2022, 91, 95–104. [Google Scholar] [CrossRef]
- Costa, M.A.d.C.; da Silva Duarte, V.; Fraiz, G.M.; Cardoso, R.R.; da Silva, A.; Martino, H.S.D.; dos Santos D’Almeida, C.T.; Ferreira, M.S.L.; Corich, V.; Hamaker, B.R.; et al. Regular Consumption of Black Tea Kombucha Modulates the Gut Microbiota in Individuals with and without Obesity. J. Nutr. 2025, 155, 1331–1349. [Google Scholar] [CrossRef]
- Fraiz, G.M.; Costa, M.A.C.; Cardoso, R.R.; Hébert, J.R.; Zhao, L.; Corich, V.; Giacomini, A.; Milagro, F.I.; Barros, F.A.R.; Bressan, J. Black Tea Kombucha Consumption: Effect on Cardiometabolic Parameters and Diet Quality of Individuals with and without Obesity. Fermentation 2024, 10, 384. [Google Scholar] [CrossRef]
- Fraiz, G.M.; Bonifácio, D.B.; Lacerda, U.V.; Cardoso, R.R.; Corich, V.; Giacomini, A.; Martino, H.S.D.; Echeverría, S.E.; de Barros, F.A.R.; Milagro, F.I.; et al. Green Tea Kombucha Impacts Inflammation and Salivary Microbiota in Individuals with Excess Body Weight: A Randomized Controlled Trial. Nutrients 2024, 16, 3186. [Google Scholar] [CrossRef]
- Fraiz, G.M.; Bonifácio, D.B.; Lacerda, U.V.; Cardoso, R.R.; Corich, V.; Giacomini, A.; Martino, H.S.D.; Esteban-Echeverría, S.; Romo-Hualde, A.; Muñoz-Prieto, D.; et al. The Impact of Green Tea Kombucha on the Intestinal Health, Gut Microbiota, and Serum Metabolome of Individuals with Excess Body Weight in a Weight Loss Intervention: A Randomized Controlled Trial. Foods 2024, 13, 3635. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, F.S.; Cohen, M.; Lau, K.; Brand-Miller, J.C. Glycemic Index and Insulin Index after a Standard Carbohydrate Meal Consumed with Live Kombucha: A Randomised, Placebo-Controlled, Crossover Trial. Front. Nutr. 2023, 10, 1036717. [Google Scholar] [CrossRef] [PubMed]
- Mendelson, C.; Sparkes, S.; Merenstein, D.J.; Christensen, C.; Sharma, V.; Desale, S.; Auchtung, J.M.; Kok, C.R.; Hallen-Adams, H.E.; Hutkins, R. Kombucha Tea as an Anti-Hyperglycemic Agent in Humans with Diabetes—A Randomized Controlled Pilot Investigation. Front. Nutr. 2023, 10, 1190248. [Google Scholar] [CrossRef] [PubMed]
- Ecklu-Mensah, G.; Miller, R.; Maseng, M.G.; Hawes, V.; Hinz, D.; Kim, C.; Gilbert, J.A. Modulating the Human Gut Microbiome and Health Markers through Kombucha Consumption: A Controlled Clinical Study. Sci. Rep. 2024, 14, 31647. [Google Scholar] [CrossRef]
- Souza, G.S.; Sardá, F.A.H.; Giuntini, E.B.; Gumbrevicius, I.; de Morais, M.B.; de Menezes, E.W. Translation and validation of the brazilian portuguese version of the gastrointestinal symptom rating scale (GSRS) questionnaire. Arq. Gastroenterol. 2016, 53, 146–151. [Google Scholar] [CrossRef]
- Bortolomedi, B.M.; Paglarini, C.S.; Brod, F.C.A. Bioactive Compounds in Kombucha: A Review of Substrate Effect and Fermentation Conditions. Food Chem. 2022, 385, 132719. [Google Scholar] [CrossRef]
- Soares, M.G.; de Lima, M.; Reolon Schmidt, V.C. Technological Aspects of Kombucha, Its Applications and the Symbiotic Culture (SCOBY), and Extraction of Compounds of Interest: A Literature Review. Trends Food Sci. Technol. 2021, 110, 539–550. [Google Scholar] [CrossRef]
- Wan, M.L.Y.; Co, V.A.; El-Nezami, H. Dietary Polyphenol Impact on Gut Health and Microbiota. Crit. Rev. Food Sci. Nutr. 2021, 61, 690–711. [Google Scholar] [CrossRef]
- de Freitas, P.L.; Miranda, J.P.N.; França, L.M.; Paes, A.M. de A. Plant-Derived (Poly)Phenols and Their Metabolic Outcomes: The Pursuit of a Role for the Gut Microbiota. Nutrients 2022, 14, 3510. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Y.; Wang, J.; Geng, W. Kombucha Reduces Hyperglycemia in Type 2 Diabetes of Mice by Regulating Gut Microbiota and Its Metabolites. Foods 2022, 11, 754. [Google Scholar] [CrossRef]
- Xu, Z.; Yeoh, Y.K.; Tun, H.M.; Fei, N.; Zhang, J.; Morrison, M.; Kamm, M.A.; Yu, J.; Chan, F.K.L.; Ng, S.C. Variation in the Metagenomic Analysis of Fecal Microbiome Composition Calls for a Standardized Operating Approach. Microbiol. Spectr. 2024, 12, e01516-24. [Google Scholar] [CrossRef] [PubMed]
- Na, J.-R.; Kim, E.; Na, C.-S.; Kim, S. Citric Acid-Enriched Extract of Ripe Prunus Mume (Siebold) Siebold & Zucc. Induces Laxative Effects by Regulating the Expression of Aquaporin 3 and Prostaglandin E2 in Rats with Loperamide-Induced Constipation. J. Med. Food 2022, 25, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cen, S.; Wang, G.; Lee, Y.; Zhao, J.; Zhang, H.; Chen, W. Acetic Acid and Butyric Acid Released in Large Intestine Play Different Roles in the Alleviation of Constipation. J. Funct. Foods 2020, 69, 103953. [Google Scholar] [CrossRef]
- Ibarlucea-Jerez, M.; Monnoye, M.; Chambon, C.; Gérard, P.; Licandro, H.; Neyraud, E. Fermented Food Consumption Modulates the Oral Microbiota. NPJ Sci. Food 2024, 8, 55. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, H.; Zhang, W.; Ni, L. Salivary Microbiota Shifts under Sustained Consumption of Oolong Tea in Healthy Adults. Nutrients 2020, 12, 966. [Google Scholar] [CrossRef]
- Schamarek, I.; Anders, L.; Chakaroun, R.M.; Kovacs, P.; Rohde-Zimmermann, K. The Role of the Oral Microbiome in Obesity and Metabolic Disease: Potential Systemic Implications and Effects on Taste Perception. Nutr. J. 2023, 22, 28. [Google Scholar] [CrossRef]
- Gupta, U.; Dey, P. The Oral Microbial Odyssey Influencing Chronic Metabolic Disease. Arch. Physiol. Biochem. 2024, 130, 831–847. [Google Scholar] [CrossRef]
- Yamazaki, K.; Kamada, N. Exploring the Oral-Gut Linkage: Interrelationship between Oral and Systemic Diseases. Mucosal Immunol. 2024, 17, 147–153. [Google Scholar] [CrossRef]
- Vyas, T.; Nagi, R.; Bhatia, A.; Bains, S. Therapeutic Effects of Green Tea as an Antioxidant on Oral Health—A Review. J. Fam. Med. Prim. Care 2021, 10, 3998. [Google Scholar] [CrossRef]
- Manzione, M.G.; Martorell, M.; Sharopov, F.; Bhat, N.G.; Kumar, N.V.A.; Fokou, P.V.T.; Pezzani, R. Phytochemical and Pharmacological Properties of Asperuloside, a Systematic Review. Eur. J. Pharmacol. 2020, 883, 173344. [Google Scholar] [CrossRef]
- Surai, P.F.; Earle-Payne, K.; Kidd, M.T. Taurine as a Natural Antioxidant: From Direct Antioxidant Effects to Protective Action in Various Toxicological Models. Antioxidants 2021, 10, 1876. [Google Scholar] [CrossRef] [PubMed]
- Batista, P.; Penas, M.R.; Pintado, M.; Oliveira-Silva, P. Review Kombucha: Perceptions and Future Prospects. Foods 2022, 11, 1977. [Google Scholar] [CrossRef] [PubMed]
- Wanyo, P.; Chamsai, T.; Toontom, N.; Nghiep, L.K.; Tudpor, K. Evaluation of In Vitro Digested Mulberry Leaf Tea Kombucha: A Functional Fermented Beverage with Antioxidant, Anti-Inflammatory, Antihyperglycemic, and Antihypertensive Potentials. Fermentation 2025, 11, 258. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, S.; Wei, X.; Zhang, M.; Chen, Y.; Mao, X.; Chen, G.; Liu, C. Short-Term Moderate Caloric Restriction in a High-Fat Diet Alleviates Obesity via AMPK/SIRT1 Signaling in White Adipocytes and Liver. Food Nutr. Res. 2022, 66. [Google Scholar] [CrossRef]
- Lee, C.; Kim, J.; Wang, S.; Sung, S.; Kim, N.; Lee, H.-H.; Seo, Y.-S.; Jung, Y. Hepatoprotective Effect of Kombucha Tea in Rodent Model of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. Int. J. Mol. Sci. 2019, 20, 2369. [Google Scholar] [CrossRef]
- Hyun, J.; Lee, Y.; Wang, S.; Kim, J.; Kim, J.; Cha, J.; Seo, Y.-S.; Jung, Y. Kombucha Tea Prevents Obese Mice from Developing Hepatic Steatosis and Liver Damage. Food Sci. Biotechnol. 2016, 25, 861–866. [Google Scholar] [CrossRef]
- Takhttavous, A.; Saberi-Karimian, M.; Hafezi, S.G.; Esmaily, H.; Hosseini, M.; Ferns, G.A.; Amirfakhrian, E.; Ghamsary, M.; Ghayour-Mobarhan, M.; Alinezhad-Namaghi, M. Predicting the 10-Year Incidence of Dyslipidemia Based on Novel Anthropometric Indices, Using Data Mining. Lipids Health Dis. 2024, 23, 33. [Google Scholar] [CrossRef]
- Zubaidah, E.; Afgani, C.A.; Kalsum, U.; Srianta, I.; Blanc, P.J. Comparison of in Vivo Antidiabetes Activity of Snake Fruit Kombucha, Black Tea Kombucha and Metformin. Biocatal. Agric. Biotechnol. 2019, 17, 465–469. [Google Scholar] [CrossRef]
- Martínez-Leal, J.; Ponce-García, N.; Escalante-Aburto, A. Recent Evidence of the Beneficial Effects Associated with Glucuronic Acid Contained in Kombucha Beverages. Curr. Nutr. Rep. 2020, 9, 163–170. [Google Scholar] [CrossRef]
- Massoud, R.; Jafari, R.; Khosravi-Darani, K. Kombucha as a Health-Beneficial Drink for Human Health. Plant Foods Hum. Nutr. 2024, 79, 251–259. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions Version 6.5 (Updated August 2024); Cochrane: Oxford, UK, 2024; Available online: www.training.cochrane.org/handbook (accessed on 17 February 2025).
- Ciconelli, R.M.; Ferraz, M.B.; Santos, W.; Meinão, I.; Quaresma, M.R. Brazilian-Portuguese Version of the SF-36. A Reliable and Valid Quality of Life Outcome Measure. Rev. Bras. Reumatol. 1999, 39, 143–150. [Google Scholar]
Parameter | Inclusion Criteria |
---|---|
Population | Adults ≥ 18 years old healthy or with cardiometabolic diseases |
Intervention | Kombucha consumption |
Comparison | Without kombucha consumption |
Outcomes | Cardiometabolic and inflammation parameters, anthropometry, human microbiota, and intestinal health |
Study design | Pre- and post-interventions and randomized clinical trials |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraiz, G.M.; Bonifácio, D.B.; de Paulo, R.S.; Teixeira, C.M.; Martino, H.S.D.; Barros, F.A.R.d.; Milagro, F.I.; Bressan, J. Benefits of Kombucha Consumption: A Systematic Review of Clinical Trials Focused on Microbiota and Metabolic Health. Fermentation 2025, 11, 353. https://doi.org/10.3390/fermentation11060353
Fraiz GM, Bonifácio DB, de Paulo RS, Teixeira CM, Martino HSD, Barros FARd, Milagro FI, Bressan J. Benefits of Kombucha Consumption: A Systematic Review of Clinical Trials Focused on Microbiota and Metabolic Health. Fermentation. 2025; 11(6):353. https://doi.org/10.3390/fermentation11060353
Chicago/Turabian StyleFraiz, Gabriela Macedo, Dandara Baia Bonifácio, Rayanne Santos de Paulo, Carolynne Martins Teixeira, Hércia Stampini Duarte Martino, Frederico Augusto Ribeiro de Barros, Fermín I. Milagro, and Josefina Bressan. 2025. "Benefits of Kombucha Consumption: A Systematic Review of Clinical Trials Focused on Microbiota and Metabolic Health" Fermentation 11, no. 6: 353. https://doi.org/10.3390/fermentation11060353
APA StyleFraiz, G. M., Bonifácio, D. B., de Paulo, R. S., Teixeira, C. M., Martino, H. S. D., Barros, F. A. R. d., Milagro, F. I., & Bressan, J. (2025). Benefits of Kombucha Consumption: A Systematic Review of Clinical Trials Focused on Microbiota and Metabolic Health. Fermentation, 11(6), 353. https://doi.org/10.3390/fermentation11060353