Citric Acid: Properties, Microbial Production, and Applications in Industries
Abstract
:1. Introduction
2. Physical and Chemical Properties
Properties | Characteristic | References |
---|---|---|
Molar mass | Anhydrous: 192.12 g∙mol−1 Monohydrate: 210.14 g∙mol−1 | [11] |
Appearance and form | powdery, colorless transparent crystals or white, granular, fine powder Anhydrous: monoclinic holohedral crystals. Monohydrate: rhombic crystals | [14] |
Melting point | Anhydrous: 153° C Monohydrate: ≈100 °C | [8] |
Boiling point | None, decomposition into water and CO2 > 175 °C | [24] |
Vapor pressure | 1.7 × 10−8 mmHg at 25 °C | [18] |
Density | Anhydrous: 1.665 g∙cm−3 at 20 °C Monohydrate: 1.542 g∙cm−3 at 20 °C | [14] |
Octanol/water partition coefficient | logPOW = −1.72 ± 0.4 at 20 °C | [10] |
Partition coefficient | logP = −1.198 ± 0.4 w 25 °C | [14] |
dissociation constant | pK1 = 3.128 pK2 = 4.761 at 25 °C pK3 = 6.396 | [14] |
Henry’s constant | KH = 2.3 ×·10−7 Pam3∙mol−1 | [25] |
Solubility |
| [14] |
3. Citric Acid Biosynthesis
3.1. The Beginning of Citric Acid Production
3.2. Microorganisms Producing Citric Acid
3.2.1. Production of Citric Acid Using Aspergillus niger Fungi
3.2.2. Citric Acid Metabolism in Aspergillus niger
3.2.3. Production of Citric Acid Using Yarrowia lipolytica Yeast
Substrate | Strain | Citric Acid | Cultivation Method | References |
---|---|---|---|---|
Glucose | Yarrowia lipolytica | 121–129 g∙dm−3 | SF | [66] |
Yarrowia lipolytica | 49 g∙dm−3 | SF | [67] | |
Yarrowia lipolytica VKM Y-2373 | 80–85 g∙dm−3 | FBF | [68] | |
Yarrowia lipolytica NRRL Y-1094 | 30.31 g∙dm−3 | SF | [69] | |
Pure glycerol | Yarrowia lipolytica NG40/UV7 | 115 g∙dm−3 | SF | [70] |
Waste glycerol | Yarrowia lipolytica NG40/UV7 | 112 g∙dm−3 | SF | [70] |
Yarrowia lipolytica SKY7 | 18.70 g∙dm−3 | FBF | [38] | |
Yarrowia lipolytica A101 | 75.9 g∙dm−3 | SF | [71] | |
Inulin | Yarrowia lipolytica SWJ-1b | 85 g∙dm−3 | SF | [72] |
Yarrowia lipolytica AWG7 INU 8 | 200 g∙dm−3 | RBF | [73] | |
Waste cooking oil | Yarrowia lipolytica SWJ-1b | 31 g∙dm−3 | SF | [74] |
4. Production of Citric Acid
4.1. Cultivation Methods and Conditions
Type of Cultivation | Process Parameters | Process Advantages | Process Disadvantages | References |
---|---|---|---|---|
Surface cultivation in liquid substrates (LSF) | Process Duration: 8–12 days Process yield: 70–75% | Ease of operation Energy-efficient Technically simple | Long duration Sensitive to contamination by other microorganisms Requires large production areas Generates large amounts of heat Production on a small and medium industrial scale | [29,32,82] |
Surface cultivation in solid substrates (SSF) | Process Duration: 4 days | Technically and technologically simple Low substrate cost Energy-efficient Low risk of contamination Low waste generation Low sensitivity to heavy metal pollution | Difficulties in controlling process parameters (pH, humidity, temperature) High product contamination High cost of product acquisition | [36,83,84,85] |
Submerged fermentation cultures (SF) | Process Duration: 4 days | Ability to control process parameters High process efficiency Low production costs Ease of maintaining sterile conditions | Sensitivity to the inhibitory effects of trace elements A large amount of waste is generated 80% of the world’s citric acid production | [29,50,82] |
4.1.1. Liquid Surface Fermentation Cultures
4.1.2. Solid-State Fermentation Cultures
4.1.3. Submerged Fermentation
4.2. Factors Influencing Citric Acid Production
4.2.1. Nitrogen
4.2.2. Phosphorus
4.2.3. Trace Elements
4.2.4. Low-Molecular-Weight Alcohols
4.2.5. The pH Value
4.2.6. Aeration and Mixing Rate
4.2.7. Temperature
4.3. Substrate
Substrate | Strain | Substrate Concentration | Cultivation Method | Yield | References |
---|---|---|---|---|---|
Sucrose | Aspergillus niger C–12 | 150 g∙dm−3 | SF | 77.7% (m/m) | [26] |
Aspergillus niger C–12 | 150 g∙dm−3 | SF | 81.2% (m/m) | ||
Aspergillus niger NCIM705 | 60 g∙dm−3 | SF | 30.7 g∙dm−3 | [162] | |
Glucose | Aspergillus niger PM–1 | 150 kg∙m−3 | SF | 121 kg∙m−3 | [86] |
Aspergillus niger Yang no. 2. | 0.12 mg∙dm−3 | SF | 15.4 mg∙mL−1 | [112] | |
Galactose | Aspergillus niger ATCC 12846 | 100 g∙dm−3 | SF | 0.3% | [115] |
Aspergillus niger ATCC 26036 | 100 g∙dm−3 | SF | 0.4% | ||
Aspergillus niger ATCC 26550 | 100 g∙dm−3 | SF | 0.1% | ||
Aspergillus niger IMI 31821 | 100 g∙dm−3 | SF | 2.3% | ||
Aspergillus niger IMI 83856 | 100 g∙dm−3 | SF | 1.5% | ||
Starch hydrolysates | Aspergillus niger UE–1 | 15% (glucose equivalent) | LSF | 490 g∙kg−1 | [163] |
Starch | Aspergillus niger GCB–47 | 150 g∙dm−3 | SF | 45.1 g∙dm−3 | [164] |
Aspergillus niger GCMC | 150 g∙dm−3 | SF | 69.5 g∙dm−3 | ||
Anhydrous glycerol | Aspergillus niger W78B | 150 g∙dm−3 | SF | 59.0 g dm−3 | [165] |
Anhydrous glycerol | Aspergillus niger PD66 | 100 g∙dm−3 | SF | 64.2% (m/m) | [166] |
Anhydrous glycerol + sucrose | Aspergillus niger PD66 | 135 g∙dm−3 +15 g∙dm−3 | SF | 95.80% (m/m) | [167] |
Substrate | Strain Aspergillus niger | Cultivation Method | Yield | References |
---|---|---|---|---|
Sugarcane bagasse | Aspergillus niger ATCC 9142 | SSF | 97.81 g∙kg−1 | [168] |
Aspergillus niger 14/20 | SSF | 50.01 μg∙g−1 | [147] | |
Aspergillus niger DS 1 | SSF | 31.8% | [169] | |
Sugarcane molasses | Aspergillus niger ATCC 9142 | SF | 106.65 g dm−3 | [170] |
Aspergillus niger EB–3 | SSF | 0.112 mg∙dm−3 | [171] | |
Aspergillus niger GCMC–7 | SF | 96.1 g dm−3 | [161] | |
Beet molasses | Aspergillus niger A20 | SLF | 29.7 g dm−3 | [172] |
Aspergillus niger A20 | SF | 8.6 g dm−3 | ||
Aspergillus niger W78B | SF | 110 g dm−3 | [173] | |
Cassava | Aspergillus niger FUO–2 | SF | 88.73 g dm−3 | [136] |
Aspergillus niger NRRL 2001 | SSF | 88.0 g∙kg−1 | [36] | |
Pineapple waste | Aspergillus niger DS 1 | SSF | 54.2% | [174] |
Apple waste | Aspergillus niger NRRL 567 | SSF | 65.6 | [151] |
Aspergillus niger NRRL 567 | SF | 8.3 g dm−3 | ||
Fruit waste– Parkia biglobosa | Aspergillus niger | SF | 1.15 g dm−3 | [123] |
Palm oil | Aspergillus niger IBO–103MNB | SSF | 337.94 g∙kg−1 | [149] |
Starch | Aspergillus niger ATCC 9142 | SF | 2.7 g dm−3 | [139] |
Whey | Aspergillus niger ATCC 9642 | SFC | 2.43 g dm−3 | [175] |
Date syrup | Aspergillus niger J4 | SF | 56.7 g dm−3 | [176] |
Peat | Aspergillus niger NRRL 567 | SF | 82.0 g∙kg−1 | [177] |
Distillery stillage | Aspergillus niger ATCC 9142 | SSF | 6.15 g∙kg−1 | [178] |
Aspergillus niger ATCC 201122 | SF | 71.63% | [179] | |
Molasses (14%) + corn starch (14%) + sucrose (5%) | Aspergillus niger NCIM 1055 | SF | 0.13 mg∙dm−3 | [121] |
Corn starch + sucrose (15%) | Aspergillus niger | SSF | 138.24 g∙kg−1 | [134] |
Date waste + whey | Aspergillus niger ATCC 6275 | SF | 32.4 g dm−3 | [180] |
Orange waste + cane molasses | Aspergillus niger von Tiegh 1867 | SF | 640 g∙kg−1 | [181] |
Grape waste + sucrose (15%) | Aspergillus niger | SSF | 34.4 g∙kg−1 | [182] |
Lime waste + sucrose (15%) | 28.6 g∙kg−1 |
Substrate | Strain Aspergillus niger | Cultivation Method | Yield | References |
---|---|---|---|---|
Molasses (70%) + waste glycerol (30%) | Aspergillus niger | SLF | 95% | [157] |
Cassava flour (70%) + corn flour (20%) + waste glycerol (10%) | SF | 88% | ||
Cassava flour (60%) + corn flour (20%) + waste glycerol (20%) | SF | 85% | ||
Glucose (80%) + waste glycerol (20%) | SF | 90% | ||
Waste glycerol | Aspergillus niger PD66 | SF | 6.2% (m/m) | [166] |
Waste glycerol | Aspergillus niger PD66 | SF | 114.14 g dm−3 | [185] |
5. Application of Citric Acid in the Food Industry
Industry | Application | References |
---|---|---|
Beverages—wines, juices, non-alcoholic beverages, syrups | Used as an acidity regulator in carbonated and non-carbonated beverages, a buffering agent, pH regulator | [12,197] |
Sweets—jams, jellies, candies | Used as an antioxidant, antibacterial agent, controlling sugar inversion and product pH for optimal gelling, preservative, providing a bitter taste and enhancing flavor | [192] |
Dairy products | Sodium citrate is used in cream production to stabilize casein, prevent the formation of creams during hot milk beverage production, and act as an emulsifier to stabilize the water and oil phases in cheese production. Aqueous solutions of citric acid are used for milkstone removal from equipment | [14] |
Meat products | It acts as a chelating agent, helping maintain the natural color and prevent discoloration of preserved meats; acts as an antioxidant and synergist for antibacterial agents; Sodium citrate is used in slaughterhouses to prevent coagulation or clotting of fresh blood | [32] |
Fruit and vegetable industry | Citric acid, along with ascorbic acid, inhibits enzyme activity and oxidation reactions that may deteriorate colors and flavors | [192] |
Oils | Used in the deodorization and hydrogenation of oil to chelate metal ions, catalyze the rancidity of fats, interrupt the formation of peroxides and other oxidation products in the auto-oxidation of oils | [37] |
Seafood | Prevents discoloration and the development of unwanted odors by chelating metals | [12] |
Industry | Application | References | |
---|---|---|---|
Pharmaceutical industry | Medicines, pharmaceutical preparations, blood banks | It is used as an anticoagulant, effervescent in combination with bicarbonates or carbonates, a flavoring agent, and a stabilizer. It imparts the desired sour taste, which helps mask medicinal flavors | [8,14,204,205] |
Cosmetics industry | Detergents, cosmetics | It is added to hair care products, cosmetics, and detergents for pH regulation and used as a stabilizer, buffering agent, and chelating agent to prevent discoloration | [14,206] |
Agriculture | Animal feeds | Enhances the bioavailability of mineral nutrient chelates, improves taste, regulates stomach pH, and enhances the effectiveness of animal feeds; used as a flavor enhancer in pet food | [207] |
Fertilizers | Forms chelate with Fe, Cu, Mg, and Zn, used for soil correction, increase phosphorus availability to plants, are employed to remove lead from contaminated soils, and are used for copper chelation in algaecides for water reservoirs | [208] | |
Other applications in industry | Textile industry | It is used for pH regulation, as a buffer, and as a chelating agent in the dyeing process | [37] |
Metallurgical industry | Cleans steam boiler from metal oxides and purifies iron and copper oxides used in nuclear reactor welding | ||
Electroplating | It is used as a chelating agent to control the metal deposition rate on substrates | ||
Biomedical engineering | Utilized as a copolymer in nanomaterials to encapsulate biologically active compounds | [209] | |
Water purification | Solutions of citric acid are used to remove iron, calcium, and other cations that damage cellulose acetate membranes used in reverse osmosis systems | [210] |
5.1. Newly Emerging Applications of Citric Acid
5.1.1. Cross-linking Agent and Plasticizer
5.1.2. Citric Acid in the Synthesis of Deep Eutectic Solvents
5.1.3. Antibacterial Agent
5.1.4. Deamidation of Gluten
5.1.5. Extractant
5.1.6. Inhibition of Protein Adhesion
6. Global Citric Acid Market
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amato, A.; Becci, A.; Beolchini, F. Citric acid bioproduction: The technological innovation change. Crit. Rev. Biotechnol. 2020, 40, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Li, W.J.; Yang, H.Q.; Chen, J. Hong Current strategies and future prospects for enhancing microbial production of citric acid. Appl. Microbiol. Biotechnol. 2019, 103, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Citric Acid Market Size, Trends and Forecast 2023–2028. Available online: https://www.imarcgroup.com/citric-acid-manufacturing-plant (accessed on 3 October 2023).
- Max, B.; Salgado, J.M.; Rodríguez, N.; Cortés, S.; Converti, A.; Domínguez, J.M. Biotechnological production of citric acid. Braz. J. Microbiol. 2010, 41, 862–875. [Google Scholar] [CrossRef] [PubMed]
- Behera, B.C.; Mishra, R.; Mohapatra, S. Microbial citric acid: Production, properties, application, and future perspectives. Food Front. 2021, 2, 62–76. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, S.; Tan, F.; Li, H.; Chu, R.; Wang, X.; Sun, H.; Zhang, M. A novel green production process of citric acid on the pilot scale by directly recycling its extraction effluent. J. Clean. Prod. 2020, 277, 124068. [Google Scholar] [CrossRef]
- Lende, S.V.; Karemore, H.; Umekar, M.J.; Lende, S.V.; Karemore, H.; Umekar, M.J. Review on production of citric acid by fermentation technology. GSC Biol. Pharm. Sci. 2021, 17, 85–93. [Google Scholar] [CrossRef]
- Lambros, M.; Tran, T.H.; Fei, Q.; Nicolaou, M. Citric Acid: A Multifunctional Pharmaceutical Excipient. Pharmaceutics 2022, 14, 972. [Google Scholar] [CrossRef]
- Mores, S.; de Vandenberghe, L.P.S.; Magalhães Júnior, A.I.; de Carvalho, J.C.; de Mello, A.F.M.; Pandey, A.; Soccol, C.R. Citric acid bioproduction and downstream processing: Status, opportunities, and challenges. Bioresour. Technol. 2021, 320, 124426. [Google Scholar] [CrossRef]
- Chemspider Search and Share Chemistry. Citric Acid |C6H8O7| ChemSpider. Royal Society of Chemistry. Available online: http://www.chemspider.com/Chemical-Structure.305.html?rid=4438fe13-8026-4f48-8dd8-a2625612fc65 (accessed on 22 June 2023).
- Apelblat, A. Physicochemical Properties of Inorganic Citrates. In Citric Acid; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 267–357. [Google Scholar]
- Dziezak, J.D. Encyclopedia of Food Sciences and Nutrition; Academic Press: San Diego, CA, USA, 2003. [Google Scholar] [CrossRef]
- Behera, B.C. Citric acid from Aspergillus niger: A comprehensive overview. Crit. Rev. Microbiol. 2020, 46, 727–749. [Google Scholar] [CrossRef]
- Fiume, M.; Heldreth, B. On the Safety Assessment of Citric Acid, Inorganic Citrate Salts, and Alkyl Citrate Esters as Used in Cosmetics. 2012. Available online: http://www.cir-safety.org/sites/default/files/citric032012FR.pdf (accessed on 22 June 2014).
- Verhoff, F. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011. [Google Scholar]
- Leśniak, W. Biotechnologia Żywności: Procesy Fermentacji i Biosyntezy; Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu: Wrocław, Poland, 2002. [Google Scholar]
- Poerwono, H.; Higashiyama, K.; Kubo, H.; Poernomo, A.T.; Suharjono; Sudiana, I.K.; Indrayanto, G. Citric Acid. Anal. Profiles Drug Subst. Excip. 2001, 28, 1–76. [Google Scholar] [CrossRef]
- The National Center for Biotechnology Information. Citric Acid. Pubchem Compound. Available online: http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=311 (accessed on 22 June 2023).
- Oliveira, M.L.N.; Malagoni, R.A.; Franco, M.R. Solubility of citric acid in water, ethanol, n-propanol and in mixtures of ethanol+water. Fluid Phase Equilib. 2013, 352, 110–113. [Google Scholar] [CrossRef]
- Yang, H.; Wang, J. Solubilities of 3-Carboxy-3-hydroxypentanedioic Acid in Ethanol, Butan-1-ol, Water, Acetone, and Methylbenzene. J. Chem. Eng. Data 2011, 56, 1449–1451. [Google Scholar] [CrossRef]
- Daneshfar, A.; Baghlani, M.; Sarabi, R.S.; Sahraei, R.; Abassi, S.; Kaviyan, H.; Khezeli, T. Solubility of citric, malonic, and malic acids in different solvents from 303.2 to 333.2K. Fluid Phase Equilib. 2012, 313, 11–15. [Google Scholar] [CrossRef]
- Wyrzykowski, D.; Hebanowska, E.; Nowak-Wiczk, G.; Makowski, M.; Chmurzyński, L. Thermal behaviour of citric acid and isomeric aconitic acids. J. Therm. Anal. Calorim. 2010, 104, 731–735. [Google Scholar] [CrossRef]
- Leśniak, W. Selekcja wysokoaktywnych szczepów Aspergillus niger dla fermentacji. Pr. Nauk. Akad. Ekon. Wrocławiu. Technol. 1977, 118, 21–37. [Google Scholar]
- Organisation for Economic Co-Operation and Development. SIDS Initial Assessment Report for 11th SIAM. Citric Acid. Available online: http://www.inchem.org/documents/sids/sids/77929.pdf (accessed on 22 June 2022).
- Apelblat, A. Dissociation Equilibria in Solutions with Citrate Ions. In Citric Acid; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 143–212. [Google Scholar]
- Pietkiewicz, J.J.; Biosynteza Kwasu Cytrynowego Przez Aspergillus niger w Warunkach Jedno-i Wielostopniowych Hodowli Ciągłych. Pr. Nauk. Akad. Ekon. Wrocławiu. Ser. Monogr. Opracowania. Available online: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.ekon-element-000000010784 (accessed on 29 September 2015).
- Berovic, M.; Legisa, M. Citric acid production. Biotechnol. Annu. Rev. 2007, 13, 303–343. [Google Scholar] [CrossRef] [PubMed]
- Buchholz, K.; Collins, J. The roots—A short history of industrial microbiology and biotechnology. Appl. Microbiol. Biotechnol. 2013, 97, 3747–3762. [Google Scholar] [CrossRef]
- Grewal, H.S.; Kalra, K.L. Fungal production of citric acid. Biotechnol. Adv. 1995, 13, 209–234. [Google Scholar] [CrossRef]
- Vandenberghe, L.P.S.; Rodrigues, C.; de Carvalho, J.C.; Medeiros, A.B.P.; Soccol, C.R. 25—Production and Application of Citric Acid. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 557–575. ISBN 9780444636621. [Google Scholar]
- Apelblat, A. Introduction. In Citric Acid; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 1–11. [Google Scholar]
- Singh Dhillon, G.; Kaur Brar, S.; Verma, M.; Tyagi, R.D. Recent Advances in Citric Acid Bio-production and Recovery. Food Bioprocess Technol. 2011, 4, 505–529. [Google Scholar] [CrossRef]
- Ozdal, M.; Kurbanoglu, E.B. Citric Acid Production by Aspergillus niger from Agro-Industrial By-Products: Molasses and Chicken Feather Peptone. Waste Biomass Valorization 2019, 10, 631–640. [Google Scholar] [CrossRef]
- Steiger, M.G.; Rassinger, A.; Mattanovich, D.; Sauer, M. Engineering of the citrate exporter protein enables high citric acid production in Aspergillus niger. Metab. Eng. 2019, 52, 224–231. [Google Scholar] [CrossRef]
- Roukas, T.; Kotzekidou, P. Pomegranate peel waste: A new substrate for citric acid production by Aspergillus niger in solid-state fermentation under non-aseptic conditions. Environ. Sci. Pollut. Res. 2020, 27, 13105–13113. [Google Scholar] [CrossRef] [PubMed]
- Vandenberghe, L.P.; Soccol, C.R.; Pandey, A.; Lebeault, J.-M. Solid-state fermentation for the synthesis of citric acid by Aspergillus niger. Bioresour. Technol. 2000, 74, 175–178. [Google Scholar] [CrossRef]
- Soccol Carlos, R.; Vandenberghe; Luciana, P.S.; Rodrigues Cristine, P.A. New Perspectives for Citric Acid Production and Application. Food Technol Biotechnol. 2006, 44, 141–149. Available online: http://www.ftb.com.hr/index.php/archives/80-volume-44-issue-no-2/443 (accessed on 4 April 2017).
- Kumar, L.R.; Yellapu, S.K.; Yan, S.; Tyagi, R.D.; Drogui, P. Elucidating the effect of impurities present in different crude glycerol sources on lipid and citric acid production by Yarrowia lipolytica SKY7. J. Chem. Technol. Biotechnol. 2021, 96, 227–240. [Google Scholar] [CrossRef]
- Crolla, A.; Kennedy, K.J. In-line mixing for production of citric acid by Candida lipolytica grown on n-paraffins. J. Chem. Technol. Biotechnol. 2004, 79, 720–728. [Google Scholar] [CrossRef]
- Sauer, M.; Mattanovich, D.; Marx, H. 12—Microbial production of organic acids for use in food. In Microbial Production of Food Ingredients, Enzymes and Nutraceuticals; Elsevier: Amsterdam, The Netherlands, 2013; pp. 288–320. ISBN 9780857093431. [Google Scholar]
- Chen, Y.; Nielsen, J. Biobased organic acids production by metabolically engineered microorganisms. Curr. Opin. Biotechnol. 2016, 37, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Vargas, D.A.; Medina, J.V. Citric Acid: Synthesis, Properties and Applications; Nova Science: New York, NY, USA, 2012; Available online: https://www.novapublishers.com/catalog/product_info.php?products_id=23842 (accessed on 4 April 2017).
- Schuster, E.; Dunn-Coleman, N.; Frisvad, J.; van Dijck, P. On the safety of Aspergillus niger—A review. Appl. Microbiol. Biotechnol. 2002, 59, 426–435. [Google Scholar] [CrossRef]
- Niu, J.; Arentshorst, M.; Nair, P.D.S.; Dai, Z.; Baker, S.E.; Frisvad, J.C.; Nielsen, K.F.; Punt, P.J.; Ram, A.F.J. Identification of a Classical Mutant in the Industrial Host Aspergillus niger by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites. G3 Genes Genomes Genet. 2016, 6, 193–204. [Google Scholar] [CrossRef]
- Goldberg, I.; Rokem, J.S.; Pines, O. Organic acids: Old metabolites, new themes. J. Chem. Technol. Biotechnol. 2006, 81, 1601–1611. [Google Scholar] [CrossRef]
- Tong, Z.; Zheng, X.; Tong, Y.; Shi, Y.C.; Sun, J. Systems metabolic engineering for citric acid production by Aspergillus niger in the post-genomic era. Microb. Cell Fact. 2019, 18, 28. [Google Scholar] [CrossRef] [PubMed]
- Jin, F.J.; Wang, B.T.; Wang, Z.D.; Jin, L.; Han, P. CRISPR/Cas9-Based Genome Editing and Its Application in Aspergillus Species. J. Fungi 2022, 8, 467. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zheng, X.; Cairns, T.C.; Zhang, Z.; Wang, D.; Zheng, P.; Sun, J. Disruption or reduced expression of the orotidine-5’-decarboxylase gene pyrG increases citric acid production: A new discovery during recyclable genome editing in Aspergillus niger. Microb. Cell Fact. 2020, 19, 76. [Google Scholar] [CrossRef] [PubMed]
- Karaffa, L.; Kubicek, C.P. Aspergillus niger citric acid accumulation: Do we understand this well working black box? Appl. Microbiol. Biotechnol. 2003, 61, 189–196. [Google Scholar] [CrossRef]
- Papagianni, M. Advances in citric acid fermentation by Aspergillus niger: Biochemical aspects, membrane transport and modeling. Biotechnol. Adv. 2007, 25, 244–263. [Google Scholar] [CrossRef] [PubMed]
- Legiša, M.; Mattey, M. Changes in primary metabolism leading to citric acid overflow in Aspergillus niger. Biotechnol. Lett. 2007, 29, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Karaffa, L.; Sándor, E.; Fekete, E. The biochemistry of citric acid of accumulation by Aspergillus niger (A review). Acta Microbiol. Immunol. Hung. 2001, 48, 429–440. [Google Scholar] [CrossRef]
- Arisan-Atac, I.; Wolschek, M.F.; Kubicek, C.P. Trehalose-6-phosphate synthase A affects citrate accumulation by Aspergillus niger under conditions of high glycolytic flux. FEMS Microbiol. Lett. 1996, 140, 77–83. [Google Scholar] [CrossRef]
- West, T.P. Citric Acid Production by Aspergillus niger Using Solid-State Fermentation of Agricultural Processing Coproducts. Appl. Biosci. 2023, 2, 1–13. [Google Scholar] [CrossRef]
- Berg, J.M.; Jeremy, M.; Tymoczko, J.L.; Stryer, L.; Stryer, L. Biochemistry. W.H. Freeman. 2002. Available online: https://www.ncbi.nlm.nih.gov/books/NBK21154/ (accessed on 10 May 2017).
- Li, C.; Yang, X.; Gao, S.; Wang, H.; Lin, C.S.K. High efficiency succinic acid production from glycerol via in situ fibrous bed bioreactor with an engineered Yarrowia lipolytica. Bioresour. Technol. 2017, 225, 9–16. [Google Scholar] [CrossRef]
- Yang, L.; Lübeck, M.; Lübeck, P.S. Aspergillus as a versatile cell factory for organic acid production. Fungal Biol. Rev. 2017, 31, 33–49. [Google Scholar] [CrossRef]
- Cordes, T.; Michelucci, A.; Hiller, K. Itaconic Acid: The Surprising Role of an Industrial Compound as a Mammalian Antimicrobial Metabolite. Annu. Rev. Nutr. 2015, 35, 451–473. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Kim, D.S.; Choi, H.S.; Kim, C.K.; Thapa, L.P.; Park, C.; Kim, S.W. Repeated batch production of 1,3-propanediol from biodiesel derived waste glycerol by Klebsiella pneumoniae. Chem. Eng. J. 2017, 314, 660–669. [Google Scholar] [CrossRef]
- Akram, M. Citric Acid Cycle and Role of its Intermediates in Metabolism. Cell Biochem. Biophys. 2014, 68, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Torres, N.V.; Voit, E.O. A Model of Citric Acid Production in the Mold Aspergillus niger. Pathw. Anal. Optim. Metab. Eng. 2002, 75–133. [Google Scholar] [CrossRef]
- Carsanba, E.; Papanikolaou, S.; Fickers, P.; Agirman, B.; Erten, H. Citric acid production by yarrowia lipolytica. In Non-Conventional Yeasts: From Basic Research to Application; Springer: Berlin/Heidelberg, Germany, 2019; pp. 91–117. [Google Scholar]
- Tan, M.-J.; Chen, X.; Wang, Y.-K.; Liu, G.-L.; Chi, Z.-M. Enhanced citric acid production by a yeast Yarrowia lipolytica over-expressing a pyruvate carboxylase gene. Bioprocess Biosyst. Eng. 2016, 39, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
- Levinson, W.E.; Kurtzman, C.P.; Kuo, T.M. Characterization of Yarrowia lipolytica and related species for citric acid production from glycerol. Enzyme Microb. Technol. 2007, 41, 292–295. [Google Scholar] [CrossRef]
- Sivasankaran, C.; Ravichandran, V.; Mani, J. Comprehensive report on production of citric acid from crude glycerol. Int. J. Appl. Eng. Res. 2015, 10, 11777–11783. [Google Scholar]
- Żywicka, A.; Junka, A.; Ciecholewska-Juśko, D.; Migdał, P.; Czajkowska, J.; Fijałkowski, K. Significant enhancement of citric acid production by Yarrowia lipolytica immobilized in bacterial cellulose-based carrier. J. Biotechnol. 2020, 321, 13–22. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Chatzifragkou, A.; Fakas, S.; Galiotou-Panayotou, M.; Komaitis, M.; Nicaud, J.M.; Aggelis, G. Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose. Eur. J. Lipid Sci. Technol. 2009, 111, 1221–1232. [Google Scholar] [CrossRef]
- Kamzolova, S.V.; Morgunov, I.G. Metabolic peculiarities of the citric acid overproduction from glucose in yeasts Yarrowia lipolytica. Bioresour. Technol. 2017, 243, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Sayın Börekçi, B.; Kaya, M.; Kaban, G. Citric Acid Production by Yarrowia lipolytica NRRL Y-1094: Optimization of pH, Fermentation Time and Glucose Concentration Using Response Surface Methodology. Fermentation 2022, 8, 731. [Google Scholar] [CrossRef]
- Morgunov, I.G.; Kamzolova, S.V.; Lunina, J.N. The citric acid production from raw glycerol by Yarrowia lipolytica yeast and its regulation. Appl. Microbiol. Biotechnol. 2013, 97, 7387–7397. [Google Scholar] [CrossRef] [PubMed]
- Rzechonek, D.A.; Dobrowolski, A.; Rymowicz, W.; Mirończuk, A.M. Aseptic production of citric and isocitric acid from crude glycerol by genetically modified Yarrowia lipolytica. Bioresour. Technol. 2019, 271, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Chi, Z.; Liu, G.L.; Madzak, C.; Chi, Z.M. Both decrease in ACL1 gene expression and increase in ICL1 gene expression in marine-derived yeast Yarrowia lipolytica expressing INU1 gene enhance citric acid production from inulin. Mar. Biotechnol. 2013, 15, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Rakicka, M.; Wolniak, J.; Lazar, Z.; Rymowicz, W. Production of high titer of citric acid from inulin. BMC Biotechnol. 2019, 19, 11. [Google Scholar] [CrossRef]
- Liu, X.; Lv, J.; Xu, J.; Zhang, T.; Deng, Y.; He, J. Citric acid production in Yarrowia lipolytica SWJ-1b yeast when grown on waste cooking oil. Appl. Biochem. Biotechnol. 2015, 175, 2347–2356. [Google Scholar] [CrossRef]
- Arslan, N.P.; Aydogan, M.N.; Taskin, M. Citric acid production from partly deproteinized whey under non-sterile culture conditions using immobilized cells of lactose—Positive and cold-adapted Yarrowia lipolytica B9. J. Biotechnol. 2016, 231, 32–39. [Google Scholar] [CrossRef]
- Sauer, M.; Porro, D.; Mattanovich, D.; Branduardi, P. Microbial production of organic acids: Expanding the markets. Trends Biotechnol. 2008, 26, 100–108. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Chi, Z.; Liu, G.-L.; Wang, F.; Madzak, C.; Chi, Z.-M. Inulin hydrolysis and citric acid production from inulin using the surface-engineered Yarrowia lipolytica displaying inulinase. Metab. Eng. 2010, 12, 469–476. [Google Scholar] [CrossRef]
- Carsanba, E.; Papanikolaou, S.; Fickers, P.; Erten, H. Screening various Yarrowia lipolytica strains for citric acid production. Yeast 2019, 36, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, E.; Charreau, H.; Cerrutti, P.; Foresti, M.L. Yarrowia lipolytica: A model yeast for citric acid production. FEMS Yeast Res. 2017, 17, fox084. [Google Scholar] [CrossRef] [PubMed]
- Kieliszek, M.; Kot, A.M.; Bzducha-Wróbel, A.; BŁażejak, S.; Gientka, I.; Kurcz, A. Biotechnological use of Candida yeasts in the food industry: A review. Fungal. Biol. Rev. 2017, 31, 185–198. [Google Scholar] [CrossRef]
- Börekçi, B.S.; Kaban, G.; Kaya, M. Citric acid production of yeasts: An overview. Eurobiotech. J. 2021, 5, 79–91. [Google Scholar] [CrossRef]
- Darouneh, E.; Alavi, A.; Vosoughi, M.; Arjmand, M.; Seifkordi, A.; Rajabi, R. Citric acid production: Surface culture versus submerged culture. Afr. J. Microbiol. Res. 2009, 3, 541–545. [Google Scholar]
- Couto, S.R.; Sanromán, M.Á. Application of solid-state fermentation to food industry—A review. J. Food Eng. 2006, 76, 291–302. [Google Scholar] [CrossRef]
- Kristiansen, B.; Linden, J.; Mattey, M. Citric Acid Biotechnology; Taylor & Francis: Oxfordshire, UK, 1999; ISBN 9780748405145. [Google Scholar]
- Tong, Z.; Tong, Y.; Wang, D.; Shi, Y.C. Whole maize flour and isolated maize starch for production of citric acid by Aspergillus niger: A review. Starch. 2023, 75, 2000014. [Google Scholar] [CrossRef]
- Papagianni, M.; Mattey, M.; Kristiansen, B. The influence of glucose concentration on citric acid production and morphology of Aspergillus niger in batch and culture. Enzyme Microb. Technol. 1999, 25, 710–717. [Google Scholar] [CrossRef]
- Mattedi, A.; Sabbi, E.; Farda, B.; Djebaili, R.; Mitra, D.; Ercole, C.; Cacchio, P.; Del Gallo, M.; Pellegrini, M. Solid-State Fermentation: Applications and Future Perspectives for Biostimulant and Biopesticides Production. Microorganisms 2023, 11, 1408. [Google Scholar] [CrossRef]
- Vandenberghe, L.P.S.; Pandey, A.; Carvalho, J.C.; Letti, L.A.J.; Woiciechowski, A.L.; Karp, S.G.; Thomaz-Soccol, V.; Martínez-Burgos, W.J.; Penha, R.O.; Herrmann, L.W.; et al. Solid-state fermentation technology and innovation for the production of agricultural and animal feed bioproducts. Syst. Microbiol. Biomanuf. 2021, 1, 142–165. [Google Scholar] [CrossRef]
- Singhania, R.R.; Patel, A.K.; Soccol, C.R.; Pandey, A. Recent advances in solid-state fermentation. Biochem. Eng. J. 2009, 44, 13–18. [Google Scholar] [CrossRef]
- Anastassiadis, S.; Morgunov, I.G.; Kamzolova, S.V.; Finogenova, T.V. Citric acid production patent review. Recent Pat. Biotechnol. 2008, 2, 107–123. [Google Scholar] [CrossRef] [PubMed]
- Kamzolova, S.V.; Fatykhova, A.R.; Dedyukhina, E.G.; Anastassiadis, S.G.; Golovchenko, N.P.; Morgunov, I.G. Citric Acid Production by Yeast Grown on Glycerol-Containing Waste from Biodiesel Industry. Food Technol. Biotechnol. 2011, 41, 65–74. [Google Scholar]
- Dhillon, G.S.; Brar, S.K.; Kaur, S.; Verma, M. Bioproduction and extraction optimization of citric acid from Aspergillus niger by rotating drum type solid-state bioreactor. Ind. Crops Prod. 2013, 41, 78–84. [Google Scholar] [CrossRef]
- Angumeenal, A.R.; Venkappayya, D. An overview of citric acid production. LWT-Food Sci. Technol. 2013, 50, 367–370. [Google Scholar] [CrossRef]
- Show, P.L.; Oladele, K.O.; Siew, Q.Y.; Aziz Zakry, F.A.; Lan, J.C.-W.; Ling, T.C. Overview of citric acid production from Aspergillus niger. Front. Life Sci. 2015, 8, 271–283. [Google Scholar] [CrossRef]
- Citric Acid Global Market Report 2023—Research and Markets. Available online: https://www.researchandmarkets.com/reports/5741687/citric-acid-global-market-report (accessed on 30 November 2023).
- Alben, E.; Erkmen, O. Production of Citric Acid from a New Substrate, Undersized Semolina, by Aspergillus niger. Food Technol. Biotechnol. 2004, 42, 19–22. [Google Scholar]
- Dashen, M.M.; Ado, S.A.; Ameh, J.B.; Mawak, J.D. Effect of different nitrogen sources on citric acid production by Aspergillus niger. Int. J. Biosci. 2008, 3, 102–106. [Google Scholar]
- Haq, I.; Ali, S.; Ashraf, H.; Butt, W.A.; Shafiq, K.Q.; Iqbal, J. Effect of mineral nutrient of the biosynthesis of citric acid by Aspergillus niger UV-6, using sucrose salt media. Pak. J. Bot. 2001, 33, 535–540. [Google Scholar]
- Ikram-Ul-Haq Ali, S.; Qadeer, M.A.; Iqbal, J. Optimization of Nitrogen for Enhanced Citric Acid Productivity by a 2-Deoxy d-Glucose Resistant Culture of Aspergillus niger NGd-280. Bioresour. Technol. 2005, 96, 645–648. [Google Scholar] [CrossRef]
- Papagianni, M.; Wayman, F.; Mattey, M. Fate and role of ammonium ions during fermentation of citric acid by Aspergillus niger. Appl. Environ. Microbiol. 2005, 71, 7178–7186. [Google Scholar] [CrossRef] [PubMed]
- Vandenberghe, L.P.S.; Soccol, C.R.; Pandey, A.; Lebeault, J.M. Microbial Production of Citric Acid. Braz. Arch. Biol. 761 Technol. 1998, 42, 263–276. [Google Scholar] [CrossRef]
- Milsom, P.E. Organic Acids by Fermentation, especially Citric Acid. In Food Biotechnology—1; Springer: Dordrecht, The Netherlands, 1987; pp. 273–307. [Google Scholar]
- Yigitoglu, M. Production of citric acid by fungi biotechnology. J. Islam. Acad. Sci. 1992, 52, 100–106. [Google Scholar]
- Kubicek, C.P.; Hampel, W.; Rohr, M. Manganese deficiency leads to elevated amino acid pools in citric acid accumulating Aspergillus niger. Arch. Microbiol. 1979, 123, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Papagianni, M.; Mattey, M. Morphological development of Aspergillus niger in submerged citric acid fermentation as a function of the spore inoculum level. Application of neural network and cluster analysis for characterization of mycelial morphology. Microb. Cell Fact. 2006, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Haq, I.-U.; Ali, S.; Qadeer, M.; Iqbal, J. Stimulatory effect of alcohols (methanol and ethanol) on citric acid productivity by a 2-deoxy D-glucose resistant culture of Aspergillus niger GCB-47. Bioresour. Technol. 2003, 86, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Dymarska, E.; Pietkiewicz, J.J. Wpływ metanolu na proces biosyntezy kwasu cytrynowego z sacharozy przez Aspergillus niger. Zesz. Probl. Postępów Nauk Rol. 2016, 584, 23–31. [Google Scholar]
- Pazouki, M.; Felse, P.A.; Sinha, J.; Panda, T. Comparative studies on citric acid production by Aspergillus niger and Candida lipolytica using molasses and glucose. Bioprocess Eng. 2000, 22, 353–361. [Google Scholar] [CrossRef]
- Leśniak, W. Przydatność niektórych substancji jako stymulatorów w procesie fermentacji wgłębnej kwasu cytrynowego. Pr. Nauk. Wyższej Szk. Ekon. Wrocławiu. 1974, 52, 49–61. [Google Scholar]
- Barrington, S.; Kim, J.-W. Response surface optimization of medium components for citric acid production by Aspergillus niger NRRL 567 grown in peat moss. Bioresour. Technol. 2008, 99, 368–377. [Google Scholar] [CrossRef]
- Nadeem, A.; Syed, Q.; Baig, S.; Irfan, M.; Nadeem, M. Enhanced Production of Citric Acid by Aspergillus niger M-101 Using Lower Alcohols. Turk. J. Biochem. 2010, 35, 7–13. [Google Scholar]
- Rugasaseel, S.; Morikawa, S.; Kirimura, K.; Usami, S. Stimulation of citric acid production in Aspergillus niger by addition of viscous substances in shake culture. Appl. Microbiol. Biotechnol. 1995, 42, 839–843. [Google Scholar] [CrossRef]
- Podgórski, W. Kształtowanie aktywności oddechowej i kwasotwórczej Aspergillus niger podczas produkcji kwasu cytrynowego w podłożach z melasą trzcinową. Pr. Nauk. Akad. Ekon. Wrocławiu. Ser. Monogr. Opracowania 2002, 914, 138. [Google Scholar]
- Benuzzi, D.A.; Segovia, R.F. Effect of the copper concentration on citric acid productivity by an Aspergillus niger strain. Appl. Biochem. Biotechnol. 1996, 61, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Maddox, I.S.; Hossain, M.; Brooks, J.D. The effect of methanol on citric acid production from galactose by Aspergillus niger. Appl. Microbiol. Biotechnol. 1986, 23, 203–205. [Google Scholar] [CrossRef]
- Yaykaşlı, K.O.; Demirel, G.; Yaşar, A. Influence of alcohols on citric acid production by Aspergillus niger A-9 entrapped in polyacrylamide gels. J. Food Eng. 2005, 70, 518–522. [Google Scholar] [CrossRef]
- MOYER, A.J. Effect of alcohols on the mycological production of citric acid in surface and submerged culture. II. Fermentation of crude carbohydrates. Appl. Microbiol. 1953, 1, 7–13. [Google Scholar] [CrossRef]
- Roukas, T.; Kotzekidou, P. Pretreatment of date syrup to increase citric acid production. Enzyme Microb. Technol. 1997, 21, 273–276. [Google Scholar] [CrossRef]
- Ashraf, H.; Rehman, A.; Haq, I. Effect of alcohols on the production of citric acid by Aspergillus niger using solid state fermentation. J. Food Technol. 2004, 2, 1–3. [Google Scholar]
- Kareem, S.O.; Akpan, I.; Alebiowu, O.O. Production of citric acid by Aspergillus niger using pineapple waste. Malays. J. Microbiol. 2010, 6, 161–166. [Google Scholar]
- Shetty, V.G. Production and optimization of citric acid by Aspergillus niger using molasses and corncob. Int. J. Pharm. Pharm. Sci. 2015, 7, 152–157. [Google Scholar]
- Ramesh, T.; Kalaiselvam, M. An Experimental Study on Citric Acid Production by Aspergillus niger Using Gelidiella acerosa as a Substrate. Indian J. Microbiol. 2011, 51, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Auta, H.S.; Abidoye, K.T.; Tahir, H.; Ibrahim, A.D.; Aransiola, S.A. Citric Acid Production by Aspergillus niger Cultivated on Parkia biglobosa Fruit Pulp. Int. Sch. Res. Not. 2014, 2014, 762021. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.R.; Lehmann, L.; Nielsen, J. Systemic analysis of the response of Aspergillus niger to ambient pH. Genome Biol. 2009, 10, R47. [Google Scholar] [CrossRef] [PubMed]
- Walaszczyk, E.; Podgórski, W.; Janczar-Smuga, M.; Dymarska, E. Effect of medium pH on chemical selectivity of oxalic acid biosynthesis by Aspergillus niger W78C in submerged batch cultures with sucrose as a carbon source. Chem. Zvesti 2018, 72, 1089–1093. [Google Scholar] [CrossRef] [PubMed]
- Dawson, M.W.; Maddox, I.S.; Brooks, J.D. Effect of interruptions to the air supply on citric acid production by Aspergillus niger. Enzyme Microb. Technol. 1986, 8, 37–40. [Google Scholar] [CrossRef]
- Shaikh, Y.; Jagtap, M.R. Organic Acid and Solvent Production from Microbial Fermentation. In Microbial Products for Future Industrialization. Interdisciplinary Biotechnological Advances; Sarkar, A., Ahmed, I.A., Eds.; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Fan, X.; Burton, R.; Zhou, Y. Glycerol (Byproduct of Biodiesel Production) as a Source for Fuels and Chemicals—Mini Review. Open Fuels Energy Sci. J. 2010, 3, 17–22. [Google Scholar] [CrossRef]
- Shankar, T.; Sivakumar, T. Optimization of Citric Acid Production Using Aspergillus niger Isolated from the Leaf Litter Soil of Sathuragiri Hills. Univ. J. Microbiol. Res. 2016, 4, 79–87. [Google Scholar] [CrossRef]
- Hussein, E.L.A.; Tawfig, S.M.; Siddig, M.; Siddig, M. Citric acid production from kenana cane molasses by Aspergillus niger in submerged fermentation. J. Genet. Eng. Biotechnol. 2009, 7, 51–57. [Google Scholar]
- Rehman, A.; Ali, S.; Haq, I. Temperature Optima for Citric Acid Accumulation by Aspergillus niger. Biotechnology 2002, 1, 108–110. [Google Scholar] [CrossRef]
- Papadaki, E.; Mantzouridou, F.T. Citric acid production from the integration of Spanish-style green olive processing wastewaters with white grape pomace by Aspergillus niger. Bioresour. Technol. 2019, 280, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Chergui, D.; Akretche-Kelfat, S.; Lamoudi, L.; Al-Rshaidat, M.; Boudjelal, F.; Ait-Amar, H. Optimization of citric acid production by Aspergillus niger using two downgraded Algerian date varieties. Saudi J. Biol. Sci. 2021, 28, 7134–7141. [Google Scholar] [CrossRef] [PubMed]
- Addo, M.G.; Kusi, A.; Andoh, L.A.; Obiri-Danso, K. Citric Acid Production by Aspergillus Niger on a Corn Cob Solid Substrate using One factor at a time Optimisation Method. Int. Adv. Res. J. Sci. Eng. Technol. 2016, 3. [Google Scholar] [CrossRef]
- Adeoye, A.O.; Lateef, A. Improving the Yield of Citric Acid Through Valorization of Cashew Apple Juice by Aspergillus niger: Mutation, Nanoparticles Supplementation and Taguchi Technique. Waste Biomass Valorization 2022, 13, 2195–2206. [Google Scholar] [CrossRef]
- Adeoye, A.O.; Lateef, A.; Gueguim-Kana, E.B. Optimization of citric acid production using a mutant strain of Aspergillus niger on cassava peel substrate. Biocatal. Agric. Biotechnol. 2015, 4, 568–574. [Google Scholar] [CrossRef]
- Alam, M.Z.; Bari, M.N.; Muyibi, S.A.; Jamal, P. Development of Culture Inoculum for Scale-Up Production of Citric Acid from Oil Palm Empty Fruit Bunches by Aspergillus niger. Procedia Environ. Sci. 2011, 8, 396–402. [Google Scholar] [CrossRef]
- Bibi, N.; Ali, S.; Tabassum, R. Statistical Optimization of Pectinase Biosynthesis from Orange Peel by Bacillus licheniformis Using Submerged Fermentation. Waste Biomass Valorization 2016, 7, 467–481. [Google Scholar] [CrossRef]
- Amenaghawon, N.; Osazuwa, O.; Okieimen, C. Dynamic Modelling and Simulation of Citric Acid Production from Dilute Acid Hydrolysed Corn Starch Using Aspergillus Niger. Niger. J. Technol. 2014, 33, 222. [Google Scholar] [CrossRef]
- Amenaghawon, N.; Oronsaye, J.; Ogbeide, S. Statistical Optimisation of Fermentation Conditions for Citric Acid Production from Pineapple Peels. Niger. J. Technol. Res. 2014, 9, 20. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Mahboubi, A.; Lennartsson, P.R.; Taherzadeh, M.J. Waste biorefineries using filamentous ascomycetes fungi: Present status and future prospects. Bioresour. Technol. 2016, 215, 334–345. [Google Scholar] [CrossRef]
- Xu, D.-B.; Madrid, C.; Rohr, M.; Kubicek, C. The influence of type and concentration of the carbon source on production of citric acid by Aspergillus niger. Appl. Microbiol. Biotechnol. 1989, 30, 553–558. [Google Scholar] [CrossRef]
- Ghanbartabar, S.A.; Najafpour, G.D.; Mohammadi, M. Comparative studies on citric acid production from cheese why by submerged and immobilized aspergillus niger. J. Biotechnol. 2016, 13, 79–85. [Google Scholar]
- Lotfy, W.; Ghanem, K.; Elhelow, E. Citric acid production by a novel Aspergillus niger isolate: II. Optimization of process parameters through statistical experimental designs. Bioresour. Technol. 2007, 98, 3470–3477. [Google Scholar] [CrossRef] [PubMed]
- Lotfy, W.A.; Ghanem, K.M.; El-Helow, E.R. Citric acid production by a novel Aspergillus niger isolate: I. Mutagenesis and cost reduction studies. Bioresour. Technol. 2007, 98, 3464–3469. [Google Scholar] [CrossRef] [PubMed]
- Jianlong, W.; Xianghua, W.; Ding, Z. Production of Citric Acid from Molasses Integrated with In-Situ Product Separation by Ion-Exchange Resin Adsorption. Bioresour. Technol. 2000, 75, 231–234. [Google Scholar] [CrossRef]
- Al-Mahin, A.; Hasan, S.M.; Khan, M.H.; Begum, R. Citric Acid Production by Aspergillus niger through Solid-State Fermentation on Sugarcane Bagasse. Bangladesh J. Microbiol. 2010, 25, 9–12. [Google Scholar] [CrossRef]
- Zhuang, X.; Zhang, H.; Yang, J.; Qi, H. Preparation of levoglucosan by pyrolysis of cellulose and its citric acid fermentation. Bioresour. Technol. 2001, 79, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Bari, M.N.; Alam, M.Z.; Muyibi, S.A.; Jamal, P. Abdullah-Al-Mamun Improvement of production of citric acid from oil palm empty fruit bunches: Optimization of media by statistical experimental designs. Bioresour. Technol. 2009, 100, 3113–3120. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Brar, S.K.; Verma, M.; Tyagi, R.D. Apple pomace ultrafiltration sludge—A novel substrate for fungal bioproduction of citric acid: Optimisation studies. Food Chem. 2011, 128, 864–871. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Brar, S.K.; Verma, M.; Tyagi, R.D. Utilization of different agro-industrial wastes for sustainable bioproduction of citric acid by Aspergillus niger. Biochem. Eng. J. 2011, 54, 83–92. [Google Scholar] [CrossRef]
- Drysdale, C.R.; McKay, A.M. Citric acid production by Aspergillus niger in surface culture on inulin. Lett. Appl. Microbiol. 1995, 20, 252–254. [Google Scholar] [CrossRef] [PubMed]
- Ghanbarzadeh, B.; Almasi, H.; Entezami, A.A. Improving the barrier and mechanical properties of corn starch-based edible films: Effect of citric acid and carboxymethyl cellulose. Ind. Crops Prod. 2011, 33, 229–235. [Google Scholar] [CrossRef]
- Rao, P.R.; Reddy, M.K. Production of Citric Acid by Aspergillus Niger Using Oat Bran as Substrate. Int. J. Chem. Chem. Eng. 2013, 3, 2248–9924. [Google Scholar]
- Betiku, E.; Adesina, O.A. Statistical approach to the optimization of citric acid production using filamentous fungus Aspergillus niger grown on sweet potato starch hydrolyzate. Biomass Bioenergy 2013, 55, 350–354. [Google Scholar] [CrossRef]
- Surendra Babu, A.; Parimalavalli, R.; Rudra, S.G. Effect of citric acid concentration and hydrolysis time on physicochemical properties of sweet potato starches. Int. J. Biol. Macromol. 2015, 80, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Bauweleers, H.M.K.; Groeseneken, D.R. Process for the Preparation of Citric Acid Employing Filamentous Fungi in a Culture 802 Medium Comprising Glycerol. Published Online 13 September 2008. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2008107472 (accessed on 7 January 2016).
- Schneider, M.; Zimmer, G.F.; Cremonese, E.B.; de C de S Schneider, R.; Corbellini, V.A. By-products from the biodiesel chain as a substrate to citric acid production by solid-state fermentation. Waste Manag. Res. 2014, 32, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Haq, I.; Qadeer, M.A.; Iqbal, J. Production of citric acid by Aspergillus niger using cane molasses in a stirred fermentor. Electron. J. Biotechnol. 2002, 5, 19–20. [Google Scholar] [CrossRef]
- Dymarska, E.; Janczar–Smuga, M. Application of the central composite rotatable design in the optimization of medium constituents for the production of citric acid from anhydrous glycerol. Przem. Chem. 2018, 97, 1276–1282. [Google Scholar] [CrossRef]
- Ikram-ul, H.; Ali, S.; Qadeer, M.A.; Iqbal, J. Citric acid production by selected mutants of Aspergillus niger from cane molasses. Bioresour. Technol. 2004, 93, 125–130. [Google Scholar] [CrossRef]
- Kishore, K.; Anand, K.M.; Praveen, K.V.; Ravi, R.G.V. Optimization of Process Variables of Citric Acid Production Using Aspergillus Niger In A Batch Fermentor. Eng. Lett. 2008, 16, 572–577. Available online: http://www.engineeringletters.com/issues_v16/issue_4/EL_16_4_17.pdf (accessed on 24 March 2017).
- Mourya, S.; Jauhri, K.S. Production of citric acid from starch-hydrolysate by Aspergillus niger. Microbiol. Res. 2000, 155, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Haq, I.-U.; Ali, S.; Iqbal, J. Direct production of citric acid from raw starch by Aspergillus niger. Process Biochem. 2003, 38, 921–924. [Google Scholar] [CrossRef]
- Foryś, E.; Podgórski, W.; Kaczyńska, M. Wpływ makroelementów na proces biosyntezy kwasu cytrynowego z glicerolu przez 826 Aspergillus niger W78B 1. Acta Sci. Pol. Biotechnol. 2007, 6, 31–37. [Google Scholar]
- Książek, E.; Janczar-Smuga, M.; Pietkiewicz, J.J. Bioconversion of glycerol into citric acid. Przem. Chem. 2020, 99, 141–150. [Google Scholar] [CrossRef]
- Książek, E.; Janczar-Smuga, M. Efektywność biosyntezy kwasu cytrynowego w zasilanych okresowych hodowlach wgłębnych. Zesz. Probl. Postępów Nauk Rol. 2019, 595, 77–91. [Google Scholar] [CrossRef]
- Yadegary, M.; Hamidi, A.; Alavi, S.A.; Khodaverdi, E.; Yahaghi, H.; Sattari, S.; Bagherpour, G.; Yahaghi, E. Citric Acid Production from Sugarcane Bagasse through Solid State Fermentation Method Using Aspergillus niger Mold and Optimization of Citric Acid Production by Taguchi Method. Jundishapur J. Microbiol. 2013, 6, 595. [Google Scholar] [CrossRef]
- Kumar, D.; Jain, V.K.; Shanker, G.; Srivastava, A. Citric acid production by solid state fermentation using sugarcane bagasse. Process Biochem. 2003, 38, 1731–1738. [Google Scholar] [CrossRef]
- Chaturvedi, M. Citric acid production from cane molasses using submerged fermentation by Aspergillus niger ATCC9142. J. Pharm. Res. 2010, 3, 1215–1222. [Google Scholar]
- Javed, S.; Asgher, M.; Sheikh, M.A.; Nawaz, H.; Jamil, A. Enhanced citric acid production by Aspergillus niger EB-3 mutant using an inert solid support in molasses medium. Afr. J. Biotechnol. 2011, 10, 11784–11791. [Google Scholar]
- Adham, N. Attempts at improving citric acid fermentation by Aspergillus niger in beet-molasses medium. Bioresour. Technol. 2002, 84, 97–100. [Google Scholar] [CrossRef]
- Podgórski, W.; Gąsiorek, E.; Leśniak, W. Produkty uboczne z przerobu buraków cukrowych jako substraty do biosyntezy kwasu cytrynowego. Inżynieria Rol. 2006, 79, 103–109. [Google Scholar]
- Kumar, D.; Jain, V.K.; Shanker, G.; Srivastava, A. Utilisation of fruits waste for citric acid production by solid state fermentation. Process Biochem. 2003, 38, 1725–1729. [Google Scholar] [CrossRef]
- El-Holi, M.A.; Al-Delaimy, S. Citric acid production from whey with sugars and additives by Aspergillus niger. Afr. J. Biotechnol. 2004, 2, 356–359. [Google Scholar]
- Mostafa, Y.S.; Alamri, S.A. Optimization of date syrup for enhancement of the production of citric acid using immobilized cells of Aspergillus niger. Saudi J. Biol. Sci. 2012, 19, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-W.; Barrington, S.; Sheppard, J.; Lee, B. Nutrient optimization for the production of citric acid by Aspergillus niger NRRL 567 grown on peat moss enriched with glucose. Process Biochem. 2006, 41, 1253–1260. [Google Scholar] [CrossRef]
- Xie, G.; West, T.P. Citric acid production by Aspergillus niger ATCC 9142 from a treated ethanol fermentation co-product using solid-state fermentation. Lett. Appl. Microbiol. 2009, 48, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; West, T.P. Citric Acid Production by Aspergillus niger on the Ethanol Dry Milling Coproduct Thin Stillage. Res. J. Microbiol. 2007, 2, 678–683. [Google Scholar] [CrossRef]
- Mehyar, G.F.; Delaimy, K.S.; Ibrahim, S.A. Citric Acid Production by Aspergillus niger Using Date-Based Medium Fortified with Whey and Additives. Food Biotechnol. 2005, 19, 137–144. [Google Scholar] [CrossRef]
- Hamdy, H.S. Citric acid production by Aspergillus niger grown on orange peel medium fortified with cane molasses. Ann. Microbiol. 2013, 63, 267–278. [Google Scholar] [CrossRef]
- Goud, K.H.; Srilakshmi, A.; Kumar, A.P.G. Narasimha Citric acid production by Aspergillus niger through solid state fermentation using fruit wastes. Biotechnol. Indian J. 2012, 6, 93–96. [Google Scholar]
- Mussatto, S.I.; Ballesteros, L.F.; Martins, S.; Teixeira, J.A. Use of agro-industrial wastes in solid-state fermentation processes. In 866 Industrial Waste; Yeow, S.K., Xinxin, G., Eds.; In Tech: Rijeka, Croatia, 2012. [Google Scholar]
- Mussatto, S.I.; Teixeira, J.A. Lignocellulose as raw material in fermentation processes. In Current Research, Technology and 868 Education Topics in Applied Microbiology and Microbial Biotechnology; Méndez-Vilas, A., Ed.; Formatex Research: Badajoz, Spain, 2010. [Google Scholar]
- Książek, E.E.; Janczar-Smuga, M.; Pietkiewicz, J.J.; Walaszczyk, E. Optimization of Medium Constituents for the Production of Citric Acid from Waste Glycerol Using the Central Composite Rotatable Design of Experiments. Molecules 2023, 28, 3268. [Google Scholar] [CrossRef] [PubMed]
- Salazar Peña, M. Systems Biology of Glucose Sensing and Repression in Aspergillus niger: Lessons from Genomics and 874 Transcriptomics. Ph.D Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2010. Available online: http://publications.lib.chalmers.se/records/fulltext/127099.pdf (accessed on 19 May 2017).
- Kośmider, A.; Czaczyk, K. Perspektywy wykorzystania glicerolu w procesach biotechnologicznych. Postępy Mikrobiol. 2009, 48, 277–287. [Google Scholar]
- Honecker, S.; Bisping, B.; Yang, Z.; Rehm, H.-J. Influence of sucrose concentration and phosphate limitation on citric acid production by immobilized cells of Aspergillus niger. Appl. Microbiol. Biotechnol. 1989, 31, 17–24. [Google Scholar] [CrossRef]
- Hossain, M.; Brooks, J.D.; Maddox, I.S. The effect of the sugar source on citric acid production by Aspergillus niger. Appl. Microbiol. Biotechnol. 1984, 19, 393–397. [Google Scholar] [CrossRef]
- Thorat, S.S.; Patil, G. Standardization of Process Parameters for Production of Citric Acid from Mahua Flowers (Madhuca indica) by Surface Fermentation using Aspergillus niger NCIM-545 and NCIM-595. Intl. J. Food. Ferment. Technol 2016, 6, 111–120. [Google Scholar] [CrossRef]
- Omar, S.; Honecker, S.; Rehm, H.-J. A comparative study on the formation of citric acid and polyols and on morphological changes of three strains of free and immobilized Aspergillus niger. Appl. Microbiol. Biotechnol. 1992, 36, 518–524. [Google Scholar] [CrossRef]
- Tric acid and salts Handling/Processing. Citric Acid and salts Handling/Processing. Published Online 2015. Available online: https://www.ams.usda.gov/sites/default/files/media/CitricAcid892TR2015.pdf (accessed on 16 April 2017).
- Ciriminna, R.; Chavarría-Hernández, N.; Inés Rodríguez Hernández, A.; Pagliaro, M. Pectin: A new perspective from the biorefinery standpoint. Biofuels Bioprod. Biorefining 2015, 9, 368–377. [Google Scholar] [CrossRef]
- Ke, S.; Huang, Y.; Decker, E.A.; Hultin, H.O. Impact of citric acid on the tenderness, microstructure and oxidative stability of beef muscle. Meat Sci. 2009, 82, 113–118. [Google Scholar] [CrossRef]
- Sammel, L.M.; Claus, J.R. Citric acid and sodium citrate effects on pink color development of cooked ground turkey irradiated pre- and post-cooking. Meat Sci. 2006, 72, 567–573. [Google Scholar] [CrossRef]
- Sammel, L.M.; Claus, J.R.; Greaser, M.L.; Richards, M.P. Investigation of mechanisms by which sodium citrate reduces the pink color defect in cooked ground turkey. Meat Sci. 2006, 72, 585–595. [Google Scholar] [CrossRef]
- Kappes, S.M.; Schmidt, S.J.; Lee, S.Y. Relationship between Physical Properties and Sensory Attributes of Carbonated Beverages. J. Food Sci. 2007, 72, S001–S011. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zou, L.; Liu, J.; Zhang, Z.; Liu, C.; Liang, R. The effect of citric acid on the activity, thermodynamics and conformation of mushroom polyphenoloxidase. Food Chem. 2013, 140, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, C.; da Silva, A.J.R.; Lopes, M.L.M.; Fialho, E.; Valente-Mesquita, V.L. Polyphenol oxidase activity, phenolic acid composition and browning in cashew apple (Anacardium occidentale L.) after processing. Food Chem. 2011, 125, 128–132. [Google Scholar] [CrossRef]
- Goyeneche, R.; Agüero, M.V.; Roura, S.; Di Scala, K. Application of citric acid and mild heat shock to minimally processed sliced radish: Color evaluation. Postharvest Biol. Technol. 2014, 93, 106–113. [Google Scholar] [CrossRef]
- Lücke, F.-K. Encyclopedia of Food Safety; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780123786135. [Google Scholar]
- Manolopoulou, E. Effect of Storage Conditions on the Sensory Quality, Colour and Texture of Fresh-Cut Minimally Processed Cabbage with the Addition of Ascorbic Acid, Citric Acid and Calcium Chloride. Food Nutr. Sci. 2011, 2, 956–963. [Google Scholar] [CrossRef]
- Goyeneche, R.; Di Scala, K.; Roura, S. Biochemical characterization and thermal inactivation of polyphenol oxidase from radish (Raphanus sativus var. sativus). LWT-Food Sci. Technol. 2013, 54, 57–62. [Google Scholar] [CrossRef]
- Sotoyama, M.; Uchida, S.; Tanaka, S.; Hakamata, A.; Odagiri, K.; Inui, N.; Watanabe, H.; Namiki, N. Citric Acid Suppresses the Bitter Taste of Olopatadine Hydrochloride Orally Disintegrating Tablets. Biol. Pharm. Bull. 2017, 40, 451–457. [Google Scholar] [CrossRef]
- Yıldız, S.; Aytekin, E.; Yavuz, B.; Bozdağ Pehlivan, S.; Vural, İ.; Ünlü, N. Development and evaluation of orally disintegrating tablets comprising taste-masked mirtazapine granules. Pharm. Dev. Technol. 2018, 23, 488–495. [Google Scholar] [CrossRef]
- Shalaev, E.Y.; Johnson-Elton, T.D.; Chang, L.; Pikal, M.J. Thermophysical properties of pharmaceutically compatible buffers at sub-zero temperatures: Implications for freeze-drying. Pharm. Res. 2002, 19, 195–201. [Google Scholar] [CrossRef]
- Islam, K.M.S.; Schaeublin, H.; Wenk, C.; Wanner, M.; Liesegang, A. Effect of dietary citric acid on the performance and mineral metabolism of broiler. J. Anim. Physiol. Anim. Nutr. 2012, 96, 808–817. [Google Scholar] [CrossRef]
- Paleckiene, R.; Sviklas, A.; Slinksiene, R. Reaction of Urea with Citric Acid. Russ. J. Appl. Chem. 2005, 78, 1651–1655. [Google Scholar] [CrossRef]
- Naeini, A.T.; Adeli, M.; Vossoughi, M.; Sobhani, Z.; Atyabi, F.; Safinya, C.R. Poly(citric acid)-block-poly(ethylene glycol) copolymers--new biocompatible hybrid materials for nanomedicine. Nanomedicine 2010, 6, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Nath, B.; Sarkar, S.; Islam, S.M.; Bundschuh, J.; Chatterjee, D.; Hidalgo, M. Application of natural citric acid sources and their role on arsenic removal from drinking water: A green chemistry approach. J. Hazard. Mater. 2013, 262, 1167–1175. [Google Scholar] [CrossRef] [PubMed]
- Rastegar, H.; Shoeibi, S.; Yazdanpanah, H.; Amirahmadi, M.; Khaneghah, A.M.; Campagnollo, F.B.S.; Sant’Ana, A. Removal of aflatoxin B1 by roasting with lemon juice and/or citric acid in contaminated pistachio nuts. Food Control 2017, 71, 279–284. [Google Scholar] [CrossRef]
- Ghorpade, V.S.; Yadav, A.V.; Dias, R.J. Citric acid crosslinked β-cyclodextrin/carboxymethylcellulose hydrogel films for controlled delivery of poorly soluble drugs. Carbohydr. Polym. 2017, 164, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Olaimat, A.N.; Al-Nabulsi, A.A.; Osaili, T.M.; Al-Holy, M.; Ayyash, M.M.; Mehyar, G.F.; Jaradat, Z.W.; Ghoush, M.A. Survival and inhibition of Staphylococcus aureus in commercial and hydrated tahini using acetic and citric acids. Food Control 2017, 77, 179–186. [Google Scholar] [CrossRef]
- Mielcarek, A.; Rodziewicz, J.; Janczukowicz, W.; Dabrowska, D.; Ciesielski, S.; Thornton, A.; Struk-Sokołowska, J. Citric acid application for denitrification process support in biofilm reactor. Chemosphere 2017, 171, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Han, X.; Chen, L.; Ni, L.; Liu, Z.; Zhang, W.; Chen, Q. Comparative characterization of the deamidation of carboxylic acid deamidated wheat gluten by altering the processing conditions. Food Chem. 2016, 210, 520–529. [Google Scholar] [CrossRef]
- Hagiwara, T.; Hagihara, S.; Handa, A.; Sasagawa, N.; Kawashima, R.; Sakiyama, T. Pretreatment with citric acid or a mixture of nitric acid and citric acid to suppress egg white protein deposit formation on stainless steel surfaces and to ease its removal during cleaning. Food Control 2015, 53, 35–40. [Google Scholar] [CrossRef]
- Ciriminna, R.; Meneguzzo, F.; Delisi, R.; Pagliaro, M. Citric acid: Emerging applications of key biotechnology industrial product. Chem. Cent. J. 2017, 11, 22. [Google Scholar] [CrossRef]
- Reddy, N.; Reddy, R.; Jiang, Q. Crosslinking biopolymers for biomedical applications. Trends Biotechnol. 2015, 33, 362–369. [Google Scholar] [CrossRef]
- Seligra, P.G.; Medina Jaramillo, C.; Famá, L.; Goyanes, S. Biodegradable and non-retrogradable eco-films based on starch–glycerol with citric acid as crosslinking agent. Carbohydr. Polym. 2016, 138, 66–74. [Google Scholar] [CrossRef]
- Sun, D.; Chen, Y.; Tran, R.T.; Xu, S.; Xie, D.; Jia, C.; Wang, Y.; Guo, Y.; Zhang, Z.; Guo, J.; et al. Citric Acid-based Hydroxyapatite Composite Scaffolds Enhance Calvarial Regeneration. Sci. Rep. 2014, 4, 6912. [Google Scholar] [CrossRef] [PubMed]
- Alberts, A.H.; Rothenberg, G. Process for Preparing Foamed Polymer. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2012052385&recNum=239&docAn=EP2011068076&queryString948=IC/C08G-63/00&maxRec=3738 (accessed on 8 April 2017).
- Olsson, E.; Hedenqvist, M.S.; Johansson, C.; Järnström, L. Influence of citric acid and curing on moisture sorption, diffusion and permeability of starch films. Carbohydr. Polym. 2013, 94, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Garcia, P.S.; Grossmann, M.V.E.; Yamashita, F.; Mali, S.; Dall’Antonia, L.H.; Barreto, W.J. Citric acid as multifunctional agent in blowing films of starch/PBAT. Quim. Nova 2011, 34, 1507–1510. [Google Scholar] [CrossRef]
- Olsson, E.; Menzel, C.; Johansson, C.; Andersson, R.; Koch, K.; Järnström, L. The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid. Carbohydr. Polym. 2013, 98, 1505–1513. [Google Scholar] [CrossRef]
- Menzel, C.; Olsson, E.; Plivelic, T.S.; Andersson, R.; Johansson, C.; Kuktaite, R.; Järnström, L.; Koch, K. Molecular structure of citric acid cross-linked starch films. Carbohydr. Polym. 2013, 96, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Zhang, Z.; Liu, Q.; Han, Y.; Zhang, L.; Chen, D.; Tian, W. Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending. Carbohydr. Polym. 2007, 69, 748–755. [Google Scholar] [CrossRef]
- Ma, X.; Chang, P.R.; Yu, J.; Stumborg, M. Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites. Carbohydr. Polym. 2009, 75, 1–8. [Google Scholar] [CrossRef]
- Fajd, E.; Marton, G. Starch Citrate as an Ion Exchange Material–Preparation and Investigation. Hung. J. Ind. Chem. 2004, 32. [Google Scholar]
- Wing, R.E. Starch Citrate: Preparation and Ion Exchange Properties. Starch-Starke 1996, 48, 275–279. [Google Scholar] [CrossRef]
- Reddy, N.; Yang, Y. Citric acid cross-linking of starch films. Food Chem. 2010, 118, 702–711. [Google Scholar] [CrossRef]
- Shi, R.; Bi, J.; Zhang, Z.; Zhu, A.; Chen, D.; Zhou, X.; Zhang, L.; Tian, W. The effect of citric acid on the structural properties and cytotoxicity of the polyvinyl alcohol/starch films when molding at high temperature. Carbohydr. Polym. 2008, 74, 763–770. [Google Scholar] [CrossRef]
- Garcia, P.S.; Grossmann, M.V.E.; Shirai, M.A.; Lazaretti, M.M.; Yamashita, F.; Muller, C.M.O.; Mali, S. Improving action of citric acid as compatibiliser in starch/polyester blown films. Ind. Crops Prod. 2014, 52, 305–312. [Google Scholar] [CrossRef]
- Abdillahi, H.; Chabrat, E.; Rouilly, A.; Rigal, L. Influence of citric acid on thermoplastic wheat flour/poly(lactic acid) blends. II. Barrier properties and water vapor sorption isotherms. Ind. Crops Prod. 2013, 50, 104–111. [Google Scholar] [CrossRef]
- Chabrat, E.; Abdillahi, H.; Rouilly, A.; Rigal, L. Influence of citric acid and water on thermoplastic wheat flour/poly(lactic acid) blends. I: Thermal, mechanical and morphological properties. Ind. Crops Prod. 2012, 37, 238–246. [Google Scholar] [CrossRef]
- Ghorpade, V.S.; Yadav, A.V.; Dias, R.J. Citric acid crosslinked cyclodextrin/hydroxypropylmethylcellulose hydrogel films for hydrophobic drug delivery. Int. J. Biol. Macromol. 2016, 93, 75–86. [Google Scholar] [CrossRef]
- Hu, Y.; Liang, P.; Wang, Z.; Zhu, H.; Liu, Q. Developing amino acid-citric acid-based deep eutectic solvent for food applications: Preparation, characterization, antibacterial activity, biosafety, and formation mechanism exploration. Sustain. Chem. Pharm. 2023, 36, 101317. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Z.; Liang, P.; Zhu, H.; Liu, Q. Exploring the molecular mechanisms of isoliquiritin extraction using choline chloride-citric acid deep eutectic solvents. Sustain. Chem. Pharm. 2023, 33, 101099. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Qin, H.; Hu, X.; Wang, J.; Cheng, H.; Chen, L.; Qi, Z. Overview of acidic deep eutectic solvents on synthesis, properties and applications. Green Energy Environ. 2020, 5, 8–21. [Google Scholar] [CrossRef]
- Zaib, Q.; Eckelman, M.J.; Yang, Y.; Kyung, D. Are deep eutectic solvents really green?: A life-cycle perspective. Green Chem. 2022, 24, 7924–7930. [Google Scholar] [CrossRef]
- Liu, Y.; Friesen, J.B.; McAlpine, J.B.; Lankin, D.C.; Chen, S.N.; Pauli, G.F. Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. J. Nat. Prod. 2018, 81, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Omar, K.A.; Sadeghi, R. Physicochemical properties of deep eutectic solvents: A review. J. Mol. Liq. 2022, 360, 119524. [Google Scholar] [CrossRef]
- Koigerova, A.; Gosteva, A.; Samarov, A.; Tsvetov, N. Deep Eutectic Solvents Based on Carboxylic Acids and Glycerol or Propylene Glycol as Green Media for Extraction of Bioactive Substances from Chamaenerion angustifolium (L.) Scop. Molecules 2023, 28, 6978. [Google Scholar] [CrossRef] [PubMed]
- González-Fandos, E.; Herrera, B.; Maya, N. Efficacy of citric acid against Listeria monocytogenes attached to poultry skin during refrigerated storage. Int. J. Food Sci. Technol. 2009, 44, 262–268. [Google Scholar] [CrossRef]
- Koutsoumanis, K.; Skandamis, P. 18—New research on organic acids and pathogen behaviour. In Advances in Microbial Food Safety; Elsevier: Amsterdam, The Netherlands, 2013; pp. 355–384. ISBN 9780857094384. [Google Scholar]
- Schmidt, S.E.; Taylor, T.M.; Davidson, P.M. Chemical Preservatives and Natural Antimicrobial Compounds. In Food Microbiology; American Society of Microbiology: Washington, DC, USA, 2013; pp. 765–801. [Google Scholar]
- Al-Nabulsi, A.A.; Olaimat, A.N.; Osaili, T.M.; Shaker, R.R.; Zein Elabedeen, N.; Jaradat, Z.W.; Abushelaibi, A.; Holley, R.A. Use of acetic and citric acids to control Salmonella Typhimurium in tahini (sesame paste). Food Microbiol. 2014, 42, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.J.; Kim, S.A.; Lee, N.Y.; Rhee, M.S. New decontamination method based on caprylic acid in combination with citric acid or vanillin for eliminating Cronobacter sakazakii and Salmonella enterica serovar Typhimurium in reconstituted infant formula. Int. J. Food Microbiol. 2013, 166, 499–507. [Google Scholar] [CrossRef]
- Mahmoud, B.S.M. The efficacy of grape seed extract, citric acid and lactic acid on the inactivation of Vibrio parahaemolyticus in shucked oysters. Food Control 2014, 41, 13–16. [Google Scholar] [CrossRef]
- García-Soto, B.; Fernández-No, I.C.; Barros-Velázquez, J.; Aubourg, S.P. Use of citric and lactic acids in ice to enhance quality of two fish species during on-board chilled storage. Int. J. Refrig. 2014, 40, 390–397. [Google Scholar] [CrossRef]
- Bermúdez-Aguirre, D.; Barbosa-Cánovas, G.V. Disinfection of selected vegetables under nonthermal treatments: Chlorine, acid citric, ultraviolet light and ozone. Food Control 2013, 29, 82–90. [Google Scholar] [CrossRef]
- Alakomi, H.-L.; Puupponen-Pimiä, R.; Aura, A.-M.; Helander, I.M.; Nohynek, L.; Oksman-Caldentey, K.-M.; Saarela, M. Weakening of salmonella with selected microbial metabolites of berry-derived phenolic compounds and organic acids. J. Agric. Food Chem. 2007, 55, 3905–3912. [Google Scholar] [CrossRef] [PubMed]
- Mani-López, E.; García, H.S.; López-Malo, A. Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res. Int. 2012, 45, 713–721. [Google Scholar] [CrossRef]
- Doores, S. Organic acid. In Antimicrobials in Foods, 3rd ed.; Davidson, P.M.B.A.L., Ed.; Marcel Dekker Inc: New York, NY, USA, 2005; pp. 95–136. [Google Scholar]
- Radkowski, M.; Mikołajczyk, A. Wplyw kwasu cytrynowego na unieszkodliwianie paleczek Salmonella w miesie drobiowym. Med. Weter 2009, 65, 840–843. [Google Scholar]
- Seo, S.; Jung, D.; Wang, X.; Seo, D.J.; Lee, M.H.; Lee, B.-H.; Choi, C. Combined effect of lactic acid bacteria and citric acid on Escherichia coli O157:H7 and Salmonella Typhimurium. Food Sci. Biotechnol. 2013, 22, 1171–1174. [Google Scholar] [CrossRef]
- Rey, M.S.; García-Soto, B.; Fuertes-Gamundi, J.R.; Aubourg, S.; Barros-Velázquez, J. Effect of a natural organic acid-icing system on the microbiological quality of commercially relevant chilled fish species. LWT-Food Sci. Technol. 2012, 46, 217–223. [Google Scholar] [CrossRef]
- Tamblyn, K.C.; Conner, D.E. Bactericidal Activity of Organic Acids against Salmonella typhimurium Attached to Broiler Chicken Skin. J. Food Prot. 1997, 6, 610–737. [Google Scholar]
- Qiu, C.; Sun, W.; Cui, C.; Zhao, M. Effect of citric acid deamidation on in vitro digestibility and antioxidant properties of wheat gluten. Food Chem. 2013, 141, 2772–2778. [Google Scholar] [CrossRef]
- He, W.; Zhao, W.; Yang, R. Effects of wheat gluten modified by deamidation-heating with three different acids on the microstructure of model oil-in-water emulsion and rheological–physical property of ice cream. Food Hydrocoll. 2019, 87, 679–690. [Google Scholar] [CrossRef]
- Qiu, C.; Sun, W.; Zhao, Q.; Cui, C.; Zhao, M. Emulsifying and surface properties of citric acid deamidated wheat gliadin. J. Cereal Sci. 2013, 58, 68–75. [Google Scholar] [CrossRef]
- Liao, L.; Liu, T.; Zhao, M.; Zhao, H.; Cui, C. Aggregation behavior of wheat gluten during carboxylic acid deamidation upon hydrothermal treatment. J. Cereal Sci. 2011, 54, 129–136. [Google Scholar] [CrossRef]
- Liao, L.; Luo, Y.; Zhao, M.; Wang, Q. Preparation and characterization of succinic acid deamidated wheat gluten microspheres for encapsulation of fish oil. Colloids Surf. B. Biointerfaces 2012, 92, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Zhong, W.; Hu, X.; Ji, X.; Sun, Q.; Wang, R.; Yu, D.; Wu, F.; Wang, L. Conformational and functional changes from deamidation of wheat gluten with electrochemical treatment. J. Sci. Food Agric. 2023, 103, 5677–5686. [Google Scholar] [CrossRef] [PubMed]
- Canteri-Schemin, M.H.; Fertonani, H.C.R.; Waszczynskyj, N.; Wosiacki, G. Extraction of pectin from apple pomace. Braz. Arch. Biol. Technol. 2005, 48, 259–266. [Google Scholar] [CrossRef]
- Yapo, B.M. Lemon juice improves the extractability and quality characteristics of pectin from yellow passion fruit by-product as compared with commercial citric acid extractant. Bioresour. Technol. 2009, 100, 3147–3151. [Google Scholar] [CrossRef] [PubMed]
- Kurita, O.; Fujiwara, T.; Yamazaki, E. Characterization of the pectin extracted from citrus peel in the presence of citric acid. Carbohydr. Polym. 2008, 74, 725–730. [Google Scholar] [CrossRef]
- Vriesmann, L.C.; Teófilo, R.F.; Lúcia de Oliveira Petkowicz, C. Extraction and characterization of pectin from cacao pod husks (Theobroma cacao L.) with citric acid. LWT-Food Sci. Technol. 2012, 49, 108–116. [Google Scholar] [CrossRef]
- Sakiyama, T.; Sato, K.; Tsuda, S.; Sugiyama, H.; Hagiwara, T. Citric acid pretreatment for suppressing adhesion of major egg allergens to a stainless steel surface. Food Control 2013, 32, 702–706. [Google Scholar] [CrossRef]
- Acidity Regulators Market Size, Share, Growth, Trends and Outlook Report 2032. Available online: https://www.thebusinessresearchcompany.com/report/acidity-regulators-global-market-report (accessed on 3 October 2023).
- Citric Acid—Chemical Economics Handbook (CEH)|IHS Markit. 2015. Available online: https://www.ihs.com/products/citric-acid-chemical-economics-handbook.html (accessed on 17 February 2017).
- John, M. Connor. Global Price Fixing. In Studies in Industrial Organization, 2nd ed.; Springer: Boston, MA, USA, 2008. [Google Scholar]
- Citric Acid Market Analysis: Industry Market Size, Plant Capacity, Production, Operating, Efficiency, Demand and Supply, Edn-User Industries, Type, Sales Channel, Regional Demand, Company Share, Manufacturing Process, 2015–2030. Available online: https://www.chemanalyst.com/industry-report/citric-acid-market-695 (accessed on 5 October 2023).
- Citric Acid Market—Size, Share & Trends. Available online: https://www.mordorintelligence.com/industry-reports/citric-acid-market (accessed on 6 October 2023).
- Union PO of the E. C/2021/2431, Regulation (EU) 2016/1036 of the European Parliament and the Council. Available online: https://op.europa.eu/en/publication-detail/-/publication/a4c7f050-9dda-11eb-b85c-01aa75ed71a1 (accessed on 6 October 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Książek, E. Citric Acid: Properties, Microbial Production, and Applications in Industries. Molecules 2024, 29, 22. https://doi.org/10.3390/molecules29010022
Książek E. Citric Acid: Properties, Microbial Production, and Applications in Industries. Molecules. 2024; 29(1):22. https://doi.org/10.3390/molecules29010022
Chicago/Turabian StyleKsiążek, Ewelina. 2024. "Citric Acid: Properties, Microbial Production, and Applications in Industries" Molecules 29, no. 1: 22. https://doi.org/10.3390/molecules29010022
APA StyleKsiążek, E. (2024). Citric Acid: Properties, Microbial Production, and Applications in Industries. Molecules, 29(1), 22. https://doi.org/10.3390/molecules29010022