Effects of Maize–Lablab Intercropping and Lactic Acid Bacteria Additives on Forage Yield, Fermentation Quality and Profitability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Field Management and Research Design
2.3. Field Sampling
2.4. Silage Preparation and Sampling
2.5. Chemical Composition
2.6. Fermentation Indexes
2.7. Economic Analysis
2.8. Statistical Analysis
3. Results
3.1. Biomass Yield and Nutritional Quality of the Maize and Lablab
3.2. Nutritional Quality and Feed Value of Silage
3.3. Silage Fermentation Quality
3.4. Correlation Analysis between Silage Nutritional Quality and Fermentation Quality
3.5. Gross Revenues, Net Returns and Output-to-Input Ratios for Different Treatments
4. Discussion
4.1. Effect of Maize–Lablab Intercropping on Yield and Nutritional Quality
4.2. Effect of Mixed Maize/Lablab Silage and Lactobacillus Additives on the Nutritional and Fermentation Quality of Silage
4.3. Relationship between Nutritional Quality and Fermentation Quality
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ni, K.; Zhao, J.; Zhu, B.; Su, R.; Pan, Y.; Ma, J.; Zhou, G.; Tao, Y.; Liu, X.; Zhong, J. Assessing the Fermentation Quality and Microbial Community of the Mixed Silage of Forage Soybean with Crop Corn or Sorghum. Bioresour. Technol. 2018, 265, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Luo, Y.; Zhang, Y.; Wang, H.; Shen, Y.; Liu, Y.; Shang, S. Comparison on Environmental Impacts of Cereal and Forage Production in the Loess Plateau of China: Using Life Cycle Assessment with Uncertainty and Variability Analysis. J. Clean. Prod. 2022, 380, 135094. [Google Scholar] [CrossRef]
- Guan, H.; Shuai, Y.; Yan, Y.; Cai, Y.; Zhang, X. Microbial Community and Fermentation Dynamics of Corn Silage Prepared with Heat-Resistant Lactic Acid Bacteria in Hot Environment. J. Dairy Sci. 2020, 103, 228. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, D.; Ge, Q.; Yang, B.; Li, S. Effects of Harvest Period and Mixed Ratio on the Characteristic and Quality of Mixed Silage of Alfalfa and Maize. Anim. Feed. Sci. Technol. 2023, 306, 115796. [Google Scholar] [CrossRef]
- Paludo, F.; de Pinho Costa, K.A.; de Castro Dias, M.B.; Santos e Silva, F.A.; Gomes Silva, A.C.; Rodrigues, L.G.; Almeida Silva, S.A.; Souza, W.F.; Bilego, U.O.; Muniz, M.P. Fermentative Profile and Nutritive Value of Corn Silage with Tamani Guinea Grass. Semin. Cienc. Agrar. 2020, 41, 2733–2746. [Google Scholar] [CrossRef]
- Xin, Y.; Chen, C.; Zhong, Y.; Bu, X.; Huang, S.; Tahir, M.; Du, Z.; Liu, W.; Yang, W.; Li, J.; et al. Effect of Storage Time on the Silage Quality and Microbial Community of Mixed Maize and Faba Bean in the Qinghai-Tibet Plateau. Front. Microbiol. 2023, 13, 1090401. [Google Scholar] [CrossRef]
- Strom, N.; Hu, W.; Haarith, D.; Chen, S.; Bushley, K. Interactions between Soil Properties, Fungal Communities, the Soybean Cyst Nematode, and Crop Yield under Continuous Corn and Soybean Monoculture. Appl. Soil Ecol. 2020, 147, 103388. [Google Scholar] [CrossRef]
- Raza, M.A.; Zhiqi, W.; Yasin, H.S.; Gul, H.; Qin, R.; Rehman, S.U.; Mahmood, A.; Iqbal, Z.; Ahmed, Z.; Luo, S.; et al. Effect of Crop Combination on Yield Performance, Nutrient Uptake, and Land Use Advantage of Cereal/Legume Intercropping Systems. Field Crops Res. 2023, 304, 109144. [Google Scholar] [CrossRef]
- Mthembu, B.E.; Everson, T.M.; Everson, C.S. Intercropping Maize (Zea mays L.) with Lablab (Lablab purpureus L.) for Sustainable Fodder Production and Quality in Smallholder Rural Farming Systems in South Africa. Agroecol. Sustain. Food Syst. 2018, 42, 362–382. [Google Scholar] [CrossRef]
- Mourtzinis, S.; Marburger, D.; Gaska, J.; Diallo, T.; Lauer, J.; Conley, S. Corn and Soybean Yield Response to Tillage, Rotation, and Nematicide Seed Treatment. Crop Sci. 2017, 57, 1704–1712. [Google Scholar] [CrossRef]
- Luo, M.; Jiang, Y. First Report of Anthracnose Caused by Colletotrichum Karsti in Lentil (Lablab purpureus). Crop Prot. 2022, 155, 105903. [Google Scholar] [CrossRef]
- Umesh, M.R.; Angadi, S.; Begna, S.; Gowda, P. Planting Density and Geometry Effect on Canopy Development, Forage Yield and Nutritive Value of Sorghum and Annual Legumes Intercropping. Sustainability 2022, 14, 4517. [Google Scholar] [CrossRef]
- Gott, J.; Massawe, P.; Miller, N.R.; Goerndt, M.; Streubel, J.; Burton, M.G. Little or No Maize (Zea mays) Grain Yield Loss Occurred in Intercrop with Mid-Maturity Lablab (Lablab purpureus) in Northeastern Tanzania. Crop Sci. 2024, 64, 413–421. [Google Scholar] [CrossRef]
- da Silva, L.M.; de Pinho Costa, K.A.; Goncalves, E.; Silva, J.A.; Campos Pinho Costa, J.V.; Costa, A.C.; da Costa Severiano, E.; Fernandes, P.B.; Oliveira, K.J.; Magalhaes Mendonca, K.T.; et al. Fermentative Profile and Nutritive Value of Maize, Legume and Mixed Silage. Semin. Cienc. Agrar. 2023, 44, 1909–1926. [Google Scholar] [CrossRef]
- Lai, X.; Wang, H.; Yan, J.; Zhang, Y.; Yan, L. Exploring the Differences between Sole Silages of Gramineous Forages and Mixed Silages with Forage Legumes Using 16S/ITS Full-Length Sequencing. Front. Microbiol. 2023, 14, 1120027. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Jiang, Y.; Wang, L.; Wang, S.; Zhang, Z.; Tong, X.; Wang, S. Effects of Different Soybean and Maize Mixed Proportions in a Strip Intercropping System on Silage Fermentation Quality. Fermentation 2022, 8, 696. [Google Scholar] [CrossRef]
- Okoye, C.O.; Wang, Y.; Gao, L.; Wu, Y.; Li, X.; Sun, J.; Jiang, J. The Performance of Lactic Acid Bacteria in Silage Production: A Review of Modern Biotechnology for Silage Improvement. Microbiol. Res. 2023, 266, 127212. [Google Scholar] [CrossRef]
- Kim, D.; Lee, K.D.; Choi, K.C.; Kim, D.; Lee, K.D.; Choi, K.C. Role of LAB in Silage Fermentation: Effect on Nutritional Quality and Organic Acid Production—An Overview. Agric. Mark. Inf. Syst. 2021, 6, 216–234. [Google Scholar] [CrossRef]
- Avila, C.L.S.; Carvalho, B.F. Silage Fermentation-Updates Focusing on the Performance of Micro-Organisms. J. Appl. Microbiol. 2020, 128, 966–984. [Google Scholar] [CrossRef]
- Dong, J.; Li, S.; Chen, X.; Sun, Z.; Sun, Y.; Zhen, Y.; Qin, G.; Wang, T.; Demelash, N.; Zhang, X. Effects of Lactiplantibacillus Plantarum Inoculation on the Quality and Bacterial Community of Whole-Crop Corn Silage at Different Harvest Stages. Chem. Biol. Technol. Agric. 2022, 9, 57. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Chen, S.; Shao, T.; Tao, X.; Yuan, X. Effect of Lactic Acid Bacteria on the Fermentation Quality and Mycotoxins Concentrations of Corn Silage Infested with Mycotoxigenic Fungi. Toxins 2021, 13, 699. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Xu, D.; Li, F.; Bai, J.; Su, R. Current Approaches on the Roles of Lactic Acid Bacteria in Crop Silage. Microb. Biotechnol. 2023, 16, 67–87. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, N.; Kumari, N.; Mani, V.; Pradhan, D.; Gowane, G.R.; Kumar, S.; Tyagi, N. Effects of Lactiplantibacillus plantarum, Limosilactobacillus fermentum, and Propionic Acid on the Fermentation Process of Sugarcane Tops Silages Along with Variations in pH, Yeast and Mould Count After Aerobic Exposure. Waste Biomass Valorization 2023, 15, 2215–2230. [Google Scholar] [CrossRef]
- Qian, X.; Zang, H.; Xu, H.; Hu, Y.; Ren, C.; Guo, L.; Wang, C.; Zeng, Z. Relay Strip Intercropping of Oat with Maize, Sunflower and Mung Bean in Semi-Arid Regions of Northeast China: Yield Advantages and Economic Benefits. Field Crops Res. 2018, 223, 33–40. [Google Scholar] [CrossRef]
- Edson, C.; Takarwirwa, N.N.; Kuziwa, N.L.; Stella, N.; Maasdorp, B. Effect of Mixed Maize-Legume Silages on Milk Quality and Quantity from Lactating Smallholder Dairy Cows. Trop. Anim. Health Prod. 2018, 50, 1255–1260. [Google Scholar] [CrossRef]
- Holzer, M.; Mayrhuber, E.; Danner, H.; Braun, R. The Role of Lactobacillus Buchneri in Forage Preservation. Trends Biotechnol. 2003, 21, 282–287. [Google Scholar] [CrossRef]
- Vansoest, P.; Robertson, J.; Lewis, B. Methods for Dietary Fiber, Neutral Detergent Fiber, And Nonstarch Polysaccharides In Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Tucak, M.; Ravlic, M.; Horvat, D.; Cupic, T. Improvement of Forage Nutritive Quality of Alfalfa and Red Clover through Plant Breeding. Agronomy 2021, 11, 2176. [Google Scholar] [CrossRef]
- Arif, M.; Kumar, A.; Pourouchottamane, R.; Gupta, D.L.; Singh, M.K.; Rai, B. Effect of Intercropping Row Ratios on Yield and Nutritive Value of Maize and Cowpea Fodder. Range Manag. Agrofor. 2022, 43, 292–298. [Google Scholar]
- Yan, Y.; Li, X.; Guan, H.; Huang, L.; Ma, X.; Peng, Y.; Li, Z.; Nie, G.; Zhou, J.; Yang, W.; et al. Microbial Community and Fermentation Characteristic of Italian Ryegrass Silage Prepared with Corn Stover and Lactic Acid Bacteria. Bioresour. Technol. 2019, 279, 166–173. [Google Scholar] [CrossRef]
- Zeng, T.; Li, X.; Guan, H.; Yang, W.; Liu, W.; Liu, J.; Du, Z.; Li, X.; Xiao, Q.; Wang, X.; et al. Dynamic Microbial Diversity and Fermentation Quality of the Mixed Silage of Corn and Soybean Grown in Strip Intercropping System. Bioresour. Technol. 2020, 313, 123655. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Shi, W.; Ali, S.; Chang, S.; Jia, Q.; Hou, F. Legume/Maize Intercropping and N Application for Improved Yield, Quality, Water and N Utilization for Forage Production. Agronomy 2022, 12, 1777. [Google Scholar] [CrossRef]
- Zaeem, M.; Nadeem, M.; Pham, T.H.; Ashiq, W.; Ali, W.; Gillani, S.S.M.; Moise, E.; Elavarthi, S.; Kavanagh, V.; Cheema, M.; et al. Corn-Soybean Intercropping Improved the Nutritional Quality of Forage Cultivated on Podzols in Boreal Climate. Plants 2021, 10, 1015. [Google Scholar] [CrossRef]
- Kintl, A.; Smeringai, J.; Sobotkova, J.; Hunady, I.; Brtnicky, M.; Hammerschmiedt, T.; Elbl, J. Mixed Cropping System of Maize and Bean as a Local Source of N-Substances for the Nutrition of Farm Animals. Eur. J. Agron. 2024, 154, 127059. [Google Scholar] [CrossRef]
- Winters, A.; Fychan, R.; Jones, R. Effect of Formic Acid and a Bacterial Inoculant on the Amino Acid Composition of Grass Silage and on Animal Performance. Grass Forage Sci. 2001, 56, 181–192. [Google Scholar] [CrossRef]
- Chen, L.; Yuan, X.-j.; Li, J.-f.; Wang, S.-r.; Dong, Z.-h.; Shao, T. Effect of Lactic Acid Bacteria and Propionic Acid on Conservation Characteristics, Aerobic Stability and in Vitro Gas Production Kinetics and Digestibility of Whole-Crop Corn Based Total Mixed Ration Silage. J. Integr. Agric. 2017, 16, 1592–1600. [Google Scholar] [CrossRef]
- Contreras-Govea, F.; Marsalis, M.; Angadi, S.; Smith, G.; Lauriault, L.M.; VanLeeuwen, D. Fermentability and Nutritive Value of Corn and Forage Sorghum Silage When in Mixture with Lablab Bean. Crop Sci. 2011, 51, 1307–1313. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, R.; Wang, C.; Dong, W.; Zhang, Z.; Zhao, L.; Zhang, X. Effects of Cellulase and Lactobacillus Plantarum on Fermentation Quality, Chemical Composition, and Microbial Community of Mixed Silage of Whole-Plant Corn and Peanut Vines. Appl. Biochem. Biotechnol. 2022, 194, 2465–2480. [Google Scholar] [CrossRef]
- Sifeeldein, A.; Yuan, X.; Dong, Z.; Li, J.; Shao, T. Effect of Applying Lactobacillus Plantarum and Pediococcus Acidilactici Isolated on Fermentation Dynamics, Microbial Community and Aerobic Stability of Napier Grass (Pennisetum Purpureum) Silage. Kafkas Univ. Vet. Fak. Derg. 2018, 24, 371–378. [Google Scholar]
- Ligoski, B.; Gonçalves, L.F.; Claudio, F.L.; Alves, E.M.; Krüger, A.M.; Bizzuti, B.E.; Lima, P.d.M.T.; Abdalla, A.L.; Paim, T.d.P. Silage of Intercropping Corn, Palisade Grass, and Pigeon Pea Increases Protein Content and Reduces In Vitro Methane Production. Agronomy 2020, 10, 1784. [Google Scholar] [CrossRef]
- Mekuriaw, S.; Tsunekawa, A.; Ichinohe, T.; Tegegne, F.; Haregeweyn, N.; Kobayashi, N.; Tassew, A.; Mekuriaw, Y.; Walie, M.; Tsubo, M.; et al. Effect of Feeding Improved Grass Hays and Eragrostis Tef Straw Silage on Milk Yield, Nitrogen Utilization, and Methane Emission of Lactating Fogera Dairy Cows in Ethiopia. Animals 2020, 10, 1021. [Google Scholar] [CrossRef] [PubMed]
- Chirinda, N.; Murungweni, C.; Waniwa, A.; Nyamangara, J.; Tangi, A.; Peters, M.; Notenbaert, A.; Burkart, S. Perspectives on Reducing the National Milk Deficit and Accelerating the Transition to a Sustainable Dairy Value Chain in Zimbabwe. Front. Sustain. Food Syst. 2021, 5, 726482. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage Review: Interpretation of Chemical, Microbial, and Organoleptic Components of Silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef] [PubMed]
- Drouin, P.; Tremblay, J.; da Silva, E.B.; Apper, E. Changes to the Microbiome of Alfalfa during the Growing Season and after Ensiling with Lentilactobacillus buchneri and Lentilactobacillus hilgardii Inoculant. J. Appl. Microbiol. 2022, 133, 2331–2347. [Google Scholar] [CrossRef]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage Review: Factors Affecting Dry Matter and Quality Losses in Silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, G.Q.; Wei, S.N.; Kim, H.J.; Li, Y.F.; Kim, J.G. Changes in Fermentation Pattern and Quality of Italian Ryegrass (Lolium Multiflorum Lam.) Silage by Wilting and Inoculant Treatments. Anim. Biosci. 2020, 34, 48–55. [Google Scholar] [CrossRef]
- Denek, N.; Aydin, S.S.; Can, A. The Effects of Dried Pistachio (Pistachio Vera L.) by-Product Addition on Corn Silage Fermentation and in Vitro Methane Production. J. Appl. Anim. Res. 2017, 45, 185–189. [Google Scholar] [CrossRef]
- Zhu, Y.; Bai, C.S.; Guo, X.S.; Xue, Y.L.; Ataku, K. Nutritive Value of Corn Silage in Mixture with Vine Peas. Anim. Prod. Sci. 2011, 51, 1117–1122. [Google Scholar] [CrossRef]
- de Souza, W.F.; de Pinho Costa, K.A.; Guarnieri, A.; da Costa Severiano, E.; da Silva, J.T.; Alves Teixeira, D.A.; Oliveira, S.S.; de Castro Dias, M.B. Production and Quality of the Silage of Corn Intercropped with Paiaguas Palisadegrass in Different Forage Systems and Maturity Stages. Rev. Bras. Zootec. Braz. J. Anim. Sci. 2019, 48, e20180222. [Google Scholar] [CrossRef]
- Melaku, M.; Zhong, R.; Han, H.; Wan, F.; Yi, B.; Zhang, H. Butyric and Citric Acids and Their Salts in Poultry Nutrition: Effects on Gut Health and Intestinal Microbiota. Int. J. Mol. Sci. 2021, 22, 10392. [Google Scholar] [CrossRef]
- Muck, R.E. Recent Advances in Silage Microbiology. Agric. Food Sci. 2013, 22, 3–15. [Google Scholar] [CrossRef]
- Chiou, P.; Chang, S.; Yu, B. The Effects of Wet Sorghum Distillers’ Grains Inclusion on Napiergrass Silage Quality. J. Sci. Food Agric. 2000, 80, 1199–1205. [Google Scholar] [CrossRef]
- Filya, I. The Effect of Lactobacillus buchneri and Lactobacillus plantarum on the Fermentation, Aerobic Stability, and Ruminal Degradability of Low Dry Matter Corn and Sorghum Silages. J. Dairy Sci. 2003, 86, 3575–3581. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tian, J.; Zhang, Q.; Jiang, Y.; Wu, Z.; Yu, Z. Effects of Mixing Red Clover with Alfalfa at Different Ratios on Dynamics of Proteolysis and Protease Activities during Ensiling. J. Dairy Sci. 2018, 101, 8954–8964. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Y.; Zhao, S.; Wang, Y. Lactobacillus plantarum Inoculants Delay Spoilage of High Moisture Alfalfa Silages by Regulating Bacterial Community Composition. Front. Microbiol. 2020, 11, 1989. [Google Scholar] [CrossRef]
- Li, T. Planting Structure Adjustment and Layout Optimization of Feed Grain and Food Grain in China Based on Productive Potentials. Land 2023, 12, 45. [Google Scholar] [CrossRef]
- Xu, D.; Ding, W.; Ke, W.; Li, F.; Zhang, P.; Guo, X. Modulation of Metabolome and Bacterial Community in Whole Crop Corn Silage by Inoculating Homofermentative Lactobacillus plantarum and Heterofermentative Lactobacillus buchneri. Front. Microbiol. 2019, 9, 3299. [Google Scholar] [CrossRef]
- Ghizzi, L.G.; Del Valle, T.A.; Zilio, E.M.; Sakamoto, L.Y.; Marques, J.A.; Dias, M.S.; Nunes, A.T.; Gheller, L.S.; de P. Silva, T.B.; Grigoletto, N.T.S.; et al. Partial Replacement of Corn Silage with Soybean Silage on Nutrient Digestibility, Ruminal Fermentation, and Milk Fatty Acid Profile of Dairy Cows. Anim. Feed. Sci. Technol. 2020, 266, 114526. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Wang, C.; He, L.; Zhou, W.; Yang, F.; Zhang, Q. The Bacterial Community and Fermentation Quality of Mulberry (Morus Alba) Leaf Silage with or without Lactobacillus casei and Sucrose. Bioresour. Technol. 2019, 293, 122059. [Google Scholar] [CrossRef]
- Alvarado-Ramírez, E.R.; Maggiolino, A.; Elghandour, M.M.M.Y.; Rivas-Jacobo, M.A.; Ballesteros-Rodea, G.; Palo, P.D.; Salem, A.Z.M. Impact of Co-Ensiling of Maize with Moringa Oleifera on the Production of Greenhouse Gases and the Characteristics of Fermentation in Ruminants. Animals 2023, 13, 764. [Google Scholar] [CrossRef]
- Liu, X.; Rahman, T.; Song, C.; Su, B.; Yang, F.; Yong, T.; Wu, Y.; Zhang, C.; Yang, W. Changes in Light Environment, Morphology, Growth and Yield of Soybean in Maize-Soybean Intercropping Systems. Field Crops Res. 2017, 200, 38–46. [Google Scholar] [CrossRef]
- Gao, R.; Wang, B.; Jia, T.; Luo, Y.; Yu, Z. Effects of Different Carbohydrate Sources on Alfalfa Silage Quality at Different Ensiling Days. Agriculture 2021, 11, 58. [Google Scholar] [CrossRef]
- Raza, M.A.; Gul, H.; Wang, J.; Yasin, H.S.; Qin, R.; Bin Khalid, M.H.; Naeem, M.; Feng, L.Y.; Iqbal, N.; Gitari, H.; et al. Land Productivity and Water Use Efficiency of Maize-Soybean Strip Intercropping Systems in Semi-Arid Areas: A Case Study in Punjab Province, Pakistan. J. Clean. Prod. 2021, 308, 127282. [Google Scholar] [CrossRef]
NH3-N/TN (%) | AA + PA (%FW) | BA (%FW) | |||
---|---|---|---|---|---|
XN | YN | XA | YA | XB | YB |
≤5 | YN = 50 | ≤0.2 | YA = 10 | 0~0.5 | YB = 40 − 80 XB |
5~10 | YN = 60 − 2 XN | 0.2~1.5 | YA = (150 − 100 XA)/13 | >0.5 | YB = 0 |
10~20 | YN = 80 − 4 XN | >1.5 | YA = 0 | ||
>20 | YN = 0 |
Cropping System | Treatment | DM | CP | EE | Ash | NDF | ADF | RFV |
---|---|---|---|---|---|---|---|---|
M | CK | 45.70 ± 2.14 a | 7.48 ± 0.16 b | 2.54 ± 0.13 abc | 3.29 ± 0.11 b | 29.46 ± 0.26 e | 15.43 ± 0.75 c | 222.44 ± 8.38 b |
T1 | 45.45 ± 3.04 a | 7.31 ± 0.03 b | 2.14 ± 0.14 bcd | 3.68 ± 0.32 ab | 36.35 ± 0.51 bc | 17.46 ± 1.02 b | 192.80 ± 4.5 de | |
T2 | 44.11 ± 2.42 ab | 7.52 ± 0.31 b | 2.28 ± 0.02 ab | 3.62 ± 0.38 ab | 33.71 ± 0.47 d | 15.32 ± 0.27 c | 212.42 ± 3.48 bc | |
T3 | 42.45 ± 2.25 abc | 7.55 ± 0.45 b | 2.46 ± 0.07 a | 3.62 ± 0.60 ab | 30.23 ± 0.41 e | 14.44 ± 0.41 c | 239.31 ± 4.15 a | |
T4 | 43.59 ± 1.38 abc | 7.51 ± 0.34 b | 2.74 ± 0.06 ab | 3.81 ± 1.10 ab | 35.32 ± 1.22 c | 14.56 ± 0.38 c | 202.58 ± 9.33 cd | |
ML | CK | 41.72 ± 1.76 abc | 8.46 ± 0.33 a | 2.46 ± 0.09 cde | 4.24 ± 0.82 ab | 39.41 ± 0.76 a | 19.26 ± 0.12 a | 173.72 ± 3.92 f |
T1 | 39.62 ± 2.58 c | 8.35 ± 0.77 a | 2.65 ± 0.13 e | 4.55 ± 0.62 a | 40.93 ± 0.74 a | 21.58 ± 0.58 a | 164.48 ± 4.65 f | |
T2 | 41.02 ± 1.09 bc | 9.03 ± 0.42 a | 2.66 ± 0.04 de | 4.27 ± 0.35 ab | 39.98 ± 0.73 a | 19.84 ± 0.29 a | 169.26 ± 5.55 f | |
T3 | 40.11 ± 2.85 bc | 8.71 ± 0.33 a | 2.83 ± 0.11 cde | 4.85 ± 1.03 a | 39.43 ± 1.22 a | 18.63 ± 0.27 a | 172.77 ± 6.14 f | |
T4 | 43.09 ± 2.00 abc | 8.63 ± 0.34 a | 2.56 ± 0.15 cde | 3.93 ± 0.09 ab | 37.19 ± 1.34 b | 19.26 ± 0.50 b | 188.00 ± 7.21 e | |
Mean | M | 44.26 ± 2.25 A | 7.47 ± 0.25 B | 2.43 ± 0.08 B | 3.60 ± 0.50 B | 33.01 ± 0.57 B | 15.44 ± 0.56 B | 213.91 ± 5.97 A |
ML | 41.11 ± 2.06 B | 8.64 ± 0.44 A | 2.63 ± 0.10 A | 4.37 ± 0.58 A | 39.39 ± 0.96 A | 19.72 ± 0.35 A | 173.65 ± 5.5 B | |
CK | 43.71 ± 1.95 a | 7.97 ± 0.24 a | 2.50 ± 0.11 a | 3.77 ± 0.47 a | 34.44 ± 0.51 cd | 17.35 ± 0.43 bc | 198.08 ± 6.15 b | |
T1 | 42.54 ± 2.81 a | 7.83 ± 0.40 a | 2.40 ± 0.13 a | 4.12 ± 0.47 a | 38.64 ± 0.63 a | 19.52 ± 0.80 a | 178.64 ± 4.58 c | |
T2 | 42.57 ± 1.76 a | 8.27 ± 0.37 a | 2.47 ± 0.03 a | 3.95 ± 0.36 a | 36.85 ± 0.60 b | 17.58 ± 0.28 b | 190.84 ± 4.52 b | |
T3 | 41.28 ± 2.55 a | 8.13 ± 0.39 a | 2.65 ± 0.09 a | 4.23 ± 0.81 a | 34.83 ± 0.81 c | 16.54 ± 0.34 bc | 206.04 ± 5.15 a | |
T4 | 43.34 ± 1.69 a | 8.07 ± 0.34 a | 2.65 ± 0.11 a | 3.87 ± 0.60 a | 36.26 ± 1.28 b | 16.91 ± 0.44 c | 195.29 ± 8.27 b | |
p-value | C | <0.001 | <0.001 | <0.001 | 0.004 | <0.001 | <0.001 | <0.001 |
A | 0.406 | 0.379 | 0.200 | 0.736 | <0.001 | <0.001 | <0.001 | |
C × A | 0.354 | 0.792 | 0.084 | 0.628 | <0.001 | 0.014 | <0.001 |
Cropping System | Treatment | pH | LA | AA | PA | BA | NH3-N/TN | V-Score |
---|---|---|---|---|---|---|---|---|
M | CK | 3.77 ± 0.01 e | 8.46 ± 0.71 ab | 0.29 ± 0.19 c | ND | ND | 4.4 ± 0.23 abc | 99.34 ± 1.46 ab |
T1 | 3.71 ± 0.01 f | 8.01 ± 0.85 abc | 0.65 ± 0.04 ab | ND | ND | 4.37 ± 0.63 abc | 96.53 ± 0.31 cde | |
T2 | 3.72 ± 0.02 f | 8.56 ± 0.45 a | 0.83 ± 0.15 b | ND | ND | 3.53 ± 0.46 bc | 95.16 ± 1.13 e | |
T3 | 3.70 ± 0.02 f | 8.55 ± 0.43 a | 0.85 ± 0.05 b | ND | ND | 3.27 ± 0.63 c | 95.03 ± 0.42 e | |
T4 | 3.81 ± 0.02 d | 6.95 ± 0.69 bcde | 1.68 ± 0.38 a | ND | ND | 3.46 ± 1.28 bc | 90.56 ± 0.97 f | |
ML | CK | 3.91 ± 0.02 ab | 7.45 ± 0.31 abcde | 0.65 ± 0.09 ab | ND | ND | 5.11 ± 0.28 a | 96.18 ± 0.50 de |
T1 | 3.88 ± 0.02 bc | 5.96 ± 1.88 e | 0.38 ± 0.15 c | ND | ND | 4.46 ± 0.18 ab | 98.59 ± 1.13 abc | |
T2 | 3.90 ± 0.01 ab | 6.42 ± 0.48 de | 0.25 ± 0.08 c | ND | ND | 3.99 ± 0.77 abc | 99.58 ± 0.60 a | |
T3 | 3.87 ± 0.04 c | 7.96 ± 0.78 abcde | 0.55 ± 0.24 ab | ND | ND | 4.26 ± 0.1 abc | 97.33 ± 1.86 bcd | |
T4 | 3.92 ± 0.01 a | 6.65 ± 0.47 cde | 1.39 ± 0.44 a | ND | ND | 4.52 ± 0.55 ab | 91.68 ± 1.90 f | |
Mean | M | 3.74 ± 0.01 B | 8.11 ± 0.63 A | 0.86 ± 0.16 A | 3.81 ± 0.65 B | 95.32 ± 0.86 B | ||
ML | 3.90 ± 0.02 A | 6.89 ± 0.79 B | 0.64 ± 0.20 B | 4.47 ± 0.38 A | 96.67 ± 1.20 A | |||
CK | 3.84 ± 0.01 b | 7.95 ± 0.51 ab | 0.47 ± 0.14 b | 4.76 ± 0.26 a | 97.76 ± 0.98 a | |||
T1 | 3.79 ± 0.02 cd | 6.99 ± 1.37 bc | 0.52 ± 0.09 b | 4.41 ± 0.41 ab | 97.56 ± 0.72 ab | |||
T2 | 3.81 ± 0.01 c | 7.49 ± 0.47 abc | 0.54 ± 0.11 b | 3.76 ± 0.62 b | 97.37 ± 0.87 ab | |||
T3 | 3.78 ± 0.03 d | 8.25 ± 0.61 a | 0.70 ± 0.15 b | 3.76 ± 0.37 b | 96.18 ± 1.14 b | |||
T4 | 3.87 ± 0.01 a | 6.80 ± 0.58 c | 1.54 ± 0.41 a | 3.99 ± 0.91 ab | 91.12 ± 1.44 c | |||
p-value | C | <0.001 | <0.001 | 0.015 | <0.001 | <0.001 | ||
A | <0.001 | 0.029 | <0.001 | 0.041 | 0.005 | |||
C × A | 0.012 | 0.224 | 0.023 | 0.643 | <0.001 |
Items | Prices for Different Models (Million hm−2) | ||
---|---|---|---|
M | ML | ||
Inputs | Mulch costs | 0.05 | 0.05 |
Machine ploughing costs | 0.20 | 0.20 | |
Fertilizer costs | 0.59 | 0.59 | |
Seed costs | 0.08 | 0.12 | |
Irrigation costs | 0.27 | 0.27 | |
Labor costs | 0.14 | 0.15 | |
Total inputs | 1.32 | 1.37 | |
Total Income | 1.92 | 2.09 | |
Net Income | 0.60 | 0.73 | |
Output-to-input ratio | 1.45 | 1.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Ren, H.; Zheng, L.; Hou, Y.; Wang, H. Effects of Maize–Lablab Intercropping and Lactic Acid Bacteria Additives on Forage Yield, Fermentation Quality and Profitability. Fermentation 2024, 10, 477. https://doi.org/10.3390/fermentation10090477
Li D, Ren H, Zheng L, Hou Y, Wang H. Effects of Maize–Lablab Intercropping and Lactic Acid Bacteria Additives on Forage Yield, Fermentation Quality and Profitability. Fermentation. 2024; 10(9):477. https://doi.org/10.3390/fermentation10090477
Chicago/Turabian StyleLi, Dongsheng, Hongyang Ren, Linfeng Zheng, Yue Hou, and Hongliang Wang. 2024. "Effects of Maize–Lablab Intercropping and Lactic Acid Bacteria Additives on Forage Yield, Fermentation Quality and Profitability" Fermentation 10, no. 9: 477. https://doi.org/10.3390/fermentation10090477
APA StyleLi, D., Ren, H., Zheng, L., Hou, Y., & Wang, H. (2024). Effects of Maize–Lablab Intercropping and Lactic Acid Bacteria Additives on Forage Yield, Fermentation Quality and Profitability. Fermentation, 10(9), 477. https://doi.org/10.3390/fermentation10090477