Recent Advances in Experimental and Numerical Studies on Cloud and Erosion Behaviors in Cavitating Jets
Abstract
1. Introduction
2. Experimental Techniques of Cloud Behavior and Pit Formation
2.1. Pit Sensor
2.2. PVDF Sensor
2.3. High-Speed Imaging and Frame Difference Analysis
2.4. POD Analysis
2.5. Laser-Schlieren Imaging of Shockwave Visualization
2.6. Cross-Schlieren Imaging of Cloud Collapse and Shockwaves
3. Experimental Results and Discussion
3.1. Observation of Pit Formation
3.2. Time Response of PVDF Sensor Applied to Cavitation Event
3.3. High-Speed Imaging and Frame Difference Analysis
3.4. POD Analysis of Shadowgraph Images
3.5. Laser-Schlieren Imaging of Shockwave in Cavitating Jet
3.6. Cross-Schlieren Imaging in Cavitating Jet
4. Numerical Simulation of Cloud and Erosion Behaviors in a Cavitating Jet
5. Further Research Topics on Cavitating Jet
5.1. Cavitating-Jet Behavior on Rough Wall
5.2. Recent Studies on Cavitating Jet and Related Research
6. Conclusions
- To understand the erosion behavior of a cavitating jet, experimental techniques such as high-speed imaging, frame difference analysis, POD analysis, pit sensors, PVDF sensors, laser-schlieren imaging, and cross-schlieren imaging are essential, and they have been introduced into cavitating-jet research. These experimental techniques allow high-speed visualization of periodic cloud behavior and the associated pit formation mechanism based on cloud collapse and microjets, leading to erosion initiation on the wall material.
- The erosion mechanism of the cavitating jet was highly correlated with the periodic cloud behavior, which underwent growth, shrinkage, and collapse, as observed by the frame difference and POD analyses. When the cavitation cloud collapsed near the wall, combined with the microjet mechanism, highly impulsive forces were generated, as detected by the pit and PVDF sensors. This results in pit formation on the wall material, leading to mass loss at the end of the incubation period.
- The cloud collapse event of the cavitating jet was associated with shockwave formation, which was visualized using the laser-schlieren technique. Further quantitative information on the shockwave initiation positions was evaluated using the cross-schlieren technique. Several shockwaves were generated near the wall at the instant of the peak impulsive forces caused by the microjets arising from the cloud collapse. It was found that the shockwave initiations are located near the wall within a certain radial distance from the jet axis, which was consistent with the observed pit formation area of the cavitating jet.
- The numerical simulation of the cloud and erosion behaviors of a cavitating jet was summarized to demonstrate the current state of the art in cavitating jet research. Although the cloud and pitting behaviors of the cavitating jet were accurately predicted by the numerical simulation, the prediction of cavitating jet erosion was not well studied in the framework of past studies. This is associated with the influence of roughness caused by erosion, which will be a future topic of interest.
- Further studies are required on a cavitating jet on a rough surface, where highly increased erosion occurs on the grooved rough wall due to the cavitating jet, while the mechanism of highly increased erosion is not clearly understood. Furthermore, current research on cavitating jets and related cavitation research topics, including the microjet mechanism, were briefly demonstrated for their wide application.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blake, J.R.; Gibson, D.C. Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 1987, 19, 99–123. [Google Scholar] [CrossRef]
- Brennen, C.E. Cavitation and Bubble Dynamics; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Lauterborn, W.; Ohl, C.D. Cavitation bubble dynamics. Ultrason. Sonochem. 1997, 4, 65–75. [Google Scholar] [CrossRef]
- Frank, J.-P.; Michel, J.M. Fundamentals of Cavitation; Kluwer Academic Pblishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Kim, K.-H.; Chahine, G.L.; Franc, J.-P.; Karimi, A. Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction, Fluid Mechanics and Its Applications; Springer: Berlin, Germany, 2014. [Google Scholar]
- Sreedhar, B.K.; Albert, S.A.; Pandit, A.B. Cavitation damage: Theory and measurements—A review. Wear 2017, 372, 177–196. [Google Scholar] [CrossRef]
- Rayleigh, L. On the pressure developed in a liquid during the collapse of a spherical cavity. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1917, 34, 94–98. [Google Scholar] [CrossRef]
- Plesset, M.S. The dynamics of cavitation bubbles. ASME J. Appl. Mech. 1949, 71, 277–282. [Google Scholar] [CrossRef]
- Gilmore, F. Growth or Collapse of a Spherical Bubble in a Viscous Compressible Liquids; Report no 26-4; Hydrodynamics Laboratory at the California Institute of Technology: Pasadena, CA, USA, 1952. [Google Scholar]
- Dular, M.; Coutier-Delgosha, O. Numerical modelling of cavitation erosion. Int. J. Numer. Methods Fluids 2009, 61, 1388–1410. [Google Scholar] [CrossRef]
- Tomita, Y.; Shima, A.; Takahashi, K. The collapse of a gas bubble attached to a solid wall by a shock wave and the induced impact pressure. ASME J. Fluids Eng. 1983, 105, 341–347. [Google Scholar] [CrossRef]
- Tomita, Y.; Shima, A. Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech. 1986, 169, 535–564. [Google Scholar] [CrossRef]
- Vogel, A.; Lauterborn, W.; Timm, R. Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 1989, 206, 299–338. [Google Scholar] [CrossRef]
- Philipp, A.; Lauterborn, W. Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 1998, 361, 75–116. [Google Scholar] [CrossRef]
- Isselin, J.-C.; Alloncle, A.-P.; Autric, M. On laser induced single bubble near a solid boundary: Contribution to the understanding of erosion. J. Appl. Phys. 1998, 84, 5766–5771. [Google Scholar] [CrossRef]
- Brujan, E.A.; Keen, G.S.; Vogel, A.; Blake, J.R. The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys. Fluids 2002, 14, 85–92. [Google Scholar] [CrossRef]
- Brujan, E.A.; Ikeda, T.; Matsumoto, Y. On the pressure of cavitation bubbles. Exp. Therm. Fluid Sci. 2008, 32, 1188–1191. [Google Scholar] [CrossRef]
- Brujan, E.A.; Ikeda, T.; Yoshinaka, K.; Matsumoto, Y. The final stage of the collapse of a cloud of bubbles close to a rigid boundary. Ultrason. Sonochem. 2011, 18, 59–64. [Google Scholar] [CrossRef]
- Ochiai, N.; Iga, Y.; Nohmi, M.; Ikohagi, T. Numerical analysis of nonspherical bubble collapse behavior and induced impulsive pressure during first and second collapses near the wall boundary. J. Fluid Sci. Technol. 2011, 6, 860–874. [Google Scholar] [CrossRef]
- Peters, A.; Sagar, H.; Lantermann, U.; Moctar, O. Numerical modelling and prediction of cavitation erosion. Wear 2015, 338–339, 189–201. [Google Scholar] [CrossRef]
- Sonde, E.; Chaise, T.; Boisson, N.; Nelias, D. Modeling of cavitation peening: Jet, bubble growth and collapse, micro-jet and residual stresses. J. Mater. Process. Technol. 2018, 262, 479–491. [Google Scholar] [CrossRef]
- Fujisawa, N. Laser-induced cavitation bubble behavior on solid walls of different materials. Heat Mass Transf. 2022, 58, 499–504. [Google Scholar] [CrossRef]
- Zhai, Y.; Xu, W.; Luo, J.; Li, J. Experimental study on the characteristics of microjets and shock waves of cavitation bubbles near elastic boundaries. Ocean Eng. 2022, 257, 111664. [Google Scholar] [CrossRef]
- Chahine, G.L. Pressures generated by a bubble cloud collapse. Chem. Eng. Commun. 1984, 28, 355–367. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Shimizu, S. Erosion due to impingement of cavitating jet. J. Fluids Eng. 1987, 109, 442–447. [Google Scholar] [CrossRef]
- Momma, T.; Lichtarowicz, A. A study of pressures and erosion produced by collapsing cavitation. Wear 1995, 186–187, 425–436. [Google Scholar] [CrossRef]
- Soyama, H.; Yamauchi, Y.; Adachi, Y.; Sato, K.; Shindo, T.; Oba, R. High-speed observations of the cavitation cloud around a high-speed submerged water-jet. JSME Int. J. Ser. B Fluids Therm. Eng. 1995, 38, 245–251. [Google Scholar] [CrossRef]
- Yamauchi, Y.; Soyama, H.; Adachi, Y.; Sato, K.; Shindo, T.; Oba, R.; Oshima, R.; Yamabe, M. Suitable region of high-speed sub merged water jets for cutting and peening. JSME Int. J. Ser. B Fluids Therm. Eng. 1995, 38, 31–38. [Google Scholar] [CrossRef]
- Soyama, H.; Lichtarowicz, A. Cavitating jets—Similarity correlations. J. Jet Flow Eng. 1996, 13, 9–19. [Google Scholar]
- Callenaere, M.; Franc, J.P.; Michel, J.-M.; Riondet, M. The cavitation instability induced by the development of a re-entrant jet. J. Fluid Mech. 2001, 444, 223–256. [Google Scholar] [CrossRef]
- Sato, K.; Saito, Y. Unstable cavitation behavior in a circular-cylindrical orifice flow. JSME Int. J. Ser. B Fluids Therm. Eng. 2002, 45, 638–645. [Google Scholar] [CrossRef]
- Hattori, S.; Goto, Y.; Fukuyama, T. Influence of temperature on erosion by a cavitating liquid jet. Wear 2006, 260, 1217–1223. [Google Scholar] [CrossRef]
- Hutli, E.A.F.; Nedeljkovic, M.S. Frequency in shedding/discharging cavitation clouds determined by visualization of a sub merged cavitating jet. ASME J. Fluids Eng. 2008, 130, 021304. [Google Scholar] [CrossRef]
- Stanley, C.; Barber, B.; Milton, G. Rosengarten, Periodic cavitation shedding in a cylindrical orifice. Exp. Fluids 2011, 51, 1189–1200. [Google Scholar] [CrossRef]
- Nishimura, S.; Takakuwa, O.; Soyama, H. Similarity law on shedding frequency of cavitation cloud induced by a cavitating jet. J. Fluid Sci. Technol. 2012, 7, 405–420. [Google Scholar] [CrossRef]
- Sato, K.; Taguchi, Y.; Hayashi, S. High speed observation of periodic cavity behavior in a convergent-divergent nozzle for cavitating water jet. J. Flow Control Meas. Vis. 2013, 1, 102–107. [Google Scholar] [CrossRef]
- Singh, S.; Choi, J.-K.; Chahine, G.L. Characterization of cavitation fields from measured pressure signals of cavitating jets and ultrasonic horns. ASME J. Fluids Eng. 2013, 135, 091302. [Google Scholar] [CrossRef]
- Wright, M.M.; Epps, B.; Dropkin, A.; Truscott, T.T. Cavitation of a submerged jet. Exp. Fluids 2013, 54, 1541. [Google Scholar] [CrossRef]
- Stanley, C.; Barber, T.; Rosengarten, G. Re-entrant jet mechanism for periodic cavitation shedding in a cylindrical orifice. Int. J. Heat Fluid Flow 2014, 50, 169–176. [Google Scholar] [CrossRef]
- Hutli, E.; Nedeljkovic, M.S.; Radovic, N.A.; Bonyár, A. The relation between the high speed submerged cavitating jet behavior and the cavitation erosion process. Int. J. Multiph. Flow 2016, 83, 27–38. [Google Scholar] [CrossRef]
- Watanabe, R.; Yanagisawa, K.; Yamagata, T.; Fujisawa, N. Simultaneous shadowgraph imaging and acceleration pulse measurement of cavitating jet. Wear 2016, 358, 72–79. [Google Scholar] [CrossRef]
- Liu, H.X.; Kang, C.; Zhang, W.; Zhang, T. Flow structures and cavitation in submerged waterjet at high jet pressure. Exp. Therm. Fluid Sci. 2017, 88, 504–512. [Google Scholar] [CrossRef]
- Peng, K.; Tian, S.; Li, G.; Alehossein, H. Mapping cavitation impact field in a submerged cavitating jet. Wear 2018, 396–397, 22–33. [Google Scholar] [CrossRef]
- Hutli, E.; Nedeljkovic, M.; Bonyar, A. Dynamic behavior of cavitation clouds: Visualization and statistical analysis. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 281. [Google Scholar] [CrossRef]
- Wu, Q.; Wei, W.; Deng, B.; Jiang, P.; Li, D.; Zhang, M.D.; Fang, Z.L. Dynamic characteristics of the cavitation clouds of submerged Helmholtz self-sustained oscillation jets from high-speed photography. J. Mech. Sci. Technol. 2019, 33, 621–630. [Google Scholar] [CrossRef]
- Soyama, H. Cavitating jet: A review. Appl. Sci. 2020, 10, 7280. [Google Scholar] [CrossRef]
- Hassan, E.; Bukharin, M.; Al-Kouz, N.; Zhang, J.-W.; Li, W.F. A review on the erosion mechanism in cavitating jets and their industrial applications. Appl. Sci. 2021, 11, 3166. [Google Scholar] [CrossRef]
- Soyama, H. Effect of nozzle geometry on a standard cavitation erosion test using a cavitating jet. Wear 2013, 297, 895–902. [Google Scholar] [CrossRef]
- Li, D.; Kang, Y.; Wang, X.C.; Ding, X.; Fang, Z. Effects of nozzle inner surface roughness on the cavitation erosion characteristics of high speed submerged jets. Exp. Therm. Fluid Sci. 2016, 74, 444–452. [Google Scholar] [CrossRef]
- Hutli, E.; Nedeljkovic, M.S.; Bonyár, A.; Légrády, D. Experimental study on the influence of geometrical parameters on the cavitation erosion characteristics of high speed submerged jets. Exp. Therm. Fluid Sci. 2017, 80, 281–292. [Google Scholar] [CrossRef]
- Kamisaka, H.; Soyama, H. Enhancing the aggressive intensity of a cavitating jet by introducing water flow holes and a long guide pipe. ASME J. Fluids Eng. 2020, 143, 031201. [Google Scholar] [CrossRef]
- Pan, Y.; Ma, F.; Liu, B.; Cai, T. Cavitation intensity and erosion pattern of a self-excited cavitating jet. J. Mat. Process. Technol. 2020, 282, 116668. [Google Scholar] [CrossRef]
- Wu, X.Y.; Zhang, Y.Q.; Tan, Y.W.; Li, G.S.; Peng, K.W.; Zhang, B. Flow-visualization and numerical investigation on the optimum design of cavitating jet nozzle. Pet. Sci. 2022, 19, 2284–2296. [Google Scholar] [CrossRef]
- Alehossein, H.; Qin, Z. Numerical analysis of Rayleigh–Plesset equation for cavitating water jets. Int. J. Numer. Methods Eng. 2007, 72, 780–807. [Google Scholar] [CrossRef]
- Peng, G.; Shimizu, S.; Fujikawa, S. Numerical simulation of cavitating water jet by a compressible mixture flow method. J. Fluid Sci. Technol. 2011, 6, 499–509. [Google Scholar] [CrossRef]
- Hsiao, C.T.; Jayaprakash, A.; Kapahi, A.; Choi, J.K.; Chahine, G.L. Modelling of material pitting from cavitation bubble collapse. J. Fluid Mech. 2014, 755, 142–175. [Google Scholar] [CrossRef]
- Peng, G.Y.; Yang, C.X.; Oguma, Y.; Shimizui, S. Numerical analysis of cavitation cloud shedding in a submerged water jet. J. Hydrodyn. 2016, 28, 986–993. [Google Scholar] [CrossRef]
- Trummler, T.; Schmidt, S.J.; Adams, N.A. Numerical prediction of erosion due to a cavitating jet. Wear 2022, 498–499, 204304. [Google Scholar] [CrossRef]
- Okada, T.; Iwai, Y.; Hattori, S.; Tanimura, N. Relation between impact load and the damage produced by cavitation bubble collapse. Wear 1995, 184, 231–239. [Google Scholar] [CrossRef]
- Laborde, J.-L.; Bouyer, C.; Caltagirone, J.-P.; Gerard, A. Acoustic cavitation field prediction at low and high frequency ultra sounds. Ultrasonics 1998, 36, 581–587. [Google Scholar] [CrossRef]
- Escaler, X.; Farhat, M.; Avellan, F.; Egusquiza, E. Cavitation erosion tests on a 2D hydrofoil using surface-mounted obstacles. Wear 2003, 254, 441–449. [Google Scholar] [CrossRef]
- Dular, M.; Bachert, B.; Stoffel, B.; Sirok, B. Relationship between cavitation structures and cavitation damage. Wear 2004, 257, 1176–1184. [Google Scholar] [CrossRef]
- Krefting, D.; Mettin, R.; Lauterborn, W. High-speed observation of acoustic cavitation erosion in multibubble systems. Ultrason. Sonochem. 2004, 11, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Zeqiri, B.; Hodnett, M.; Carroll, A.J. Studies of a novel sensor for assessing the spatial distribution of cavitation activity within ultrasonic cleaning vessels. Ultrasonics 2006, 44, 73–82. [Google Scholar] [CrossRef]
- Dular, M.; Osterman, A. Pit clustering in cavitation erosion. Wear 2008, 265, 811–820. [Google Scholar] [CrossRef]
- Franc, J.-P.; Riondet, M.; Karimi, A.; Chahine, G.L. Material and velocity effects on cavitation erosion pitting. Wear 2012, 274–275, 248–259. [Google Scholar] [CrossRef]
- Dular, M.; Delgosha, O.C.; Petkovsek, M. Observations of cavitation erosion pit formation. Ultrason. Sonochem. 2013, 20, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Hattori, S.; Taruya, K.; Kikuta, K.; Tomaru, H. Cavitation erosion of silver plated coatings considering thermodynamic effect. Wear 2013, 300, 136–142. [Google Scholar] [CrossRef]
- Petkovsek, M.; Dular, M. Simultaneous observation of cavitation structures and cavitation erosion. Wear 2013, 300, 55–64. [Google Scholar] [CrossRef]
- Choi, J.-K.; Jayaprakash, A.; Kapahi, A.; Hsiao, C.-T.; Chahine, G.L. Relationship between space and time characteristics of cavitation impact pressures and resulting pits in materials. J. Mater. Sci. 2014, 49, 3034–3051. [Google Scholar] [CrossRef]
- Dular, M.; Petkovsek, M. On the mechanisms of cavitation erosion, Coupling high speed videos to damage patterns. Exp. Therm. Fluid Sci. 2015, 68, 359–370. [Google Scholar] [CrossRef]
- Choi, J.-K.; Chahine, G.L. Relationship between material pitting and cavitation field impulsive pressures. Wear 2016, 352–353, 42–53. [Google Scholar] [CrossRef]
- Fujisawa, N.; Kikuchi, T.; Fujisawa, K.; Yamagata, T. Time-resolved observations of pit formation and cloud behavior in cavitating jet. Wear 2017, 386, 99–105. [Google Scholar] [CrossRef]
- Arndt, R.E.; Paul, S.; Ellis, C.R. Application of piezoelectric film in cavitation research. J. Hydraul. Eng. 1997, 123, 539–548. [Google Scholar] [CrossRef]
- Wang, Y.C.; Huang, C.H.; Lee, Y.C.; Tsai, H.H. Development of a PVDF sensor array for measurement of the impulsive pressure generated by cavitation bubble collapse. Exp. Fluids 2006, 41, 365–373. [Google Scholar] [CrossRef]
- Wang, Y.C.; Chen, Y.W. Application of piezoelectric PVDF film to the measurement of impulsive forces generated by cavitation bubble collapse near a solid boundary. Exp. Therm. Fluid Sci. 2007, 32, 403–414. [Google Scholar] [CrossRef]
- Hattori, S.; Hirose, T.; Sugiyama, K. Prediction method for cavitation erosion based on measurement of bubble collapse impact loads. Wear 2010, 269, 507–514. [Google Scholar] [CrossRef]
- Soyama, H.; Sekine, Y.; Saito, K. Evaluation of the enhanced cavitation impact energy using a PVDF transducer with an acrylic resin backing. Measurement 2011, 44, 1279–1283. [Google Scholar] [CrossRef]
- Sugimoto, Y.; Yamanishi, Y.; Sato, K.; Moriyama, M. Measurement of bubble behavior and impact on solid wall induced by fiber-holmium: YAG laser. J. Flow Control Meas. Vis. 2015, 3, 135–143. [Google Scholar]
- Hujer, J.; Müller, M. Calibration of pvdf film transducers for the cavitation impact measurement. In Proceedings of the EFM17—Experimental Fluid Mechanics 2017, Mikulov, Czech Republic, 21–24 November 2017. [Google Scholar]
- Kang, C.; Liu, H.; Soyama, H. Estimation of aggressive intensity of a cavitating jet with multiple experimental methods. Wear 2018, 394–395, 176–186. [Google Scholar] [CrossRef]
- Chen, J.C.; Chang, H.Y.; Chen, J.J.; Chen, G.S. A piezoceramic sensor for detection of focused ultrasound-induced cavitation. IEEE Sens. J. 2019, 19, 10379–10385. [Google Scholar] [CrossRef]
- Hayashi, S.; Sato, K. Unsteady behavior of cavitating waterjet in an axisymmetric convergent-divergent nozzle: High speed observation and image analysis based on frame difference method. J. Flow Control Meas. Vis. 2014, 2, 94–104. [Google Scholar] [CrossRef]
- Watanabe, R.; Kikuchi, T.; Yamagata, T.; Fujisawa, N. Shadowgraph imaging of cavitating jet. J. Flow Control Meas. Vis. 2015, 3, 106–110. [Google Scholar] [CrossRef]
- Peng, K.; Tian, S.; Li, G.; Huang, Z.; Zhang, Z. Cavitation in water jet under high ambient pressure conditions. Exp. Therm. Fluid Sci. 2017, 89, 9–18. [Google Scholar] [CrossRef]
- Fujisawa, N.; Fujita, Y.; Yanagisawa, K.; Fujisawa, K.; Yamagata, T. Simultaneous observation of cavitation collapse and shock wave formation in cavitating jet. Exp. Therm. Fluid Sci. 2018, 94, 159–167. [Google Scholar] [CrossRef]
- Peng, C.; Tian, S.; Li, G. Joint experiments of cavitation jet: High-speed visualization and erosion test. Ocean Eng. 2018, 149, 1–13. [Google Scholar] [CrossRef]
- Fujisawa, N.; Horiuchi, T.; Fujisawa, K.; Yamagata, T. Experimental observation of the erosion pattern, pits, and shockwave formation in a cavitating jet. Wear 2019, 418–419, 265–272. [Google Scholar] [CrossRef]
- Settles, G.S. Schlieren and Shadowgraph Techniques, Visualizing Phenomena in Transparent Media; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; pp. 111–122. [Google Scholar]
- Berkooz, G.; Holmes, P.; Lumley, J.L. The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 1993, 25, 539–575. [Google Scholar] [CrossRef]
- Bernero, S.; Fielder, H.E. Application of particle image velocimetry and proper orthogonal decomposition on the study of a jet in counterflow. Exp. Fluids 2000, 29, S274–S281. [Google Scholar] [CrossRef]
- Watanabe, R.; Gono, T.; Yamagata, T.; Fujisawa, N. Three-dimensional flow structure in highly buoyant jet by scanning stereo PIV combined with POD analysis. Int. J. Heat Fluid Flow 2015, 52, 98–110. [Google Scholar] [CrossRef]
- Peng, G.Y.; Shimizu, S. Progress in numerical simulation of cavitating water jets. J. Hydrodyn. 2013, 25, 502–509. [Google Scholar] [CrossRef]
- Peng, G.; Okada, K.; Yang, C.; Oguma, Y.; Shimizu, S. Numerical simulation of unsteady cavitation in a high-speed water jet. Int. J. Fluid Mach. Syst. 2016, 9, 66–74. [Google Scholar] [CrossRef]
- Yang, Y.; Li, W.; Shi, W.; Zhang, W.; El-Emam, M.A. Numerical investigation of a high-pressure submerged jet using a cavitation model considering effects of shear stress. Processes 2019, 7, 541. [Google Scholar] [CrossRef]
- Onishi, T.; Peng, Y.; Ji, H.; Peng, G. Numerical simulations of cavitating water jet by an improved cavitation model of compressible mixture flow with an emphasis on phase change effects. Phys. Fluids 2023, 35, 073333. [Google Scholar] [CrossRef]
- Li, L.; Xu, Y.; Ge, M.; Wang, Z.; Li, S.; Zhang, J. Numerical investigation of cavitating jet flow field with different turbulence models. Mathematics 2023, 11, 3977. [Google Scholar] [CrossRef]
- Schreiner, F.; Haese, M.G.; Skoda, R. Three-dimensional flow simulation and cavitation erosion modeling for the assessment of incubation time and erosion rate. Wear 2023, 524–525, 204747. [Google Scholar] [CrossRef]
- Liu, H.; Xu, Y.; Wang, Z.; Zhang, J.; Wang, J. Experimental and numerical simulations to examine the mechanism of nozzle geometry affecting cavitation water jets. Geoenergy Sci. Eng. 2024, 233, 212511. [Google Scholar] [CrossRef]
- Xu, Y.; Tian, J.; Wang, Z.; Zhang, J.; Li, S.; Yan, Y.; Ge, M. A comprehensive study on the flow field of cylindrical cavitation nozzle jet under different turbulence models. Ocean Eng. 2025, 315, 119596. [Google Scholar] [CrossRef]
- Fujisawa, N.; Yamagata, T.; Seki, R.; Ohki, M. Erosion mechanism of a cavitating jet on groove roughness. Fluids 2020, 6, 6. [Google Scholar] [CrossRef]
- Li, G.; Shi, H.; Liao, H.; Shen, Z.; Niu, J.; Huang, Z.; Luo, H. Hydraulic pulsed cavitating jet-assisted drilling. Pet. Sci. Technol. 2009, 27, 197–207. [Google Scholar] [CrossRef]
- Li, Z. Criteria for jet cavitation and cavitation jet drilling. Int. J. Rock Mech. Min. Sci. 2014, 71, 204–207. [Google Scholar] [CrossRef]
- Yuan, C.; Song, J.; Zhu, L.; Liu, M. Numerical investigation on cavitating jet inside a poppet valve with special emphasis on cavitation-vortex interaction. Int. J. Heat Mass Transf. 2019, 141, 1009–1024. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, K.J.; Wu, X.; Tian, S.; Shi, H.; Wang, W.; Zhang, P. An innovative experimental apparatus for the analysis of natural gas hydrate erosion process using cavitating jet. Rev. Sci. Instrum. 2020, 91, 095107. [Google Scholar] [CrossRef]
- Holmes, A.; Ewing, D.; Ching, C.Y.; Fujisawa, N. Experimental study on boiling instability and occurrence of cavitation in a two-phase square pipe subjected to natural convection. Heat Mass Transf. 2020, 56, 2975–2982. [Google Scholar] [CrossRef]
- Soyama, H. Cavitation peening: A review. Metals 2020, 10, 270. [Google Scholar] [CrossRef]
- Yuan, C.; Zhu, L.; Du, Z.; Liu, S. Numerical investigation into the cavitating jet inside water poppet valves with varied valve seat structures. Eng. Appl. Comput. Fluid Mech. 2021, 15, 391–412. [Google Scholar] [CrossRef]
- Liu, B.; Gao, Y.; Ma, F. Aggressive ability improvement of self-resonating cavitating jets with double-hole nozzle. J. Pet. Sci. Eng. 2022, 214, 110476. [Google Scholar] [CrossRef]
- Ge, M.; Sun, C.; Zhang, G.; Coutier-Delgosha, O.; Fan, D. Combined suppression effects on hydrodynamic cavitation performance in Venturi-type reactor for process intensification. Ultrason. Sonochem. 2022, 86, 106035. [Google Scholar] [CrossRef]
- Ge, M.; Sun, C.; Zhang, X.; Coutier-Delgosha, O.; Zhang, G. Synchrotron X-ray based particle image velocimetry to measure multiphase streamflow and densitometry. Radiat. Phys. Chem. 2022, 200, 110395. [Google Scholar] [CrossRef]
- Usta, O.; Köksal, Ç.S.; Korkut, E. A systematic study into the cavitation erosion test for marine propeller materials by cavitating jet technique. Ocean Eng. 2023, 284, 115252. [Google Scholar] [CrossRef]
- Wang, T.; Li, G.; Song, M.; Zhao, Y.; Xu, W.; Zhao, F.; Wang, X. Multi-objective parameter optimized design of self-oscillating cavitation jet nozzles. Energies 2023, 16, 6737. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, G.; Zhao, F.; Wang, X.; Xu, W. Analysis of macroscopic cavitation characteristics of a self-excited oscillating cavitation jet nozzle. J. Appl. Fluid Mech. 2023, 16, 2130–2141. [Google Scholar] [CrossRef]
- Wu, W.; Xu, Y.; Yan, Y.; Li, S.; Zhang, J.; Wang, Z. Investigation on the flow characteristics of rotating nozzle cavitation water jet flow field. J. Appl. Fluid Mech. 2024, 17, 2637–2651. [Google Scholar] [CrossRef]
- Yuan, G.; Ni, B.J.; Wu, Q.; Lu, W.; Xue, Y. Experimental study on ice breaking by a cavitating water jet in a Venturi structure. Appl. Therm. Eng. 2024, 239, 122095. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, C.; Wang, L.; Lu, W.; Li, D. The generation methods and applications of cavitating jet by using bubble collapse energy. Energies 2024, 17, 5902. [Google Scholar] [CrossRef]
- Liu, H.; Nie, Z.; Liu, R.; Zhang, M. Research on jet characteristics of new composite cavitation nozzle. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2025, 239, 6360–6372. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, B.; Zhu, R.; Zhang, M.; Wang, S.; Li, B.; Xie, Z. Investigation on unsteady flow characteristics of an artificial-submerged cavitating jet based on the LES approach. Ocean Eng. 2025, 316, 119989. [Google Scholar] [CrossRef]
- Hu, X.; Yang, X.; Liu, J.; Wu, D.; Liu, Y. Improving cavitating jet erosion efficiency using a multi-orifice nozzle: Experimental and numerical study. Phys. Fluids 2025, 37, 085180. [Google Scholar] [CrossRef]
- Xie, Z.; Shi, W.; Zheng, Y.; Tan, L.; Tian, Q.; Cao, Y.; Zhou, J.; Ge, X. Simulation investigation on impact damage characteristics of metal plate by cavitating bubble micro-jet water hammer. Eng. Fail. Anal. 2020, 115, 104626. [Google Scholar] [CrossRef]
- Okita, K.; Miyamoto, Y.; Furukawa, T.; Takagi, S. Numerical study on stress in a solid wall caused by the collapse of a cavitation bubble cloud in hydraulic fluid. Int. J. Multiph. Flow 2022, 150, 103965. [Google Scholar] [CrossRef]
- Xiong, J.; Liu, Y.; Li, C.; Zhou, Y.; Li, F. Quantitative evaluation of the microjet velocity and cavitation erosion on a copper plate produced by a spherical cavity focused transducer at the high hydrostatic pressure. Ultrason. Sonochem. 2022, 82, 105899. [Google Scholar] [CrossRef]
- Shen, X.; Han, W.; Li, R.; Yang, S.; Nan, H.; Bai, L.; Dong, Y. Investigation of the impact load characteristics of micro-jet induced by cavitation collapse on rigid wall surface. Chem. Eng. J. 2024, 501, 157686. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Xu, Y.; Yan, Y.; Xu, X.; Li, S. Evolution of cavitation clouds under cavitation impinging jets based on three-view high-speed visualization. Geoenergy Sci. Eng. 2024, 237, 212832. [Google Scholar] [CrossRef]
- Wei, L.; Liu, S.; Dong, F. Mechanism study of micro-jet generation induced by acoustic cavitation. J. Hydrodyn. 2024, 36, 1104–1117. [Google Scholar] [CrossRef]
- Li, J.; Luo, J.; Chen, S.; Qu, T.; Xu, W. Interaction between cavitation bubbles and cavitation erosion pits. Tribol. Int. 2025, 213, 111101. [Google Scholar] [CrossRef]
























Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Fujisawa, N. Recent Advances in Experimental and Numerical Studies on Cloud and Erosion Behaviors in Cavitating Jets. Fluids 2026, 11, 14. https://doi.org/10.3390/fluids11010014
Fujisawa N. Recent Advances in Experimental and Numerical Studies on Cloud and Erosion Behaviors in Cavitating Jets. Fluids. 2026; 11(1):14. https://doi.org/10.3390/fluids11010014
Chicago/Turabian StyleFujisawa, Nobuyuki. 2026. "Recent Advances in Experimental and Numerical Studies on Cloud and Erosion Behaviors in Cavitating Jets" Fluids 11, no. 1: 14. https://doi.org/10.3390/fluids11010014
APA StyleFujisawa, N. (2026). Recent Advances in Experimental and Numerical Studies on Cloud and Erosion Behaviors in Cavitating Jets. Fluids, 11(1), 14. https://doi.org/10.3390/fluids11010014

