Computational Fluid Dynamics and Adjoint-Based Optimization of a Supersonic Combustor for Improved Efficiency †
Abstract
1. Introduction
2. Methods
2.1. Flow Configuration
2.2. Formulation of the Optimization Problem
2.3. Numerical Approach
3. Results and Discussion
3.1. Scramjet Mixing Optimization
3.2. Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, J. Hypersonic and High Temperature Gas Dynamics, 2nd ed.; AIAA: Reston, VA, USA, 2006. [Google Scholar]
- Bruno, C.; Czysz, P. Future Spacecraft Propulsion Systems: Enabling Technologies for Space Exploration; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Guy, R. Hypersonic propulsion: Status and challenge. In AGARD, Hypersonic Combined Cycle Propulsion; NATO: Brussels, Belgium, 1990. [Google Scholar]
- McClinton, C. X-43-Scramjet power breaks the hypersonic barrier: Dryden lectureship in research for 2006. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006; p. 1. [Google Scholar]
- Hank, J.; Murphy, J.; Mutzman, R. The X-51A scramjet engine flight demonstration program. In Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Dayton, OH, USA, 28 April–1 May 2008; p. 2540. [Google Scholar]
- Steelant, J.; Mack, A.; Hannemann, K.; Gardner, A. Comparison of Supersonic Combustion Tests with Shock Tunnels, Flight and CFD. In Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Sacramento, CA, USA, 9–12 July 2006. [Google Scholar]
- Bowcutt, K.; Paull, A.; Dolvin, D.; Smart, M. HIFiRE: An international collaboration to advance the science and technology of hypersonic flight. In Proceedings of the 28th International Congress of the Aeronautical Sciences, Leiden, The Netherlands, 23–28 September 2012; p. 998. [Google Scholar]
- Roncioni, P.; Ranuzzi, G.; Marini, M.; Battista, F.; Rufolo, G. CFD aerothermodynamic characterization of the IXV hypersonic vehicle. In Proceedings of the 7th European Symposium on Eerothermodynamics of Space Vehicles, Brugge, Belgium, 9–12 May 2011; pp. 9–12. [Google Scholar]
- Paris, S.; Charbonnier, D.; Tran, D. Experimental and numerical investigation of aerothermal characteristics of the IXV hypersonic vehicle. In Proceedings of the 7th European Symposium on Aerothermodynamics, Brugge, Belgium, 9–12 May 2011; Volume 692, p. 47. [Google Scholar]
- Berry, S.; Mason, M.; Greene, F.; King, R.; Rieken, E.; Basore, K. LaRC aerothermodynamic ground tests in support of BOLT flight experiment. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019; p. 0091. [Google Scholar]
- Wheaton, B.; Berridge, D.; Wolf, T.; Araya, D.; Stevens, R.; McGrath, B.; Kemp, B.; Adamczak, D. Final design of the Boundary Layer Transition (BOLT) flight experiment. J. Spacecr. Rocket. 2021, 58, 6–17. [Google Scholar] [CrossRef]
- Slotnick, J.; Khodadoust, A.; Alonso, J.; Darmofal, D.; Gropp, W.; Lurie, E.; Mavriplis, D. CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences; Technical Report; NASA: Washington, DC, USA, 2014.
- Cary, A.; Chawner, J.; Duque, E.; Gropp, W.; Kleb, B.; Kolonay, R.; Nielsen, E.; Smith, B. The CFD Vision 2030 Roadmap: 2020 Status Progress and Challenges. Technical Report. 2021. Available online: http://www.cfd2030.com/report (accessed on 1 June 2025).
- Srinath, D.; Mittal, S. An adjoint method for shape optimization in unsteady viscous flows. J. Comput. Phys. 2010, 229, 1994–2008. [Google Scholar]
- Kavvadias, I.; Papoutsis-Kiachagias, E.; Dimitrakopoulos, G.; Giannakoglou, K. The continuous adjoint approach to the k-ω SST turbulence model with applications in shape optimization. Eng. Optim. 2015, 47, 1523–1542. [Google Scholar] [CrossRef]
- Lei, J.; He, J. Adjoint-based aerodynamic shape optimization for low Reynolds number airfoils. J. Fluids Eng. Trans. ASME 2016, 138, 1–6. [Google Scholar]
- Halila, G.; Martins, J.; Fidkowski, K. Adjoint-based aerodynamic shape optimization including transition to turbulence effects. Aerosp. Sci. Technol. 2020, 107, 106243. [Google Scholar] [CrossRef]
- Rashad, R.; Zingg, D. Aerodynamic shape optimization for natural laminar flow using a discrete-adjoint approach. In Proceedings of the 22nd AIAA Computational Fluid Dynamics Conference, Dallas, TX, USA, 1–20 June 2015. [Google Scholar]
- Carpentieri, G.; Koren, B.; van Tooren, M. Adjoint-based aerodynamic shape optimization on unstructured meshes. J. Comput. Phys. 2007, 224, 267–287. [Google Scholar] [CrossRef]
- Kapsoulis, D.; Tsiakas, K.; Trompoukis, X.; Asouti, V.; Giannakoglou, K. A PCA-assisted hybrid algorithm combining EAs and adjoint methods for CFD-based optimization. Appl. Soft Comput. J. 2018, 73, 520–529. [Google Scholar] [CrossRef]
- Luo, J.; Xiong, J.; Liu, F. Aerodynamic design optimization by using a continuous adjoint method. Sci. China Phys. Mech. Astron. 2014, 57, 1363–1375. [Google Scholar] [CrossRef]
- Reuther, J.; Jameson, A. Supersonic Wing and Wing-Body Shape Optimization Using an Adjoint Formulation; American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED: New York, NY, USA, 1995; pp. 45–52. [Google Scholar]
- Jameson, A.; Martinelli, L.; Pierce, N.A. Optimum aerodynamic design using the Navier-Stokes equations. Theor. Comput. Fluid Dyn. 1998, 10, 213–237. [Google Scholar] [CrossRef]
- Ashikhmina, E.; Prosuntsov, P. Coupled CFD-based shape optimization of a wing of reusable space vehicle of tourist class. IOP Conf. Ser. Mater. Sci. Eng. 2020, 709, 022108. [Google Scholar]
- Wang, D.; He, L. Adjoint aerodynamic design optimization for blades in multistage turbomachines-Part I: Methodology and verification. J. Turbomach. 2010, 43161, 2141–2156. [Google Scholar] [CrossRef]
- Wang, D.; He, L.; Li, Y.; Wells, R. Adjoint aerodynamic design optimization for blades in multistage turbomachines-Part II: Validation and application. J. Turbomach. 2010, 43161, 2157–2169. [Google Scholar] [CrossRef]
- Luo, J.; Xiong, J.; Liu, F.; Power, A. Three-Dimensional Aerodynamic Design Optimization of a Turbine Blade by Using an Adjoint Method. Artic. J. Turbomach. 2010, 48883, 651–664. [Google Scholar] [CrossRef]
- Luo, J.; McBean, I.; Liu, F. Optimization of endwall contours of a turbine blade row using an adjoint method. In Proceedings of the Turbo Expo: Power for Land, Sea, and Air, Vancouver, BC, Canada, 6–10 June 2011; Volume 54679, pp. 1335–1350. [Google Scholar]
- Chen, L.; Chen, J. Aerodynamic optimization design for high pressure turbines based on the adjoint approach. Chin. J. Aeronaut. 2015, 28, 757–769. [Google Scholar] [CrossRef]
- Yi, J.; Kim, C.; Lee, B. Adjoint-Based Design Optimization of Vortex Generator in an S-Shaped Subsonic Inlet. AIAA J. 2012, 50, 2492–2507. [Google Scholar] [CrossRef]
- Chanzy, Q.; Garnier, E.; Bur, R. Optimization of a Fluidic Vortex Generator’s Control in a Transonic Channel Flow. AIAA J. 2020, 58, 5216–5227. [Google Scholar] [CrossRef]
- Martins, J.; Kennedy, G. Enabling Large-scale Multidisciplinary Design Optimization through Adjoint Sensitivity Analysis. Struct. Multidiscip. Optim. 2021, 64, 2959–2974. [Google Scholar] [CrossRef]
- Dhert, T.; Ashuri, T.; Martins, J. Aerodynamic shape optimization of wind turbine blades using a Reynolds-averaged Navier–Stokes model and an adjoint method. Wind. Energy 2017, 20, 909–926. [Google Scholar] [CrossRef]
- He, S.; Jonsson, E.; Mader, C.; Martins, J. Aerodynamic shape optimization with time spectral flutter adjoint. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019. [Google Scholar]
- Mavriplis, D.; Fabiano, E.; Anderson, E. Recent advances in high-fidelity multidisciplinary adjoint-based optimization with the NSU3D flow solver framework. In Proceedings of the AIAA SciTech Forum—55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar]
- Martins, J.R.; Alonso, J.; Reuther, J. High-fidelity aerostructural design optimization of a supersonic business jet. J. Aircr. 2004, 41, 523–530. [Google Scholar] [CrossRef]
- Kline, H.; Palacios, F.; Economon, T.; Alonso, J. Adjoint-Based Optimization of a Hypersonic Inlet. In Proceedings of the 22nd AIAA Computational Fluid Dynamics Conference, Dallas, TX, USA, 22–26 June 2015. [Google Scholar]
- Kline, H.; Economon, T.; Alonso, J. Multi-objective optimization of a hypersonic inlet using generalized outflow boundary conditions in the continuous adjoint method. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016. [Google Scholar]
- Damm, K.; Gollan, R.; Jacobs, P.; Smart, M.; Lee, S.; Kim, E.; Kim, C. Discrete adjoint optimization of a hypersonic inlet. AIAA J. 2020, 58, 2621–2634. [Google Scholar] [CrossRef]
- Mosca, R. Adjoint-Based Passive Optimization of a Micro T-Mixer. Master’s Thesis, Politecnico Di Milano, Milan, Italy, 2017. [Google Scholar]
- Eggl, M.; Schmid, P. Mixing by stirring: Optimizing shapes and strategies. Phys. Rev. Fluids 2022, 7, 073904. [Google Scholar] [CrossRef]
- Helgason, E.; Krajnović, S. Implementation of an adjoint-based optimization with scalar transport. In Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, QC, Canada, 14–20 November 2014. [Google Scholar]
- Urzay, J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annu. Rev. Fluid Mech. 2018, 50, 593–627. [Google Scholar] [CrossRef]
- Landsberg, W.; Gibbons, N.; Wheatley, V.; Smart, M.; Veeraragavan, A. Improving scramjet performance through flow field manipulation. J. Propuls. Power 2018, 34, 578–590. [Google Scholar] [CrossRef]
- Garg, V.; Deshpande, L.; Swaraj, P.; Verma, T.; Vinay, D.; Raj, Y.; Gahlot, N.K.; Sharma, N.; Kumar, V.R.S. Optimizing Hypersonic Propulsion: Analysis of Angled Fuel Injection and Strut Geometries in Scramjet Combustors. In Proceedings of the AIAA SCITECH 2025 Forum, Orlando, FL, USA, 6–10 January 2025. [Google Scholar]
- Burrows, M.; Kurkov, A. An analytical and experimental study of supersonic combustion of hydrogen in vitiated air stream. AIAA J. 1973, 11, 1217–1218. [Google Scholar] [CrossRef]
- Karl, S.; Hannemann, K.; Mack, A.; Steelant, J. CFD analysis of the HyShot II scramjet experiments in the HEG shock tunnel. In Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Dayton, OH, USA, 28 April–1 May 2008; p. 2548. [Google Scholar]
- Kummitha, O. Numerical analysis of hydrogen fuel scramjet combustor with turbulence development inserts and with different turbulence models. Int. J. Hydrogen Energy 2017, 42, 6360–6368. [Google Scholar] [CrossRef]
- Kummitha, O.; Suneetha, L.; Pandey, K. Numerical analysis of scramjet combustor with innovative strut and fuel injection techniques. Int. J. Hydrogen Energy 2017, 42, 10524–10535. [Google Scholar] [CrossRef]
- Kummitha, O. Numerical analysis of passive techniques for optimizing the performance of scramjet combustor. Int. J. Hydrogen Energy 2017, 42, 10455–10465. [Google Scholar] [CrossRef]
- Kummitha, O.; Pandey, K.; Gupta, R. CFD analysis of a scramjet combustor with cavity based flame holders. Acta Astronaut. 2018, 144, 244–253. [Google Scholar] [CrossRef]
- Kummitha, O.; Pandey, K.; Gupta, R. Optimization of scramjet performance with different fuel injection techniques and flame holder cavities. Acta Astronaut. 2018, 152, 908–919. [Google Scholar] [CrossRef]
- Landsberg, W.; Wheatley, V.; Veeraragavan, A. Characteristics of cascaded fuel injectors within an accelerating scramjet combustor. AIAA J. 2016, 54, 3692–3700. [Google Scholar] [CrossRef]
- Shenoy, R.; Drozda, T.; Baurle, R.; Parker, P. Surrogate Modeling and Optimization of a Combustor with an Interdigitated Flushwall Injector. In Proceedings of the Programmatic and Industrial Base (PIB) Meeting, Dayton, OH, USA, 3–7 June 2019. number NF1676L-33632. [Google Scholar]
- Drozda, T.; Shenoy, R.; Axdahl, E.; Baurle, R. Numerical investigation and optimization of a flushwall injector for scramjet applications at hypervelocity flow conditions. In Proceedings of the AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN, USA, 19–22 August 2019; p. 4196. [Google Scholar]
- Kumar, S.; Das, S.; Sheelam, S. Application of CFD and the Kriging method for optimizing the performance of a generic scramjet combustor. Acta Astronaut. 2014, 101, 111–119. [Google Scholar] [CrossRef]
- Rovira Sala, C.; Famada Vizcaino, M.; Simon Felix, A.; Bernabeu-Vazquez, A.; Van Hove, B.; Józsa, T.I.; Hoste, J.J.O.E. An exploration of adjoint-based optimization for hypersonic vehicle- and propulsion design. In Proceedings of the 3rd International Conference on High-Speed Vehicle Science Technology (HiSST), Busan, Republic of Korea, 14–19 April 2024. [Google Scholar]
- Rovira Sala, C. Optimisation of a Generic Supersonic Hydrogen Combustor. Master’s Thesis, Cranfield University, Bedford, UK, 2023. [Google Scholar]
- Siemens Digital Industries Software. Simcenter STAR-CCM+, version 2206; Siemens: Munich, Germany, 2023; Available online: https://www.plm.automation.siemens.com/global/en/products/simcenter/STAR-CCM.html (accessed on 1 June 2025).
- ANSYS Inc. Fluent 2025 R1 Theory Guide; ANSYS Inc.: Canonsburg, PA, USA, 2025. [Google Scholar]
- Menter, F.; Kuntz, M.; Langtry, R. Ten years of industrial experience with the SST turbulence model. Turbul. Heat Mass Transf. 2003, 4, 625–632. [Google Scholar]
- NASA. Turbulence Modeling Resources. Available online: https://turbmodels.larc.nasa.gov (accessed on 12 June 2025).
- Liou, M. Ten years in the making - AUSM-family. In Proceedings of the 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA, USA, 11–14 June 2001; pp. 2001–2521. [Google Scholar]
- Hoste, J. Scramjet Combustion Modeling Using Eddy Dissipation Model. Ph.D. Thesis, University of Strathclyde, Glasgow, UK, 2018. [Google Scholar]
- Drozda, T.G.; Baurle, R.A.; Drummond, J.P. Impact of Flight Enthalpy, Fuel Simulant, and Chemical Reactions on the Mixing Characteristics of Several Injectors at Hypervelocity Flow Conditions; Technical Report; NASA Langley Research Center: Hampton, VA, USA, 2016.
- Riggins, D.; McClinton, C.; Vitt, P. Thrust losses in hypersonic engines part 1: Methodology. J. Propuls. Power 1997, 13, 281–287. [Google Scholar] [CrossRef]
- Baurle, R.; Eklund, D. Analysis of dual-mode hydrocarbon scramjet operation at Mach 4-6.5. J. Propuls. Power 2002, 18, 990–1002. [Google Scholar] [CrossRef]
- Bynum, M.; Baurle, R. A design of experiments study for the HIFiRE flight 2 ground test computational fluid dynamics results. In Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, CA, USA, 11–14 April 2011; p. 2203. [Google Scholar]
- Karl, S. Numerical Investigation of a Generic Scramjet Configuration. Ph.D. Thesis, Saechsische Landesbibliothek-Staats-und Universitaetsbibliothek Dresden, Dresden, Germany, 2011. [Google Scholar]
- Pecnik, R.; Terrapon, V.; Ham, F.; Iaccarino, G.; Pitsch, H. Reynolds-averaged Navier-Stokes simulations of the HyShot II scramjet. AIAA J. 2012, 50, 1717–1732. [Google Scholar]
- Georgiadis, N.; Yoder, D.; Vyas, M.; Engblom, W. Status of turbulence modeling for hypersonic propulsion flowpaths. Theor. Comput. Fluid Dyn. 2014, 28, 295–318. [Google Scholar] [CrossRef]
- Georgiadis, N.; Mankbadi, M.; Vyas, M. Turbulence model effects on RANS simulations of the HIFiRE flight 2 ground test configurations. In Proceedings of the 52nd Aerospace Sciences Meeting, National Harbor, MD, USA, 13–17 January 2014; p. 0624. [Google Scholar]
- Hoste, J.; Gibbons, N.; Ecker, T.; Amato, C.; Knight, D.; Sattarov, A.; Thiry, O.; Hickey, J.; Hizir, F.; Köktürk, T.; et al. A review of Reynolds-averaged Navier–Stokes modeling for hypersonic large cone–flares. Phys. Fluids 2025, 37, 025193. [Google Scholar]
- Fureby, C.; Sahut, G.; Ercole, A.; Nilsson, T. Large eddy simulation of combustion for high-speed airbreathing engines. Aerospace 2022, 9, 785. [Google Scholar] [CrossRef]
- Huang, Z.W.; He, G.Q.; Qin, F.; Wei, X.G. Large eddy simulation of flame structure and combustion mode in a hydrogen fueled supersonic combustor. Int. J. Hydrogen Energy 2015, 40, 9815–9824. [Google Scholar] [CrossRef]
- Huang, Z.W.; He, G.Q.; Wang, S.; Qin, F.; Wei, X.G.; Shi, L. Simulations of combustion oscillation and flame dynamics in a strut-based supersonic combustor. Int. J. Hydrogen Energy 2017, 42, 8278–8287. [Google Scholar] [CrossRef]
- Hoste, J.; Fossati, M.; Taylor, I.; Gollan, R. Characterisation of the eddy dissipation model for the analysis of hydrogen-fuelled scramjets. Aeronaut. J. 2019, 123, 536–565. [Google Scholar] [CrossRef]
- Chaturvedi, M.; Scutelnicu, E.; Rusu, C.C.; Mistodie, L.R.; Mihailescu, D.; Subbiah, A.V. Wire arc additive manufacturing: Review on recent findings and challenges in industrial applications and materials characterization. Metals 2021, 11, 939. [Google Scholar] [CrossRef]
- Keran, Z.; Runje, B.; Piljek, P.; Razumić, A. Roboforming in ISF-Characteristics, Development, and the Step Towards Industry 5.0. Sustainability 2025, 17, 2562. [Google Scholar] [CrossRef]







| Parameter | Baseline | Optimized Triangle | Optimized Wall |
|---|---|---|---|
| Mixing efficiency [%] (Maximum) | 73.0 | 79.0 | 83.6 |
| Combustion efficiency [%] (Maximum) | 19.9 | 20.4 | 21.8 |
| Total pressure loss [%] | |||
| Mixing stage | 5.62 | 7.88 | 7.50 |
| Combustion stage | 9.00 | 11.3 | 11.1 |
| Thrust potential per unit depth [kN/m] | |||
| Combustion stage | 81.1 | 83.6 | 82.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rovira Sala, C.; Jalaei Poustian, N.; Hoste, J.-J.O.E.; Józsa, T.I. Computational Fluid Dynamics and Adjoint-Based Optimization of a Supersonic Combustor for Improved Efficiency. Fluids 2025, 10, 284. https://doi.org/10.3390/fluids10110284
Rovira Sala C, Jalaei Poustian N, Hoste J-JOE, Józsa TI. Computational Fluid Dynamics and Adjoint-Based Optimization of a Supersonic Combustor for Improved Efficiency. Fluids. 2025; 10(11):284. https://doi.org/10.3390/fluids10110284
Chicago/Turabian StyleRovira Sala, Carola, Nazanin Jalaei Poustian, Jimmy-John O. E. Hoste, and Tamás István Józsa. 2025. "Computational Fluid Dynamics and Adjoint-Based Optimization of a Supersonic Combustor for Improved Efficiency" Fluids 10, no. 11: 284. https://doi.org/10.3390/fluids10110284
APA StyleRovira Sala, C., Jalaei Poustian, N., Hoste, J.-J. O. E., & Józsa, T. I. (2025). Computational Fluid Dynamics and Adjoint-Based Optimization of a Supersonic Combustor for Improved Efficiency. Fluids, 10(11), 284. https://doi.org/10.3390/fluids10110284

