Impact of Collagen on the Rheological and Transport Properties of Agarose Hydrogels
Abstract
1. Introduction
2. Results and Discussion
2.1. Oscillation Rheometry of Agarose–Collagen Hydrogels
2.2. Transport Properties of Model Dyes in Agarose–Collagen Hydrogels
3. Conclusions
4. Materials and Methods
4.1. Chemicals
4.2. Preparation of Hydrogels
4.3. Oscillation Rheometry of Agarose–Collagen Hydrogels
4.4. Transport Properties of Model Dyes in Agarose–Collagen Hydrogels
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thomas, S.; Balakrishnan, P.; Sreekala, M.S. Fundamental Biomaterials: Polymers; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–338. [Google Scholar] [CrossRef]
- Wichterle, O.; Lím, D. Hydrophilic Gels for Biological Use. Nature 1960, 185, 117–118. [Google Scholar] [CrossRef]
- Migliaresi, C.; Motta, A. (Eds.) Scaffolds for Tissue Engineering: Biological Design, Materials, and Fabrication; Jenny Stanford Publishing: Singapore, 2014; ISBN 9780429090899. [Google Scholar]
- Badylak, S.F. The Extracellular Matrix as a Biologic Scaffold Material. Biomaterials 2007, 28, 3587–3593. [Google Scholar] [CrossRef] [PubMed]
- Gattazzo, F.; Urciuolo, A.; Bonaldo, P. Extracellular Matrix: A Dynamic Microenvironment for Stem Cell Niche. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2014, 1840, 2506–2519. [Google Scholar] [CrossRef]
- Yue, B. Biology of the Extracellular Matrix. J. Glaucoma 2014, 23, S20–S23. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef]
- Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A.H.; Mujtaba, M.A.; Alghamdi, N.A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef]
- Gulrez, S.K.H.; Al-Assaf, S.; Phillips, G.O. Hydrogels: Methods of Preparation, Characterisation and Applications. In Progress in Molecular and Environmental Bioengineering; Carpi, A., Ed.; IntechOpen: Rijeka, Croatia, 2011. [Google Scholar]
- Frantz, C.; Stewart, K.M.; Weaver, V.M. The Extracellular Matrix at a Glance. J. Cell Sci. 2010, 123, 4195–4200. [Google Scholar] [CrossRef]
- Hynes, R.O. The Extracellular Matrix: Not Just Pretty Fibrils. Science 2009, 326, 1216–1219. [Google Scholar] [CrossRef]
- Tomasetti, L.; Breunig, M. Preventing Obstructions of Nanosized Drug Delivery Systems by the Extracellular Matrix. Adv. Healthc. Mater. 2018, 7, 1700739. [Google Scholar] [CrossRef]
- Renn, D.W. Agar and Agarose: Indispensable Partners in Biotechnology. Ind. Eng. Chem. Prod. Res. Dev. 1984, 23, 17–21. [Google Scholar] [CrossRef]
- Khodadadi Yazdi, M.; Taghizadeh, A.; Taghizadeh, M.; Stadler, F.J.; Farokhi, M.; Mottaghitalab, F.; Zarrintaj, P.; Ramsey, J.D.; Seidi, F.; Saeb, M.R.; et al. Agarose-Based Biomaterials for Advanced Drug Delivery. J. Control. Release 2020, 326, 523–543. [Google Scholar] [CrossRef] [PubMed]
- Stephen, A.M.; Philips, G.O.; Williams, P.A. Food Polysaccharides and Their Applications; Stephen, A.M., Phillips, G.O., Eds.; CRC Press: Boca Raton, FL, USA, 2006; ISBN 9780429116162. [Google Scholar]
- Zarrintaj, P.; Manouchehri, S.; Ahmadi, Z.; Saeb, M.R.; Urbanska, A.M.; Kaplan, D.L.; Mozafari, M. Agarose-Based Biomaterials for Tissue Engineering. Carbohydr. Polym. 2018, 187, 66–84. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.P.; Bhardwaj, N.; Mandal, B.B. Potential of Agarose/Silk Fibroin Blended Hydrogel for in Vitro Cartilage Tissue Engineering. ACS Appl. Mater. Interfaces 2016, 8, 21236–21249. [Google Scholar] [CrossRef]
- Salati, M.A.; Khazai, J.; Tahmuri, A.M.; Samadi, A.; Taghizadeh, A.; Taghizadeh, M.; Zarrintaj, P.; Ramsey, J.D.; Habibzadeh, S.; Seidi, F.; et al. Agarose-Based Biomaterials: Opportunities and Challenges in Cartilage Tissue Engineering. Polymers 2020, 12, 1150. [Google Scholar] [CrossRef]
- Irastorza-Lorenzo, A.; Sánchez-Porras, D.; Ortiz-Arrabal, O.; de Frutos, M.J.; Esteban, E.; Fernández, J.; Janer, A.; Campos, A.; Campos, F.; Alaminos, M. Evaluation of Marine Agarose Biomaterials for Tissue Engineering Applications. Int. J. Mol. Sci. 2021, 22, 1923. [Google Scholar] [CrossRef]
- Parenteau-Bareil, R.; Gauvin, R.; Berthod, F. Collagen-Based Biomaterials for Tissue Engineering Applications. Materials 2010, 3, 1863–1887. [Google Scholar] [CrossRef]
- Dinescu, S.; Albu Kaya, M.; Chitoiu, L.; Ignat, S.; Kaya, D.A.; Costache, M. Collagen-Based Hydrogels and Their Applications for Tissue Engineering and Regenerative Medicine. In Cellulose-Based Superabsorbent Hydrogels; Mondal, M.I.H., Ed.; Springer: Cham, Switzerland, 2019; pp. 1643–1664. [Google Scholar] [CrossRef]
- Quarta, A.; Gallo, N.; Vergara, D.; Salvatore, L.; Nobile, C.; Ragusa, A.; Gaballo, A. Investigation on the Composition of Agarose–Collagen I Blended Hydrogels as Matrices for the Growth of Spheroids from Breast Cancer Cell Lines. Pharmaceutics 2021, 13, 963. [Google Scholar] [CrossRef]
- Cambria, E.; Brunner, S.; Heusser, S.; Fisch, P.; Hitzl, W.; Ferguson, S.J.; Wuertz-Kozak, K. Cell-Laden Agarose-Collagen Composite Hydrogels for Mechanotransduction Studies. Front. Bioeng. Biotechnol. 2020, 8, 346. [Google Scholar] [CrossRef]
- Zuidema, J.M.; Rivet, C.J.; Gilbert, R.J.; Morrison, F.A. A Protocol for Rheological Characterization of Hydrogels for Tissue Engineering Strategies. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 1063–1073. [Google Scholar] [CrossRef]
- Larson, R.G. The Structure and Rheology of Complex Fluids; Oxford University Press: New York, NY, USA, 1999; ISBN 9780195121971. [Google Scholar]
- Richterová, V.; Pekař, M. Effect of Silk Fibroin on the Mechanical and Transport Properties of Agarose Hydrogels. Gels 2024, 10, 611. [Google Scholar] [CrossRef]
- Ogawa, M.; Moody, M.W.; Portier, R.J.; Bell, J.; Schexnayder, M.A.; Losso, J.N. Biochemical Properties of Black Drum and Sheepshead Seabream Skin Collagen. J. Agric. Food Chem. 2003, 51, 8088–8092. [Google Scholar] [CrossRef] [PubMed]
- Holwerda, A.M.; van Loon, L.J.C. The Impact of Collagen Protein Ingestion on Musculoskeletal Connective Tissue Remodeling: A Narrative Review. Nutr. Rev. 2022, 80, 1497–1514. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, B.; Chi, C.; Gong, Y.; Luo, H.; Ding, G. Influence of Average Molecular Weight on Antioxidant and Functional Properties of Cartilage Collagen Hydrolysates from Sphyrna lewini, Dasyatis akjei and Raja porosa. Food Res. Int. 2013, 51, 283–293. [Google Scholar] [CrossRef]
- Nalinanon, S.; Benjakul, S.; Kishimura, H.; Osako, K. Type I Collagen from the Skin of Ornate Threadfin Bream (Nemipterus hexodon): Characteristics and Effect of Pepsin Hydrolysis. Food Chem. 2011, 125, 500–507. [Google Scholar] [CrossRef]
- Cassel, J.M.; Kanagy, J.R. Studies on the Purification of Collagen. J. Res. Natl. Bur. Stand. 1949, 42, 557. [Google Scholar] [CrossRef]
- Cadwallader, C.J.; Howitt, F.O. Note on the Iso-Electric Point of Silk Fibroin as Determined by Cataphoresis. Trans. Faraday Soc. 1946, 42, 642. [Google Scholar] [CrossRef]
- Lu, Q.; Zhu, H.; Zhang, C.; Zhang, F.; Zhang, B.; Kaplan, D.L. Silk Self-Assembly Mechanisms and Control From Thermodynamics to Kinetics. Biomacromolecules 2012, 13, 826–832. [Google Scholar] [CrossRef]
- Suzuki, Y. Structures of Silk Fibroin before and after Spinning and Biomedical Applications. Polym. J. 2016, 48, 1039–1044. [Google Scholar] [CrossRef]
- Zhou, C.; Confalonieri, F.; Jacquet, M.; Perasso, R.; Li, Z.; Janin, J. Silk Fibroin: Structural Implications of a Remarkable Amino Acid Sequence. Proteins Struct. Funct. Bioinform. 2001, 44, 119–122. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Li, Y.; Yang, Z.; Jin, H. Physicochemical Properties of Collagen from Acaudina Molpadioides and Its Protective Effects against H2O2-Induced Injury in RAW264.7 Cells. Mar. Drugs 2020, 18, 370. [Google Scholar] [CrossRef]
- Vigata, M.; Meinert, C.; Hutmacher, D.W.; Bock, N. Hydrogels as Drug Delivery Systems: A Review of Current Characterization and Evaluation Techniques. Pharmaceutics 2020, 12, 1188. [Google Scholar] [CrossRef] [PubMed]
- Llanos, J.; Mujica, C.; Buljan, A. Preparation, Transport Properties, and Electronic Structure of Quaternary Sulfides Based on Tetrahedral [MS4]4− Units: SrCu2MS4 (M=Ge, Sn). J. Alloys Compd. 2001, 316, 146–152. [Google Scholar] [CrossRef]
- Hettiaratchi, M.H.; Schudel, A.; Rouse, T.; García, A.J.; Thomas, S.N.; Guldberg, R.E.; McDevitt, T.C. A Rapid Method for Determining Protein Diffusion through Hydrogels for Regenerative Medicine Applications. APL Bioeng. 2018, 2, 026102. [Google Scholar] [CrossRef]
- Veith, S.R.; Hughes, E.; Pratsinis, S.E. Restricted Diffusion and Release of Aroma Molecules from Sol-Gel-Made Porous Silica Particles. J. Control. Release 2004, 99, 315–327. [Google Scholar] [CrossRef]
- Zhang, X.; Hansing, J.; Netz, R.R.; DeRouchey, J.E. Particle Transport through Hydrogels Is Charge Asymmetric. Biophys. J. 2015, 108, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Zidek, J.; Sudakova, A.; Smilek, J.; Nguyen, D.A.; Le, N.H.; Ha, L.M. Explorative Image Analysis of Methylene Blue Interactions with Gelatin in Polypropylene Nonwoven Fabric Membranes: A Potential Future Tool for the Characterization of the Diffusion Process. Gels 2023, 9, 888. [Google Scholar] [CrossRef]
- Peyratout, C.; Donath, E.; Daehne, L. Electrostatic Interactions of Cationic Dyes with Negatively Charged Polyelectrolytes in Aqueous Solution. J. Photochem. Photobiol. A Chem. 2001, 142, 51–57. [Google Scholar] [CrossRef]
- Zigan, C.; Benito Alston, C.; Chatterjee, A.; Solorio, L.; Chan, D.D. Characterization of Composite Agarose–Collagen Hydrogels for Chondrocyte Culture. Ann. Biomed. Eng. 2025, 53, 120–132. [Google Scholar] [CrossRef]
- Antoine, E.E.; Vlachos, P.P.; Rylander, M.N. Review of Collagen I Hydrogels for Bioengineered Tissue Microenvironments: Characterization of Mechanics, Structure, and Transport. Tissue Eng. Part B Rev. 2014, 20, 683–696. [Google Scholar] [CrossRef]
- Anbuselvan, V.A.; Nelson, B.S.; Karunaharan, B.; Kandhasamy, S. Extraction and Characterization of Fish Collagen for Enhanced Wound Healing Activity on A549 Cell Lines. Curr. Appl. Sci. Technol. 2024, 24, e0258572. [Google Scholar] [CrossRef]
- Buzanska, L. The Collagen Scaffold Supports hiPSC-Derived NSC Growth and Restricts hiPSC. Front. Biosci. 2019, 11, 529. [Google Scholar] [CrossRef] [PubMed]
- Mezger, T.G. The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers, 3rd ed.; Vincentz Network: Hanover, Germany, 2011; ISBN 3878701748. [Google Scholar]
- Thompson, B.R.; Zarket, B.C.; Lauten, E.H.; Amin, S.; Muthukrishnan, S.; Raghavan, S.R. Liposomes Entrapped in Biopolymer Hydrogels Can Spontaneously Release into the External Solution. Langmuir 2020, 36, 7268–7276. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, M.; Colby, R.H. Polymer Physics; Oxford University Press: Oxford, UK, 2003; ISBN 978-0198520597. [Google Scholar]
- Ali, W.; Gebert, B.; Altinpinar, S.; Mayer-Gall, T.; Ulbricht, M.; Gutmann, J.S.; Graf, K. On the Potential of Using Dual-Function Hydrogels for Brackish Water Desalination. Polymers 2018, 10, 567. [Google Scholar] [CrossRef]
- Pescosolido, L.; Feruglio, L.; Farra, R.; Fiorentino, S.; Colombo, I.; Coviello, T.; Matricardi, P.; Hennink, W.E.; Vermonden, T.; Grassi, M. Mesh Size Distribution Determination of Interpenetrating Polymer Network Hydrogels. Soft Matter 2012, 8, 7708–7715. [Google Scholar] [CrossRef]
- Lu, G.; Nagbanshi, M.; Goldau, N.; Mendes Jorge, M.; Meissner, P.; Jahn, A.; Mockenhaupt, F.P.; Müller, O. Efficacy and Safety of Methylene Blue in the Treatment of Malaria: A Systematic Review. BMC Med. 2018, 16, 190. [Google Scholar] [CrossRef]
- Alda, M. Methylene Blue in the Treatment of Neuropsychiatric Disorders. CNS Drugs 2019, 33, 719–725. [Google Scholar] [CrossRef]
- Khdour, O.M.; Bandyopadhyay, I.; Chowdhury, S.R.; Visavadiya, N.P.; Hecht, S.M. Lipophilic Methylene Blue Analogues Enhance Mitochondrial Function and Increase Frataxin Levels in a Cellular Model of Friedreich’s Ataxia. Bioorg. Med. Chem. 2018, 26, 3359–3369. [Google Scholar] [CrossRef]
- Massimine, K.M.; McIntosh, M.T.; Doan, L.T.; Atreya, C.E.; Gromer, S.; Sirawaraporn, W.; Elliott, D.A.; Joiner, K.A.; Schirmer, R.H.; Anderson, K.S. Eosin B as a Novel Antimalarial Agent for Drug-Resistant Plasmodium falciparum. Antimicrob. Agents Chemother. 2006, 50, 3132–3138. [Google Scholar] [CrossRef]
- Lai, M.; Lü, B. Tissue Preparation for Microscopy and Histology. In Comprehensive Sampling and Sample Preparation; Pawliszyn, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 53–93. [Google Scholar]
- Crank, J. The Mathematics of Diffusion; Clarendon Press: Oxford, UK, 1956; ISBN 0-19-853411-6. [Google Scholar]
Sample Composition | LVER End | Average Moduli in LVER | Crossover Point | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Agarose | Collagen | Strain | G′ | G″ | G′ | Strain | ||||||||||
(wt. %) | (wt. %) | (%) | (Pa) | (Pa) | (Pa) | (%) | ||||||||||
0.5 | × | 4.14 | ± | 0.56 | 2488 | ± | 146 | 217 | ± | 27 | 358 | ± | 12 | 88 | ± | 12 |
0.01 | 5.11 | ± | 0.01 | 1184 | ± | 30 | 70 | ± | 2 | 134 | ± | 14 | 204 | ± | 8 | |
0.05 | 4.14 | ± | 1.38 | 1265 | ± | 110 | 118 | ± | 14 | 103 | ± | 13 | 228 | ± | 6 | |
0.1 | 4.14 | ± | 1.37 | 3122 | ± | 679 | 294 | ± | 67 | 336 | ± | 284 | 85 | ± | 49 | |
1 | × | 2.86 | ± | 0.30 | 7934 | ± | 675 | 720 | ± | 63 | 1097 | ± | 403 | 68 | ± | 4 |
0.01 | 2.57 | ± | 0.86 | 6270 | ± | 149 | 549 | ± | 42 | 890 | ± | 277 | 107 | ± | 38 | |
0.05 | 1.96 | ± | 0.00 | 6514 | ± | 543 | 570 | ± | 82 | 606 | ± | 96 | 89 | ± | 22 | |
0.1 | 1.96 | ± | 0.00 | 18,462 | ± | 3187 | 1782 | ± | 351 | 2102 | ± | 1167 | 62 | ± | 1 | |
2 | × | 1.46 | ± | 0.30 | 42,422 | ± | 3549 | 3650 | ± | 261 | 5423 | ± | 1520 | 40 | ± | 8 |
0.01 | 0.75 | ± | 0.00 | 25,225 | ± | 808 | 2132 | ± | 95 | 3850 | ± | 604 | 37 | ± | 1 | |
0.05 | 1.97 | ± | 0.01 | 33,719 | ± | 274 | 2972 | ± | 141 | 5904 | ± | 686 | 32 | ± | 4 | |
0.1 | 1.36 | ± | 0.85 | 35,844 | ± | 639 | 3770 | ± | 202 | 3829 | ± | 623 | 85 | ± | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richterová, V.; Gjevik, A.; Vaculík, O.; Vejrosta, J.; Pekař, M. Impact of Collagen on the Rheological and Transport Properties of Agarose Hydrogels. Gels 2025, 11, 396. https://doi.org/10.3390/gels11060396
Richterová V, Gjevik A, Vaculík O, Vejrosta J, Pekař M. Impact of Collagen on the Rheological and Transport Properties of Agarose Hydrogels. Gels. 2025; 11(6):396. https://doi.org/10.3390/gels11060396
Chicago/Turabian StyleRichterová, Veronika, Alžběta Gjevik, Ondřej Vaculík, Jakub Vejrosta, and Miloslav Pekař. 2025. "Impact of Collagen on the Rheological and Transport Properties of Agarose Hydrogels" Gels 11, no. 6: 396. https://doi.org/10.3390/gels11060396
APA StyleRichterová, V., Gjevik, A., Vaculík, O., Vejrosta, J., & Pekař, M. (2025). Impact of Collagen on the Rheological and Transport Properties of Agarose Hydrogels. Gels, 11(6), 396. https://doi.org/10.3390/gels11060396