Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (694)

Search Parameters:
Keywords = agarose

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 216 KiB  
Article
An Investigation of the BRCA2 Met1915Thr Polymorphism in Azerbaijani Breast Cancer Patients
by Zumrud Safarzade, Bayram Bayramov, Nigar Mehdiyeva, Hagigat Valiyeva, Gunay Ahmadova, Rena Kerimova, Qamar Qurbanova, Orkhan Isayev and Adil Allahverdiyev
Med. Sci. 2025, 13(3), 103; https://doi.org/10.3390/medsci13030103 - 31 Jul 2025
Viewed by 152
Abstract
Background/Objectives: Genetic polymorphisms in the BRCA2 gene have been implicated in breast cancer susceptibility. While numerous studies have investigated this polymorphism, its precise role in breast cancer development remains unclear. Furthermore, to the best of our knowledge, no related studies have been conducted [...] Read more.
Background/Objectives: Genetic polymorphisms in the BRCA2 gene have been implicated in breast cancer susceptibility. While numerous studies have investigated this polymorphism, its precise role in breast cancer development remains unclear. Furthermore, to the best of our knowledge, no related studies have been conducted in Azerbaijan. The aim of this study was to determine the distribution of the BRCA2 Met1915Thr polymorphism (rs4987117) in the Azerbaijani population and to evaluate its potential association with breast cancer risk. Methods: A total of 144 breast cancer patients and 152 healthy controls were recruited from the Oncology Clinic of Azerbaijan Medical University between 2021 and 2024. The Met1915Thr polymorphism was genotyped using PCR-RFLP and visualized on a 2% agarose gel. Results: A statistically significant association with increased breast cancer susceptibility was observed for the heterozygous Met/Thr genotype (OR = 1.83, 95%CI = 1.08–3.11, p = 0.02), the Thr allele (OR = 1.57, 95%CI = 1.12–2.20, p = 0.008), and under the dominant inheritance model (OR = 1.83, 95%CI = 1.15–2.90, p = 0.01). Notably, this association was more evident among individuals aged over 58 years, in whom the Met/Thr genotype conferred a significantly elevated risk (OR = 2.35, 95%CI = 1.17–4.73, p = 0.02). Conclusions: The BRCA2 Met1915Thr polymorphism is associated with an increased risk of breast cancer in the Azerbaijani population. These findings suggest a potential role of this polymorphism in breast cancer susceptibility and highlight the need for further studies in larger cohorts to validate these associations. Full article
18 pages, 2803 KiB  
Article
Single-Gelator Structuring of Hemp Oil Using Agarose: Comparative Assembly, Electronic Nose Profiling, and Functional Performance of Hydroleogels Versus Oleogels in Shortbread Cookies
by Oliwia Paroń and Joanna Harasym
Polymers 2025, 17(14), 1988; https://doi.org/10.3390/polym17141988 - 20 Jul 2025
Viewed by 318
Abstract
This study demonstrates an innovative single-gelator approach using agarose (1% and 2% w/w) to structure cold-pressed hemp oil into functional fat replacers for shortbread cookies, achieving a 40% reduction in saturated fatty acids compared to butter. Comprehensive characterization revealed that hydroleogels exhibited [...] Read more.
This study demonstrates an innovative single-gelator approach using agarose (1% and 2% w/w) to structure cold-pressed hemp oil into functional fat replacers for shortbread cookies, achieving a 40% reduction in saturated fatty acids compared to butter. Comprehensive characterization revealed that hydroleogels exhibited superior crispiness (45.67 ± 3.86 N for 2% agarose hydroleogel—HOG 2%) but problematic water activity (0.39–0.61), approaching microbial growth thresholds. Conversely, oleogels showed lower crispiness (2.27–3.43 N) but optimal moisture control (aw = 0.12–0.16) and superior color stability during 10-day storage. Electronic nose analysis using 10 metal oxide sensors revealed that oleogel systems preserved characteristic aroma profiles significantly better than hydroleogels, with 2% agarose oleogel (OG 2%) showing 34% less aroma decay than pure hemp oil. The 2% agarose oleogel demonstrated optimal performance with minimal baking loss (5.87 ± 0.20%), excellent structural integrity, and stable volatile compound retention over storage. Morphological analysis showed that hemp oil cookies achieved the highest specific volume (2.22 ± 0.07 cm3/g), while structured systems ranged from 1.12 to 1.31 cm3/g. This work establishes agarose as a versatile single gelator for hemp oil structuring and validates electronic nose technology for the objective quality assessment of fat-replaced bakery products, advancing healthier food design through molecular approaches. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

16 pages, 2014 KiB  
Article
CALB Immobilized on Octyl-Agarose—An Efficient Pharmaceutical Biocatalyst for Transesterification in Organic Medium
by Joanna Siódmiak, Jacek Dulęba, Natalia Kocot, Rafał Mastalerz, Gudmundur G. Haraldsson and Tomasz Siódmiak
Int. J. Mol. Sci. 2025, 26(14), 6961; https://doi.org/10.3390/ijms26146961 - 20 Jul 2025
Viewed by 275
Abstract
The growing need for developing safer and more effective methods for obtaining enantiomers of chiral compounds, particularly those with pharmacological activity, highlights the potential of biocatalysis as an appropriate pharmaceutical research direction. However, low catalytic activity and stability of free enzymes are often [...] Read more.
The growing need for developing safer and more effective methods for obtaining enantiomers of chiral compounds, particularly those with pharmacological activity, highlights the potential of biocatalysis as an appropriate pharmaceutical research direction. However, low catalytic activity and stability of free enzymes are often among the substantial limitations to the wide application of biocatalysis. Therefore, to overcome these obstacles, new technological procedures are being designed. In this study, we present optimized protocols for the immobilization of Candida antarctica lipase B (CALB) on an octyl- agarose support, ensuring high enantioselectivity in an organic reaction medium. The immobilization procedures (with drying step), including buffers with different pH values and concentrations, as well as the study of the influence of temperature and immobilization time, were presented. It was found that the optimal conditions were provided by citrate buffer with a pH of 4 and a concentration of 300 mM. The immobilized CALB on the octyl-agarose support exhibited high catalytic activity in the kinetic resolution of (R,S)-1-phenylethanol via enantioselective transesterification with isopropenyl acetate in 1,2-dichloropropane (DCP), as a model reaction for lipase activity monitoring on an analytical scale. HPLC analysis demonstrated that the (R)-1-phenylethyl acetate was obtained in an enantiomeric excess of eep > 99% at a conversion of approximately 40%, and the enantiomeric ratio was E > 200. Thermal and storage stability studies performed on the immobilized CALB octyl-agarose support confirmed its excellent stability. After 7 days of thermal stability testing at 65 °C in a climatic chamber, the (R)-1-phenylethyl acetate was characterized by enantiomeric excess of eep > 99% at a conversion of around 40% (similar values of catalytic parameters to those achieved using a non-stored lipase). The documented high catalytic activity and stability of the developed CALB-octyl-agarose support allow us to consider it as a useful tool for enantioselective transesterification in organic medium. Full article
Show Figures

Figure 1

17 pages, 3568 KiB  
Article
Visual Colorimetric Sensing of the Animal-Derived Food Freshness by Juglone-Loaded Agarose Hydrogel
by Lanjing Wang, Weiyi Yan, Aijun Li, Huayin Zhang and Qian Xu
Foods 2025, 14(14), 2505; https://doi.org/10.3390/foods14142505 - 17 Jul 2025
Viewed by 285
Abstract
The visual colorimetric sensing of total volatile basic nitrogen (TVB-N) allows for convenient dynamic monitoring of animal-derived food freshness to ensure food safety. The agarose hydrogel loaded with the natural dye juglone (Jug@AG) prepared in this study exhibits visible multicolor changes from yellow [...] Read more.
The visual colorimetric sensing of total volatile basic nitrogen (TVB-N) allows for convenient dynamic monitoring of animal-derived food freshness to ensure food safety. The agarose hydrogel loaded with the natural dye juglone (Jug@AG) prepared in this study exhibits visible multicolor changes from yellow to grayish-yellow and then to brownish with increasing TVB-N gas concentration, achieving sensitive detection of TVB-N gas at concentrations as low as 0.05 mg/dm3 within 8 min. The minimum observable amounts of TVB-N in spiked pork and fish samples are 8.43 mg/100 g and 8.27 mg/100 g, respectively, indicating that the Jug@AG hydrogel possesses sensitive colorimetric sensing capability in practical applications. The Jug@AG hydrogel also shows significant changes in color difference value (∆C) under both room temperature (25 °C) and cold storage (4 °C) conditions, with the changing trends of ∆C showing consistency with the measured TVB-N and total viable counts (TVC) during the transition of pork and fish samples from freshness to early spoilage and then to spoilage. The results indicate that the Jug@AG hydrogel can be used as a colorimetric sensor to achieve real-time dynamic freshness monitoring of animal-derived food. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

31 pages, 3523 KiB  
Article
Sustainable Tunable Anisotropic Ultrasound Medical Phantoms for Skin, Skeletal Muscle, and Other Fibrous Biological Tissues Using Natural Fibers and a Bio-Elastomeric Matrix
by Nuno A. T. C. Fernandes, Diana I. Alves, Diana P. Ferreira, Maria Monteiro, Ana Arieira, Filipe Silva, Betina Hinckel, Ana Leal and Óscar Carvalho
J. Compos. Sci. 2025, 9(7), 370; https://doi.org/10.3390/jcs9070370 - 16 Jul 2025
Viewed by 478
Abstract
Medical phantoms are essential to imaging calibration, clinician training, and the validation of therapeutic procedures. However, most ultrasound phantoms prioritize acoustic realism while neglecting the viscoelastic and anisotropic properties of fibrous soft tissues. This gap limits their effectiveness in modeling realistic biomechanical behavior, [...] Read more.
Medical phantoms are essential to imaging calibration, clinician training, and the validation of therapeutic procedures. However, most ultrasound phantoms prioritize acoustic realism while neglecting the viscoelastic and anisotropic properties of fibrous soft tissues. This gap limits their effectiveness in modeling realistic biomechanical behavior, especially in wave-based diagnostics and therapeutic ultrasound. Current materials like gelatine and agarose fall short in reproducing the complex interplay between the solid and fluid components found in biological tissues. To address this, we developed a soft, anisotropic composite whose dynamic mechanical properties resemble fibrous biological tissues such as skin and skeletal muscle. This material enables wave propagation and vibration studies in controllably anisotropic media, which are rare and highly valuable. We demonstrate the tunability of damping and stiffness aligned with fiber orientation, providing a versatile platform for modeling soft-tissue dynamics and validating biomechanical simulations. The phantoms achieved Young’s moduli of 7.16–11.04 MPa for skin and 0.494–1.743 MPa for muscles, shear wave speeds of 1.51–5.93 m/s, longitudinal wave speeds of 1086–1127 m/s, and sound absorption coefficients of 0.13–0.76 dB/cm/MHz, with storage, loss, and complex moduli reaching 1.035–6.652 kPa, 0.1831–0.8546 kPa, and 2.138–10.82 kPa. These values reveal anisotropic response patterns analogous to native tissues. This novel natural fibrous composite system affords sustainable, low-cost ultrasound phantoms that support both mechanical fidelity and acoustic realism. Our approach offers a route to next-gen tissue-mimicking phantoms for elastography, wave propagation studies, and dynamic calibration across diverse clinical and research applications. Full article
Show Figures

Figure 1

12 pages, 472 KiB  
Article
Impact of hMLH1 −93G>A (rs1800734) and hMSH2 1032G>A (rs4987188) Polymorphisms on Colorectal Cancer Susceptibility
by Bayram Bayramov, Nigar Karimova, Nigar Mehdiyeva, Hagigat Valiyeva, Rena Karimova, Royal Shirinov, Hazi Aslanov, Zumrud Safarzade, Orkhan Isayev and Nuru Bayramov
J. Mol. Pathol. 2025, 6(3), 15; https://doi.org/10.3390/jmp6030015 - 8 Jul 2025
Viewed by 311
Abstract
Background: This study is the first to investigate the association between colorectal cancer (CRC) risk and the hMLH1 −93G>A and hMSH2 1032G>A polymorphisms of mismatch repair (MMR) genes in the Azerbaijani population. Methods: Peripheral blood samples containing EDTA were collected from the study [...] Read more.
Background: This study is the first to investigate the association between colorectal cancer (CRC) risk and the hMLH1 −93G>A and hMSH2 1032G>A polymorphisms of mismatch repair (MMR) genes in the Azerbaijani population. Methods: Peripheral blood samples containing EDTA were collected from the study subjects (134 patients and 137 controls), and genomic DNA was extracted using the non-enzymatic salting-out method. Genotypes were determined by polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP), and the results were visualized through agarose gel electrophoresis. Results: Overall, no statistically significant correlation was observed between CRC risk and the hMLH1 −93G>A polymorphism in the heterozygous GA (OR = 0.760; 95% CI = 0.374–1.542; p = 0.446), the mutant AA (OR = 1.474; 95% CI = 0.738–2.945; p = 0.270), or the A allele (OR = 1.400; 95% CI = 0.984–1.995; p = 0.062). However, in contrast to the dominant model, a statistically significant association was found between the recessive model and an increased CRC risk, with an odds ratio of 1.788 (95% CI = 1.102–2.900; p = 0.018). The hMLH1 −93G>A polymorphism was identified at a significantly higher frequency across the TNM stages, with the distribution showing statistical significance (p < 0.05). Additionally, no statistically significant association was observed between the hMSH2 1032G>A polymorphism and CRC risk. Conclusions: Although no overall association was observed for hMLH1 −93G>A, our findings suggest a potential link with increased colorectal cancer risk under the recessive model in the Azerbaijani population. Further studies are warranted to confirm this model-specific association and investigate the underlying biological mechanisms. Full article
Show Figures

Figure 1

23 pages, 1189 KiB  
Article
Hyaluronic Acid-Graft-Poly(L-Lysine): Synthesis and Evaluation as a Gene Delivery System
by Viktor Korzhikov-Vlakh, Polina Teterina, Nina Gubina, Apollinariia Dzhuzha, Tatiana Tennikova and Evgenia Korzhikova-Vlakh
Polysaccharides 2025, 6(3), 60; https://doi.org/10.3390/polysaccharides6030060 - 5 Jul 2025
Viewed by 431
Abstract
The synthesis of novel biodegradable polymers as non-viral vectors remains one of the challenging tasks in the field of gene delivery. In this study, the synthesis of the polysaccharide-g-polypeptide copolymers, namely, hyaluronic acid-g-polylysine (HA-g-PLys), using a copper-free [...] Read more.
The synthesis of novel biodegradable polymers as non-viral vectors remains one of the challenging tasks in the field of gene delivery. In this study, the synthesis of the polysaccharide-g-polypeptide copolymers, namely, hyaluronic acid-g-polylysine (HA-g-PLys), using a copper-free strain-promoted azide-alkyne cycloaddition reaction was proposed. For this purpose, hyaluronic acid was modified with dibenzocyclooctyne moieties, and poly-L-lysine with a terminal azido group was obtained using ring-opening polymerization of N-carboxyanhydride of the corresponding protected amino acid, initiated with the amino group azido-PEG3-amine. Two HA-g-PLys samples with different degrees of grafting were synthesized, and the structures of all modified and synthesized polymers were confirmed using 1H NMR and FTIR spectroscopy. The HA-g-PLys samples obtained were able to form nanoparticles in aqueous media due to self-assembly driven by electrostatic interactions. The binding of DNA and model siRNA by copolymers to form polyplexes was analyzed using ethidium bromide, agarose gel electrophoresis, and SybrGreen I assays. The hydrodynamic diameter of polyplexes was ˂300 nm (polydispersity index, PDI ˂ 0.3). The release of a model fluorescently-labeled oligonucleotide in the complex biological medium was significantly higher in the case of HA-g-PLys as compared to that in the case of PLys-based polyplexes. In addition, the cytotoxicity in normal and cancer cells, as well as the ability of HA-g-PLys to facilitate intracellular delivery of anti-GFP siRNA to NIH-3T3/GFP+ cells, were evaluated. Full article
Show Figures

Figure 1

13 pages, 9346 KiB  
Article
Improvement in Transient Agarose Spot (TAS) Cell Migration Assay: Microplate-Based Detection and Evaluation
by Apor Veres-Székely, Csenge Szász, Domonkos Pap, Péter Bokrossy, Dorina Lenzinger, Tamás Visnovitz, Judith Mihály, Marcell Pálmai, Zoltán Varga, László Őrfi, Attila J. Szabó, Ádám Vannay and Beáta Szebeni
Int. J. Mol. Sci. 2025, 26(12), 5584; https://doi.org/10.3390/ijms26125584 - 11 Jun 2025
Viewed by 543
Abstract
Collective cell migration is crucial in various biological processes, including tumor progression and metastasis. The widely used scratch assay (wound healing assay) has limitations in throughput, reproducibility, and data analysis. To overcome these challenges, we previously developed the Transient Agarose Spot (TAS) assay, [...] Read more.
Collective cell migration is crucial in various biological processes, including tumor progression and metastasis. The widely used scratch assay (wound healing assay) has limitations in throughput, reproducibility, and data analysis. To overcome these challenges, we previously developed the Transient Agarose Spot (TAS) assay, which enhanced assay precision and reproducibility. In this study, we present an improved microplate-based TAS assay. By using a microplate reader, we automated data acquisition, enabling the detection of cell migration in a 96-well plate format with greater throughput and accuracy. The new method applies Hoechst staining to label viable cells, providing a stable signal for kinetic analysis without compromising cell viability. We validated this approach with fluorophore-expressing cancer cells and demonstrated its ability to monitor dose-dependent effects of fetal bovine serum on cell migration. Additionally, we applied the microplate-based TAS assay to assess the anti-migratory effects of kinase inhibitors and mesenchymal stem cell-derived extracellular vesicles (EVs) on lung cancer cells. The assay accurately quantified migration inhibition and revealed the concentration-dependent effects of EVs, highlighting their potential as therapeutic agents. This microplate-based TAS assay provides a scalable, efficient, and cost-effective platform for high-throughput screening of cell migration and drug discovery, offering a robust alternative to traditional microscopy-based methods. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

21 pages, 10265 KiB  
Article
Exploring the Potential of Carboxymethyl Chitosan and Oxidized Agarose to Form Self-Healing Injectable Hydrogels
by Eduard A. Córdoba, Natalia A. Agudelo, Luis F. Giraldo and Claudia E. Echeverri-Cuartas
Polysaccharides 2025, 6(2), 49; https://doi.org/10.3390/polysaccharides6020049 - 11 Jun 2025
Viewed by 592
Abstract
Localized treatment has emerged as an excellent alternative to minimize the side effects associated with the systemic dispersion of therapeutic agents, which can damage healthy tissues. Injectable hydrogels offer a promising solution because they can encapsulate and release therapeutic agents in a controlled [...] Read more.
Localized treatment has emerged as an excellent alternative to minimize the side effects associated with the systemic dispersion of therapeutic agents, which can damage healthy tissues. Injectable hydrogels offer a promising solution because they can encapsulate and release therapeutic agents in a controlled manner. In this context, this study focuses on the development and characterization of an injectable hydrogel based on carboxymethyl chitosan (CMCh) and oxidized agarose (OA), in which chemical crosslinking through imine bond formation avoids the use of external crosslinking agents. Several polymer ratios were evaluated to obtain hydrogels (OA:CMCh), and stable gels were formed at physiological temperatures in all cases. The hydrogels were injectable through a 21 G needle with forces below 30 N, formed porous structures, and exhibited a self-healing capacity after 48 h. Additionally, the hydrogels displayed compressive strengths ranging from 26 to 71 kPa and elastic moduli similar to those of human tissues (6–20 kPa). Swelling percentages of up to 3090% were achieved owing to the high hydrophilicity of CMCh and OA, and strong chemical crosslinking maintained the gel stability for two weeks with low mass loss rates (<21%). Furthermore, polymer ratio variation and storage at 4 °C were observed to affect the hydrogel characteristics, allowing for property modulation according to the application needs. These results indicate that the proposed polymeric combination enables the formation of hydrogels with the potential for localized drug delivery. Full article
Show Figures

Graphical abstract

19 pages, 7764 KiB  
Article
Binding Specificity and Oligomerization of TSWV N Protein in the Western Flower Thrips, Frankliniella occidentalis
by Falguni Khan, Eticha Abdisa, Niayesh Shahmohammadi and Yonggyun Kim
Viruses 2025, 17(6), 826; https://doi.org/10.3390/v17060826 - 7 Jun 2025
Viewed by 535
Abstract
Tomato spotted wilt virus (TSWV) is a highly destructive plant pathogen and transmitted by several thrips including the western flower thrips, Frankliniella occidentalis. A structural N protein encoded in the viral genome represents the nucleocapsid protein by binding to the viral RNA [...] Read more.
Tomato spotted wilt virus (TSWV) is a highly destructive plant pathogen and transmitted by several thrips including the western flower thrips, Frankliniella occidentalis. A structural N protein encoded in the viral genome represents the nucleocapsid protein by binding to the viral RNA genome. However, it remains unknown how the RNA-binding protein specifically interacts with the viral RNA from host RNAs in the target cells. To study the molecular basis of N function, we produced the protein in Escherichia coli and the resulting purified recombinant protein was used to investigate the protein–RNA interactions. The recombinant N protein migrated on agarose gel to the anode in the electric field due to its high basic isoelectric point. This electrostatic property led N protein to bind to DNA as well as RNA. It also bound to both single-stranded (ssRNA) and double-stranded RNA (dsRNA). However, when the total RNA was extracted from plant tissues collected from TSWV-infected host, the RNA extract using the recombinant N protein was much richer in the TSWV genome compared to that without the protein. To investigate the specificity of N protein to ssRNA, the three-dimensional structure was predicted using the AlphaFold program and showed its trimeric oligomerization with the binding pocket for ssRNA. This was supported by the differential susceptibility of N protein with ssRNA and dsRNA against RNase attack. Furthermore, a thermal shift assay to analyze the RNA and protein interaction showed that ssRNA strongly interacted with N protein compared to dsRNA. In addition, the N gene was expressed along with the multiplication of the viral RNA genome segments from the segment-specific fluorescence in situ hybridization analysis in different tissues during different developmental stages of the virus-infected F. occidentalis. These results suggest that the functional trimeric N proteins bind to the viral RNA to form a basic nucleocapsid structure at a specific virus-replicating compartment within the host cells. Full article
(This article belongs to the Special Issue Molecular Virus–Insect Interactions, 2nd Edition)
Show Figures

Figure 1

15 pages, 5607 KiB  
Article
Constructive Neuroengineering of Crossing Multi-Neurite Wiring Using Modifiable Agarose Gel Platforms
by Soya Hagiwara, Kazuhiro Tsuneishi, Naoya Takada and Kenji Yasuda
Gels 2025, 11(6), 419; https://doi.org/10.3390/gels11060419 - 30 May 2025
Viewed by 377
Abstract
Constructing stable and flexible neuronal networks with multi-neurite wiring is essential for the in vitro modeling of brain function, connectivity, and neuroplasticity. However, most existing neuroengineering platforms rely on static microfabrication techniques, which limit the ability to dynamically control circuit architecture during cultivation. [...] Read more.
Constructing stable and flexible neuronal networks with multi-neurite wiring is essential for the in vitro modeling of brain function, connectivity, and neuroplasticity. However, most existing neuroengineering platforms rely on static microfabrication techniques, which limit the ability to dynamically control circuit architecture during cultivation. In this study, we developed a modifiable agarose gel-based platform that enables real-time microstructure fabrication using an infrared (IR) laser system under live-cell conditions. This approach allows for the stepwise construction of directional neurite paths, including sequential microchannel formation, cell chamber fabrication, and controlled neurite–neurite crossings. To support long-term neuronal health and network integrity in agarose microstructures, we incorporated direct glial co-culture into the system. A comparative analysis showed that co-culture significantly enhanced neuronal adhesion, neurite outgrowth, and survival over several weeks. The feeder layer configuration provided localized trophic support while maintaining a clear separation between glial and neuronal populations. Dynamic wiring experiments further confirmed the platform’s precision and compatibility. Neurites extended through newly fabricated channels and crossed pre-existing neurites without morphological damage, even when laser fabrication occurred after initial outgrowth. Time-lapse imaging showed a temporary growth cone stalling at crossing points, followed by successful elongation in all tested samples. Furthermore, the direct laser irradiation of extending neurites during microstructure modification did not visibly impair neurite elongation, suggesting minimal morphological damage under the applied conditions. However, potential effects on molecular signaling and electrophysiological function remain to be evaluated in future studies. Together, these findings establish a powerful, flexible system for constructive neuroengineering. The platform supports long-term culture, real-time modification, and multidirectional wiring, offering new opportunities for studying neural development, synaptic integration, and regeneration in vitro. Full article
(This article belongs to the Special Issue Gel Formation Processes and Materials for Functional Thin Films)
Show Figures

Figure 1

16 pages, 2275 KiB  
Article
Sweat-Sensing Patches with Integrated Hydrogel Interface for Resting Sweat Collection and Multi-Information Detection
by Lei Lu, Qiang Sun, Zihao Lin, Wenjie Xu, Xiangnan Li, Tian Wang, Yiming Lu, Huaping Wu, Lin Cheng and Aiping Liu
Biosensors 2025, 15(6), 342; https://doi.org/10.3390/bios15060342 - 29 May 2025
Viewed by 1111
Abstract
Sweat analysis represents an emerging non-invasive approach for health monitoring, yet its practical application is hindered by challenges such as insufficient natural sweat secretion and inefficient collection. To overcome these limitations, this study develops a hydrogel sheet composed of agarose and glycerol, which [...] Read more.
Sweat analysis represents an emerging non-invasive approach for health monitoring, yet its practical application is hindered by challenges such as insufficient natural sweat secretion and inefficient collection. To overcome these limitations, this study develops a hydrogel sheet composed of agarose and glycerol, which efficiently facilitates resting sweat collection without external stimulation when integrated into the microfluidic channels of a sweat-sensing patch. The microfluidic sweat-sensing patch, fabricated with laser-cut technology, features a sandwich structure that enables the measurement of sweat rate and chloride ion concentration while minimizing interference from electrochemical reactions. Additionally, a colorimetric module utilizing glucose oxidase and peroxidase is also integrated into the platform for cost-effective and efficient glucose detection through a color change that can be quantified via RGB analysis. The hydrogel interface, characterized by its optimal thickness and water content, exhibits superior absorption capability for efficient sweat collection and retention, with a negligible effect on the dilution of sweat components. This hydrogel-interfaced microfluidic platform demonstrates high efficiency in sweat collection and multi-biomarker analysis, offering a non-invasive, real-time solution for health monitoring. Its low-cost and wearable design highlights its potential for broad applications in personalized healthcare. Full article
(This article belongs to the Section Wearable Biosensors)
Show Figures

Figure 1

15 pages, 2944 KiB  
Article
Agarose Gel Electrophoresis Reveals the Molecular Weight Distribution of Hyaluronan Produced by Orbital Fibroblasts
by Erika Galgoczi, Monika Katko, Sara Borbely, Istvan Orsos, Zsanett Molnar, Bernadett Ujhelyi, Zita Steiber and Endre V. Nagy
Gels 2025, 11(6), 406; https://doi.org/10.3390/gels11060406 - 29 May 2025
Viewed by 630
Abstract
Thyroid eye disease (TED) is characterized by autoimmune inflammation and structural remodelling of orbital tissues, which is a consequence of the activation of orbital fibroblasts (OFs). As a result of this activation, the production of hyaluronan (HA) and the proliferation and adipocyte differentiation [...] Read more.
Thyroid eye disease (TED) is characterized by autoimmune inflammation and structural remodelling of orbital tissues, which is a consequence of the activation of orbital fibroblasts (OFs). As a result of this activation, the production of hyaluronan (HA) and the proliferation and adipocyte differentiation of OFs are enhanced. Adipogenesis leads to additional accumulation of HA. The aim of this study was to elucidate the molecular weight distribution of HA produced by OFs under basic conditions and after adipogenic stimuli. The concentration and the molecular weight distribution of HA were examined using ELISA and agarose gel electrophoresis, respectively, in TED (n = 3) and non-TED (n = 3) OF cultures. Under adipogenic stimuli, HA production is increased in OFs. In TED OF cultures, which, unlike non-TED OFs, can differentiate into adipocytes, the enhanced proportion of high-molecular-weight (HMW) HA of more than 2000 kDa is responsible for the increased HA concentration in the culture media. In non-TED OF cultures, which contain a negligible number of differentiating cells after adipogenic stimulation, the medium-molecular-weight (MMW) HA fragments from 50 to 1000 kDa also contribute to the enhanced HA content. Increased production of HMW-HA during adipocyte differentiation of TED OFs is responsible for the elevated HA content in the culture media, which may be an important contributor to both connective tissue matrix expansion and edema in the pathogenesis of TED. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Graphical abstract

13 pages, 2611 KiB  
Article
Impact of Collagen on the Rheological and Transport Properties of Agarose Hydrogels
by Veronika Richterová, Alžběta Gjevik, Ondřej Vaculík, Jakub Vejrosta and Miloslav Pekař
Gels 2025, 11(6), 396; https://doi.org/10.3390/gels11060396 - 27 May 2025
Viewed by 535
Abstract
This work investigated how collagen addition affects the rheological and transport properties of agarose hydrogels. Collagen did not affect the rheological character of hydrogels (i.e., the overall shape of amplitude and frequency response curves) but changed their viscoelastic moduli and mesh size dependent [...] Read more.
This work investigated how collagen addition affects the rheological and transport properties of agarose hydrogels. Collagen did not affect the rheological character of hydrogels (i.e., the overall shape of amplitude and frequency response curves) but changed their viscoelastic moduli and mesh size dependent on the concentration of both constituents. The diffusion coefficients of the oppositely charged model dyes eosin B and methylene blue were determined in all hydrogels and demonstrated a profound effect of electrostatic interactions. Comparison with similar work with fibroin addition showed that while the effects of these proteins on the viscoelastic properties of a polysaccharide network can be similar, their impact on network transport properties may be different. Full article
(This article belongs to the Special Issue Rheological Properties and Applications of Gel-Based Materials)
Show Figures

Graphical abstract

12 pages, 975 KiB  
Article
High Prevalence and Genetic Heterogeneity of Anaplasma marginale in Smallholder Bovine Populations of Pakistan, and Its Implications
by Abdul Ghafar, Waseem Shaukat, Muhammad Waqas, Charles G. Gauci, Robin B. Gasser and Abdul Jabbar
Pathogens 2025, 14(5), 499; https://doi.org/10.3390/pathogens14050499 - 20 May 2025
Viewed by 637
Abstract
Bovine anaplasmosis, caused by Anaplasma marginale, is a major tick-borne disease in tropical and subtropical regions of the world, leading to significant production losses. Prolonged convalescence periods are common and surviving animals often become subclinical carriers. This study aimed to detect and [...] Read more.
Bovine anaplasmosis, caused by Anaplasma marginale, is a major tick-borne disease in tropical and subtropical regions of the world, leading to significant production losses. Prolonged convalescence periods are common and surviving animals often become subclinical carriers. This study aimed to detect and characterise A. marginale in bovines in smallholder dairy farms across diverse climatic zones of Pakistan using molecular methods. In total, 321 blood DNA samples from apparently healthy cattle (n = 174) and buffaloes (n = 147) from six districts in Pakistan were tested for A. marginale using a nested PCR assay, targeting part of the major surface protein B gene (msp1β) as a genetic marker, followed by agarose gel electrophoresis and selective sequencing of amplicons from test-positive samples. Of the 321 DNA samples tested, 135 (42.1%) were test-positive for A. marginale. Prevalence was significantly higher in cattle (64.4%; 112/174) than in buffaloes (15.6%; 23/147), and female bovines (43.5%; 108/248) were more frequently infected than males (37%; 27/73). Phylogenetic analysis of the msp1β sequence data (n = 42) revealed that A. marginale from Pakistan clustered with those from Brazil, Thailand, South Africa, and the USA. This study represents the first comprehensive investigation of A. marginale from bovines from diverse agroecological zones of Pakistan and will further stimulate population genetic studies of A. marginale and investigations into the economic impact of subclinical infections in bovines in smallholder farming systems. Full article
(This article belongs to the Special Issue Tick-Borne Pathogens and Their Impact on Human and Animal Health)
Show Figures

Figure 1

Back to TopTop