Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (69,161)

Search Parameters:
Keywords = transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5677 KiB  
Article
CFD Investigation on the Thermal Comfort for an Office Room
by Mazen M. Othayq
Buildings 2025, 15(15), 2802; https://doi.org/10.3390/buildings15152802 (registering DOI) - 7 Aug 2025
Abstract
Heating, Ventilating, and Air Conditioning (HVAC) systems are important and essential for use in our daily comfort, either in homes, work, or transportation. And it is crucial to study the air movement coming from the inlet diffuser for a better design to enhance [...] Read more.
Heating, Ventilating, and Air Conditioning (HVAC) systems are important and essential for use in our daily comfort, either in homes, work, or transportation. And it is crucial to study the air movement coming from the inlet diffuser for a better design to enhance thermal comfort and energy consumption. The primary objective of the presented work is to investigate the thermal comfort within a faculty office occupied by two faculty members using the Computational Fluid Dynamics (CFD) methodology. First, an independent mesh study was performed to reduce the uncertainty related to the mesh size. In addition, the presented CFD approach was validated against available experimental data from the literature. Then, the effect of inlet air temperature and velocity on air movement and temperature distribution is investigated using Ansys Fluent. To be as reasonable as possible, the persons who occupy the office, lights, windows, tables, the door, and computers are accounted for in the CFD simulation. After that, the Predicted Mean Vote (PMV) was evaluated at three different locations inside the room, and the approximate total energy consumption was obtained for the presented cases. The CFD results showed that, for the presented cases, the sensation was neutral with the lowest energy consumption when the supply air velocity was 1 m/s and the temperature was 21 °C. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 567 KiB  
Review
Mephedrone and Its Metabolites: A Narrative Review
by Ordak Michal, Tkacz Daria, Juzwiuk Izabela, Wiktoria Gorecka, Nasierowski Tadeusz, Muszynska Elzbieta and Bujalska-Zadrozny Magdanena
Int. J. Mol. Sci. 2025, 26(15), 7656; https://doi.org/10.3390/ijms26157656 (registering DOI) - 7 Aug 2025
Abstract
New psychoactive substances (NPSs) have emerged as a significant global public health challenge due to their ability to mimic traditional drugs. Among these, mephedrone has gained attention because of its widespread use and associated toxicities. This review provides a comprehensive analysis of the [...] Read more.
New psychoactive substances (NPSs) have emerged as a significant global public health challenge due to their ability to mimic traditional drugs. Among these, mephedrone has gained attention because of its widespread use and associated toxicities. This review provides a comprehensive analysis of the structure, pharmacokinetic properties, and metabolic pathways of mephedrone, highlighting its phase I and phase II metabolites as potential biomarkers for detection and forensic applications. A comprehensive literature search was performed without date restrictions. The search employed key terms such as “mephedrone metabolites”, “pharmacokinetics of mephedrone”, “phase I metabolites of mephedrone”, and “phase II metabolites of mephedrone”. Additionally, the reference lists of selected studies were screened to ensure a thorough review of the literature. Mephedrone is a chiral compound existing in two enantiomeric forms, exhibiting different affinities for monoamine transporters and distinct pharmacological profiles. In vivo animal studies indicate rapid absorption, significant tissue distribution, and the formation of multiple phase I metabolites (e.g., normephedrone, dihydromephedrone, 4-carboxymephedrone) that influence its neurochemical effects. Phase II metabolism involves conjugation reactions leading to metabolites such as N-succinyl-normephedrone and N-glutaryl-normephedrone, further complicating its metabolic profile. These findings underscore the importance of elucidating mephedrone’s metabolic pathways to improve detection methods, enhance our understanding of its toxicological risks, and inform future therapeutic strategies. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

18 pages, 4314 KiB  
Article
Gender Differences: The Role of Built Environment and Commute in Subjective Well-Being
by Chen Gui, Yuze Cao, Fanyuan Yu, Yue Zhou and Chaoying Yin
Buildings 2025, 15(15), 2801; https://doi.org/10.3390/buildings15152801 (registering DOI) - 7 Aug 2025
Abstract
The literature has shown extensive interest in exploring the factors of subjective well-being (SWB). However, most research has conducted cross-sectional analysis of the built environment (BE), commute, and SWB, and little is known about gender differences in their connections. Based on two periods [...] Read more.
The literature has shown extensive interest in exploring the factors of subjective well-being (SWB). However, most research has conducted cross-sectional analysis of the built environment (BE), commute, and SWB, and little is known about gender differences in their connections. Based on two periods of survey data of 4297 respondents from China, the study performs a cross-sectional and longitudinal examination of whether the BE and commute have effects on SWB, and how the effects differ between men and women. The results reveal that BE features, including destination accessibility and residential density, significantly affect SWB, with stronger impacts observed among men. Men benefit more from greater accessibility and are more negatively affected by higher residential density than women. In contrast, commute mode and duration influence SWB in similar ways for both genders. A shift from nonactive to active commuting improves well-being for men and women alike. Furthermore, certain life events produce gender-specific effects. For instance, childbirth increases SWB for men but decreases it for women. These findings highlight the importance of gender-sensitive planning in building inclusive urban and transportation environments that enhance population well-being. Full article
(This article belongs to the Special Issue New Trends in Built Environment and Mobility)
21 pages, 926 KiB  
Article
Identification of Bottlenecks in Passenger Handling Processes Using Data-Driven Tools
by Edina Jenčová, Tatiana Gajdušková, Martin Jezný and Pavol Hudák
Appl. Sci. 2025, 15(15), 8760; https://doi.org/10.3390/app15158760 (registering DOI) - 7 Aug 2025
Abstract
The paper focuses on the identification of “bottlenecks” in the passenger handling process at the airports. In the current era of digital transformation and the emergence of Industry 4.0 and 5.0 concepts, optimizing passenger flows through data-driven tools is becoming an essential part [...] Read more.
The paper focuses on the identification of “bottlenecks” in the passenger handling process at the airports. In the current era of digital transformation and the emergence of Industry 4.0 and 5.0 concepts, optimizing passenger flows through data-driven tools is becoming an essential part of intelligent airport management. While many solutions focus on high-end software or AI-based systems, this study demonstrates the value of preparatory models built in widely accessible platforms such as Microsoft Excel. A simulation model was developed to analyze check-in and security screening, integrating discrete event simulation (DES), queueing theory, and elements of Monte Carlo simulation. The model enables the segmentation of the handling process into key events, including probabilistically generated arrivals and service durations. Although the model is built in a basic environment, it serves as a prototype platform for potential integration into broader digitalization strategies, offering a preparatory framework for future implementation in more sophisticated systems. Full article
33 pages, 5438 KiB  
Article
Research on Dynamic Particle Swarm Optimization for Multi-Objective Reconnaissance Task Allocation of UAVs
by Suyu Wang, Peihong Qiao, Quan Yue, Zhenlei Xu and Qichen Shang
Drones 2025, 9(8), 556; https://doi.org/10.3390/drones9080556 (registering DOI) - 7 Aug 2025
Abstract
With the increasingly widespread application of unmanned aerial vehicle (UAV) systems in disaster monitoring, urban management, logistics transportation, and reconnaissance, efficient dynamic task allocation has become a key issue in improving task execution efficiency. To address the challenges posed by dynamic changes in [...] Read more.
With the increasingly widespread application of unmanned aerial vehicle (UAV) systems in disaster monitoring, urban management, logistics transportation, and reconnaissance, efficient dynamic task allocation has become a key issue in improving task execution efficiency. To address the challenges posed by dynamic changes in task objectives and resource constraints that traditional task allocation methods struggle with in complex environments, this paper proposes a multi-objective particle swarm optimization algorithm, DCMPSO, for UAV dynamic reconnaissance task allocation. First, the framework of DCMPSO is constructed, dividing the optimization of dynamic problems into three parts: environment change detection, environment change response, and actual optimization, with the designed strategy of range prediction strategy based on centroid translation. Then, simulation experiments are conducted to verify the effectiveness of the algorithm mechanisms through ablation experiments and to demonstrate the superiority of DCMPSO in convergence and distribution compared to DNSGA-II and SGEA through comparative experiments. Finally, a multi-UAV dynamic task allocation model is established and optimized, proving that DCMPSO can correctly solve the UAV dynamic multi-objective allocation problem and effectively find its optimal solution, providing an effective solution for practical applications. Full article
26 pages, 16359 KiB  
Article
CFD Design Performance Analysis for a High-Speed Propeller
by Marian Ristea, Adrian Popa and Octavian-Narcis Volintiru
Appl. Sci. 2025, 15(15), 8754; https://doi.org/10.3390/app15158754 (registering DOI) - 7 Aug 2025
Abstract
It is recognized that boats which intervene in dangerous situations are characterized by high maneuverability, have good governance properties, and must be equipped with high-speed propellers. This paper proposes a computerized analysis, using Computational Fluid Dynamics modeling, of a high-speed propeller, in open [...] Read more.
It is recognized that boats which intervene in dangerous situations are characterized by high maneuverability, have good governance properties, and must be equipped with high-speed propellers. This paper proposes a computerized analysis, using Computational Fluid Dynamics modeling, of a high-speed propeller, in open water, from the perspective of velocity and pressure manifested on the propeller blades. The use of numerical methods allows to determine the thrust forces on the propellers, to highlight the areas in the propeller blade where the maximum and minimum pressures occur, to identify the cavitation zone and to visualize the degree of turbulence of the fluid flow on the propeller blades in rotational motion. The analysis proves to be an efficient procedure in determining the characteristics of a high-speed propeller before deciding its production/manufacture. The Shear Stress Transport method was used for fluid turbulence analysis and the “Thrust–Propeller RPM” diagram and “Torque–propeller RPM” diagram finalized this study, the mentioned diagrams being the most important in choosing an efficient propeller for a given boat. Full article
(This article belongs to the Special Issue Recent Advances and Emerging Trends in Computational Fluid Dynamics)
22 pages, 1814 KiB  
Article
Integrating Environmental Sensing into Cargo Bikes for Pollution-Aware Logistics in Last-Mile Deliveries
by Leonardo Cameli, Margherita Pazzini, Riccardo Ceriani, Valeria Vignali, Andrea Simone and Claudio Lantieri
Sensors 2025, 25(15), 4874; https://doi.org/10.3390/s25154874 (registering DOI) - 7 Aug 2025
Abstract
Cycling represents a significant share of urban transportation, especially in terms of last-mile delivery. It has clear benefits for delivery times, as well as for environmental issues related to freight distribution. Furthermore, the increasing accessibility of low-cost environmental sensors (LCSs) provides an opportunity [...] Read more.
Cycling represents a significant share of urban transportation, especially in terms of last-mile delivery. It has clear benefits for delivery times, as well as for environmental issues related to freight distribution. Furthermore, the increasing accessibility of low-cost environmental sensors (LCSs) provides an opportunity for urban monitoring in any situation. Moving in this direction, this research aims to investigate the use of LCSs to monitor particulate PM2.5 and PM10 levels and map them over delivery ride paths. The calibration process took 49 days of measurements into account, spanning different seasonal conditions (from May 2024 to November 2024). The employment of multiple linear regression and robust regression revealed a strong correlation between pollutant levels from two sources and other factors such as temperature and humidity. Subsequently, a one-month trial was carried out in the city of Faenza (Italy). In this study, a commercially available LCS was mounted on a cargo bike for measurement during delivery processes. This approach was adopted to reveal biker exposure to air pollutants. In this way, the operator’s route would be designed to select the best route in terms of delivery timing and polluting factors in the future. Furthermore, the integration of environmental monitoring to map urban environments has the potential to enhance the accuracy of local pollution mapping, thereby supporting municipal efforts to inform citizens and develop targeted air quality strategies. Full article
(This article belongs to the Section Environmental Sensing)
17 pages, 3032 KiB  
Article
The Loss of Complex I in Renal Oncocytoma Is Associated with Defective Mitophagy Due to Lysosomal Dysfunction
by Lin Lin, Neal Patel, Lucia Fernandez-del-Rio, Cristiane Benica, Blake Wilde, Eirini Christodoulou, Shinji Ohtake, Anhyo Jeong, Aboubacar Kaba, Nedas Matulionis, Randy Caliliw, Xiaowu Gai, Heather Christofk, David Shackelford and Brian Shuch
Int. J. Mol. Sci. 2025, 26(15), 7654; https://doi.org/10.3390/ijms26157654 (registering DOI) - 7 Aug 2025
Abstract
Renal oncocytoma (RO) is a benign renal neoplasm characterized by dense accumulation of dysfunctional mitochondria possibly resulting from increased mitochondrial biogenesis and decreased mitophagy; however, the mechanisms controlling these mitochondrial changes are unclear. ROs harbor recurrent inactivating mutations in mitochondrial genes encoding the [...] Read more.
Renal oncocytoma (RO) is a benign renal neoplasm characterized by dense accumulation of dysfunctional mitochondria possibly resulting from increased mitochondrial biogenesis and decreased mitophagy; however, the mechanisms controlling these mitochondrial changes are unclear. ROs harbor recurrent inactivating mutations in mitochondrial genes encoding the Electron Transport Chain (ETC) Complex I, and we hypothesize that Complex I loss in ROs directly impairs mitophagy. Our analysis of ROs and normal kidney (NK) tissues shows that a significant portion (8 out of 17) of ROs have mtDNA Complex I loss-of-function mutations with high variant allele frequency (>50%). ROs indeed exhibit reduced Complex I expression and activity. Analysis of the various steps of mitophagy pathway demonstrates that AMPK activation in ROs leads to induction of mitochondrial biogenesis, autophagy, and formation of autophagosomes. However, the subsequent steps involving lysosome biogenesis and function are defective, resulting in an overall inhibition of mitophagy. Inhibiting Complex I in a normal kidney cell line recapitulated the observed lysosomal and mitophagy defects. Our data suggest Complex I loss in RO results in defective mitophagy due to lysosomal loss and dysfunction. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

22 pages, 4006 KiB  
Article
Biochar and Melatonin Partnership Mitigates Arsenic Toxicity in Rice by Modulating Antioxidant Defense, Phytochelatin Synthesis, and Down-Regulating the Transporters Involved in Arsenic Uptake
by Mehmood Ali Noor, Muhammad Umair Hassan, Tahir Abbas Khan, Baoyuan Zhou and Guoqin Huang
Plants 2025, 14(15), 2453; https://doi.org/10.3390/plants14152453 (registering DOI) - 7 Aug 2025
Abstract
Arsenic (As) contamination has significantly increased in recent decades due to anthropogenic activities. This is a serious challenge for human health, environmental quality, and crop productivity. Biochar (BC) is an important practice used globally to remediate polluted soils. Likewise, melatonin (MT) has also [...] Read more.
Arsenic (As) contamination has significantly increased in recent decades due to anthropogenic activities. This is a serious challenge for human health, environmental quality, and crop productivity. Biochar (BC) is an important practice used globally to remediate polluted soils. Likewise, melatonin (MT) has also shown tremendous results in mitigating metal toxicity and improving crop productivity. Nevertheless, the mechanism of combined BC and MT in alleviating As toxicity in rice (Oryza sativa L.) remains unexplored. In this study, we investigated how As affected rice and how the combined BC and MT facilitated As tolerance. The study comprised a control, As stress (100 mg kg−1), As stress (100 mg kg−1) + BC (2%), As stress (100 mg kg−1) + MT (100 µM) and As stress (100 mg kg−1) + BC (2%) + MT (100 µM). Arsenic significantly decreased rice growth and yield by increasing electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H2O2). Co-applying BC and MT substantially enhanced rice growth and yield by increasing chlorophyll synthesis (48.12–92.42%) leaf water contents (40%), antioxidant activities (ascorbate peroxide: 56.43%, catalase: 55.14%, peroxidase: 57.77% and superoxide dismutase: 57.52%), proline synthesis (41.35%), MT synthesis (91.53%), and phytochelatins synthesis (125%) nutrient accumulation in rice seedlings and soil nutrient availability. The increased rice yield with BC + MT was also linked with reduced H2O2 production, As accumulation, soil As availability, and an increase in OsAPx6, OsCAT, OsPOD, OsSOD OsASMT1, and OsASMT2 and a decrease in expression of OsABCC1. Biochar + MT enhanced residual OM- and Fe, ((Fe2As) and Mn (Mn3(AsO4)2) bound forms of As leading to a substantial increase in rice growth and yield. Thus, the combination of BC and MT is an eco-friendly approach to mitigate As toxicity and improve rice productivity. Full article
Show Figures

Figure 1

23 pages, 1291 KiB  
Article
Leakage Testing of Gas Meters Designed for Measuring Hydrogen-Containing Gas Mixtures and Pure Hydrogen
by Zbigniew Gacek
Energies 2025, 18(15), 4207; https://doi.org/10.3390/en18154207 (registering DOI) - 7 Aug 2025
Abstract
Green hydrogen is a clean, versatile, and future-oriented fuel that can play a key role in the energy transition, decarbonization of the economy, and climate protection. It offers an alternative to fossil fuels and can be used in various applications, including power generation, [...] Read more.
Green hydrogen is a clean, versatile, and future-oriented fuel that can play a key role in the energy transition, decarbonization of the economy, and climate protection. It offers an alternative to fossil fuels and can be used in various applications, including power generation, industry, and transportation. However, due to its wide flammability range, small molecular size, and high diffusivity, special attention must be paid to ensuring safety during its use, particularly in leakage control. This paper provides a review and analysis of equipment leakage testing methods used for natural gas, with a view to applying these methods to the leakage testing of gas meters intended for hydrogen-containing gas mixtures and pure hydrogen. Tests of simulated leaks were carried out using two common methods: the bubble method and the pressure decay method, for three different gases: nitrogen (most commonly used for leak testing), helium, and hydrogen. The results obtained from the tests and analyses made it possible to verify and select optimum leak-testing methods for gas meters designed for measuring fuels containing hydrogen. Full article
(This article belongs to the Section A5: Hydrogen Energy)
34 pages, 2584 KiB  
Article
An Extended FullEX Method: An Application to the Selection of Online Orders Distribution Modes Based on the Shared Economy
by Milena Ninović, Momčilo Dobrodolac, Sara Bošković, Đorđije Dupljanin, Dragan Lazarević and Slaviša Dumnić
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 207; https://doi.org/10.3390/jtaer20030207 - 7 Aug 2025
Abstract
Urbanization and the rapid growth of e-commerce have significantly increased delivery volumes in cities, creating challenges in terms of cost, efficiency, and sustainability in last-mile delivery (LMD). To address these challenges, this paper proposes an innovative methodological framework for selecting optimal delivery strategies [...] Read more.
Urbanization and the rapid growth of e-commerce have significantly increased delivery volumes in cities, creating challenges in terms of cost, efficiency, and sustainability in last-mile delivery (LMD). To address these challenges, this paper proposes an innovative methodological framework for selecting optimal delivery strategies in urban environments, grounded in the principles of collaboration. The framework integrates an Extended FullEx method, developed to calculate criteria weights while accounting for expert reputation based on education and experience, with the MARCOS multi-criteria decision-making (MCDM) method used to rank delivery strategies. The Extended FullEx method proposed in this paper differs from the original FullEx by providing two improvements. The first concerns the introduction of the normalization procedure in the calculation of experts’ reputations, while the second addresses the different scoring of educational degrees, providing a more precise mathematical basis for the process. Four collaborative delivery strategies are evaluated against twelve sustainability-related criteria identified through an extensive literature review. The proposed framework is applied to a real-life case study in Novi Sad, Republic of Serbia. Results indicate that the most suitable delivery strategy is a hybrid model that combines the use of a consolidation center with smaller urban delivery hubs, providing practical insights for enhancing the sustainability and efficiency of urban delivery. This study contributes both methodologically, by advancing MCDM techniques, and practically, by offering decision-makers a comprehensive tool that integrates subjective expert knowledge and objective criteria assessment in the selection of sustainable LMD solutions. Full article
Show Figures

Figure 1

34 pages, 902 KiB  
Review
Neuroaxonal Degeneration as a Converging Mechanism in Motor Neuron Diseases (MNDs): Molecular Insights into RNA Dysregulation and Emerging Therapeutic Targets
by Minoo Sharbafshaaer, Roberta Pepe, Rosaria Notariale, Fabrizio Canale, Alessandro Tessitore, Gioacchino Tedeschi and Francesca Trojsi
Int. J. Mol. Sci. 2025, 26(15), 7644; https://doi.org/10.3390/ijms26157644 - 7 Aug 2025
Abstract
Motor Neuron Diseases (MNDs) such as Amyotrophic Lateral Sclerosis (ALS), Primary Lateral Sclerosis (PLS), Hereditary Spastic Paraplegia (HSP), Spinal Muscular Atrophy with Respiratory Distress Type 1 (SMARD1), Multisystem Proteinopathy (MSP), Spinal and Bulbar Muscular Atrophy (SBMA), and ALS associated to Frontotemporal Dementia (ALS-FTD), [...] Read more.
Motor Neuron Diseases (MNDs) such as Amyotrophic Lateral Sclerosis (ALS), Primary Lateral Sclerosis (PLS), Hereditary Spastic Paraplegia (HSP), Spinal Muscular Atrophy with Respiratory Distress Type 1 (SMARD1), Multisystem Proteinopathy (MSP), Spinal and Bulbar Muscular Atrophy (SBMA), and ALS associated to Frontotemporal Dementia (ALS-FTD), have traditionally been studied as distinct entities, each one with unique genetic and clinical characteristics. However, emerging research reveals that these seemingly disparate conditions converge on shared molecular mechanisms that drive progressive neuroaxonal degeneration. This narrative review addresses a critical gap in the field by synthesizing the most recent findings into a comprehensive, cross-disease mechanisms framework. By integrating insights into RNA dysregulation, protein misfolding, mitochondrial dysfunction, DNA damage, kinase signaling, axonal transport failure, and immune activation, we highlight how these converging pathways create a common pathogenic landscape across MNDs. Importantly, this perspective not only reframes MNDs as interconnected neurodegenerative models but also identifies shared therapeutic targets and emerging strategies, including antisense oligonucleotides, autophagy modulators, kinase inhibitors, and immunotherapies that transcend individual disease boundaries. The diagnostic and prognostic potential of Neurofilament Light Chain (NfL) biomarkers is also emphasized. By shifting focus from gene-specific to mechanism-based approaches, this paper offers a much-needed roadmap for advancing both research and clinical management in MNDs, paving the way for cross-disease therapeutic innovations. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Neurobiology 2025)
Show Figures

Figure 1

6 pages, 1076 KiB  
Proceeding Paper
Applying Transformer-Based Dynamic-Sequence Techniques to Transit Data Analysis
by Bumjun Choo and Dong-Kyu Kim
Eng. Proc. 2025, 102(1), 12; https://doi.org/10.3390/engproc2025102012 - 7 Aug 2025
Abstract
Transit systems play a vital role in urban mobility, yet predicting individual travel behavior within these systems remains a complex challenge. Traditional machine learning approaches struggle with transit trip data because each trip may consist of a variable number of transit legs, leading [...] Read more.
Transit systems play a vital role in urban mobility, yet predicting individual travel behavior within these systems remains a complex challenge. Traditional machine learning approaches struggle with transit trip data because each trip may consist of a variable number of transit legs, leading to missing data and inconsistencies when using fixed-length tabular representations. To address this issue, we propose a transformer-based dynamic-sequence approach that models transit trips as variable-length sequences, allowing for flexible representation while leveraging the power of attention mechanisms. Our methodology constructs trip sequences by encoding each transit leg as a token, incorporating travel time, mode of transport, and a 2D positional encoding based on grid-based spatial coordinates. By dynamically skipping missing legs instead of imputing artificial values, our approach maintains data integrity and prevents bias. The transformer model then processes these sequences using self-attention, effectively capturing relationships across different trip segments and spatial patterns. To evaluate the effectiveness of our approach, we train the model on a dataset of urban transit trips and predict first-mile and last-mile travel times. We assess performance using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). Experimental results demonstrate that our dynamic-sequence method yields up to a 30.96% improvement in accuracy compared to non-dynamic methods while preserving the underlying structure of transit trips. This study contributes to intelligent transportation systems by presenting a robust, adaptable framework for modeling real-world transit data. Our findings highlight the advantages of self-attention-based architectures for handling irregular trip structures, offering a novel perspective on a data-driven understanding of individual travel behavior. Full article
Show Figures

Figure 1

18 pages, 1188 KiB  
Article
High-Resolution Mass Spectrometry Method for Targeted Screening and Monitoring of Fabry, Gaucher and ASMD Using Dried Blood Spots and Capitainers: Impact of Sample Matrix on Measurement Results
by Amber Van Baelen, Stijn Verhulst and François Eyskens
Int. J. Mol. Sci. 2025, 26(15), 7641; https://doi.org/10.3390/ijms26157641 - 7 Aug 2025
Abstract
The sphingolipidoses Fabry disease, Gaucher disease and Acid sphingomyelinase deficiency (ASMD) are the three most common lysosomal storage diseases for which treatment is currently available. Timely diagnosis with estimation of the disease severity and possibilities of follow-up of patients, whether or not under [...] Read more.
The sphingolipidoses Fabry disease, Gaucher disease and Acid sphingomyelinase deficiency (ASMD) are the three most common lysosomal storage diseases for which treatment is currently available. Timely diagnosis with estimation of the disease severity and possibilities of follow-up of patients, whether or not under therapy, is crucial for providing good care and for the prevention of possible lethal complications. With this research we provide an efficient and sensitive detection method; its implementation in clinical practice could optimize the diagnosis and follow-up of patients with Gaucher, Fabry and ASMD. This detection method on dried blood spots (DBS) was validated according to the international Clinical and Laboratory Standards Institute (CLSI) guidelines, looking at reproducibility, linearity, carry-over and lower limit of quantification. Analogously, validation and subsequent comparison of the method validation results using another matrix, the Capitainer blood sampling cards (Capitainers), was fulfilled. The results showed that this detection method is fully applicable clinically when using DBS as well as Capitainers. In addition, even additional improvements of some validation parameters were found when using the Capitainers. Twenty-six patient samples and fifteen healthy samples were analyzed for case finding control. All patient cases were detected without ambiguity. We present a high-resolution mass spectrometry method that provides an accurate analysis for targeted screening, aiming for improved/accelerated diagnosis when added in the diagnostic pathway and monitoring of Fabry, Gaucher and ASMD in DBS as well as in Capitainers, with the main advantages of a small volume of blood samples, guaranteeing stability and easy transportation from the collection site to the laboratory. Full article
Show Figures

Figure 1

15 pages, 6405 KiB  
Article
Rainy Season Onset in Northeast China: Characteristic Changes and Physical Mechanisms Before and After the 2000 Climate Regime Shift
by Hanchen Zhang, Weifang Wang, Shuwen Li, Qing Cao, Quanxi Shao, Jinxia Yu, Tao Zheng and Shuci Liu
Water 2025, 17(15), 2347; https://doi.org/10.3390/w17152347 - 7 Aug 2025
Abstract
The rainy season characteristics are directly modulated by atmospheric circulation and moisture transport dynamics. Focusing on the characteristics of the rainy season onset date (RSOD), this study aims to advance the understanding and prediction of climate change impacts on agricultural production and disaster [...] Read more.
The rainy season characteristics are directly modulated by atmospheric circulation and moisture transport dynamics. Focusing on the characteristics of the rainy season onset date (RSOD), this study aims to advance the understanding and prediction of climate change impacts on agricultural production and disaster mitigation strategies. Based on rainfall data from 66 meteorological stations in northeast China (NEC) from 1961 to 2020, this study determined the patterns of the RSOD in the region and established its mechanistic linkages with atmospheric circulation and water vapor transport mechanisms. This study identifies a climatic regime shift around 2000, with the RSOD transitioning from low to high interannual variability in NEC. Further analysis reveals a strong correlation between the RSOD and atmospheric circulation characteristics: cyclonic vorticity amplifies before the RSOD and dissipates afterward. Innovatively, this study reveals a significant transition in the water vapor transport paths during the early rainy season in NEC around 2000, shifting from eastern Mongolia–Sea of Japan to the northwestern Pacific region. Moreover, the advance or delay of the RSOD directly influences the water vapor transport intensity—an early (delayed) RSOD is associated with enhanced (weakened) water vapor transport. These findings provide a new perspective for predicting the RSOD in the context of climate change while providing critical theoretical underpinnings for optimizing agricultural strategies and enhancing disaster prevention protocols. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

Back to TopTop