Association Between Ultra-Processed Food Consumption Frequency and Frailty: Findings from the InCHIANTI Study of Aging
Abstract
1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Dietary Assessment and UPF Categorization
2.3. Operationalization of Frailty Index (FI)
2.4. Measurement of Covariates
2.5. Statistical Analysis
3. Results
3.1. Cross-Sectional Association Between UPF Consumption Frequency and FI at Baseline
3.2. UPF Consumption Frequency and FI Progression over Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
UPF | Ultra-processed foods |
FI | Frailty index |
MDS | Mediterranean Diet Score |
FFQ | Food Frequency Questionnaire |
BMI | Body mass index |
SD | Standard deviation |
References
- Rockwood, K.; Howlett, S.E. Age-related deficit accumulation and the diseases of ageing. Mech. Ageing Dev. 2019, 180, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Rockwood, K.; Mitnitski, A. Frailty in relation to the accumulation of deficits. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 722–727. [Google Scholar] [CrossRef]
- Rohrmann, S. Epidemiology of Frailty in Older People. Adv. Exp. Med. Biol. 2020, 1216, 21–27. [Google Scholar] [CrossRef]
- Chang, S.; Lin, H.; Cheng, C. The Relationship of Frailty and Hospitalization Among Older People: Evidence From a Meta-Analysis. J. Nurs. Sch. 2018, 50, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhao, X.; Liu, H.; Ding, H. Frailty as a predictor of future falls and disability: A four-year follow-up study of Chinese older adults. BMC Geriatr. 2020, 20, 388. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zhong, G.-C.; Zhou, X.; Guan, L.; Zhou, L. Frailty and risks of all-cause and cause-specific death in community-dwelling adults: A systematic review and meta-analysis. BMC Geriatr. 2022, 22, 725. [Google Scholar] [CrossRef]
- Ni Lochlainn, M.; Cox, N.J.; Wilson, T.; Hayhoe, R.P.G.; Ramsay, S.E.; Granic, A.; Isanejad, M.; Roberts, H.C.; Wilson, D.; Welch, C.; et al. Nutrition and Frailty: Opportunities for Prevention and Treatment. Nutrients 2021, 13, 2349. [Google Scholar] [CrossRef]
- Cesari, M.; Leeuwenburgh, C.; Lauretani, F.; Onder, G.; Bandinelli, S.; Maraldi, C.; Guralnik, J.M.; Pahor, M.; Ferrucci, L. Frailty syndrome and skeletal muscle: Results from the Invecchiare in Chianti study. Am. J. Clin. Nutr. 2006, 83, 1142–1148. [Google Scholar] [CrossRef]
- Uchai, S.; Andersen, L.F.; Hopstock, L.A.; Hjartåker, A. Body mass index, waist circumference and pre-frailty/frailty: The Tromsø study 1994–2016. BMJ Open 2023, 13, e065707. [Google Scholar] [CrossRef]
- Lo, Y.; Hsieh, Y.; Hsu, L.; Chuang, S.; Chang, H.; Hsu, C.; Chen, C.; Pan, W. Dietary Pattern Associated with Frailty: Results from Nutrition and Health Survey in Taiwan. J. Am. Geriatr. Soc. 2017, 65, 2009–2015. [Google Scholar] [CrossRef]
- Millar, C.L.; Costa, E.; Jacques, P.F.; Dufour, A.B.; Kiel, D.P.; Hannan, M.T.; Sahni, S. Adherence to the Mediterranean-style diet and high intake of total carotenoids reduces the odds of frailty over 11 years in older adults: Results from the Framingham Offspring Study. Am. J. Clin. Nutr. 2022, 116, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Talegawkar, S.A.; Bandinelli, S.; Bandeen-Roche, K.; Chen, P.; Milaneschi, Y.; Tanaka, T.; Semba, R.D.; Guralnik, J.M.; Ferrucci, L. A higher adherence to a mediterranean-style diet is inversely associated with the development of frailty in community-dwelling elderly men and women. J. Nutr. 2012, 142, 2161–2166. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.-C.; Louzada, M.L.C.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Marino, M.; Puppo, F.; Del Bo’, C.; Vinelli, V.; Riso, P.; Porrini, M.; Martini, D. A Systematic Review of Worldwide Consumption of Ultra-Processed Foods: Findings and Criticisms. Nutrients 2021, 13, 2778. [Google Scholar] [CrossRef]
- Wang, L.; Martínez Steele, E.; Du, M.; Pomeranz, J.L.; O’Connor, L.E.; Herrick, K.A.; Luo, H.; Zhang, X.; Mozaffarian, D.; Zhang, F.F. Trends in Consumption of Ultraprocessed Foods Among US Youths Aged 2–19 Years, 1999–2018. JAMA J. Am. Med. Assoc. 2021, 326, 519. [Google Scholar] [CrossRef]
- Juul, F.; Parekh, N.; Martinez-Steele, E.; Monteiro, C.A.; Chang, V.W. Ultra-processed food consumption among US adults from 2001 to 2018. Am. J. Clin. Nutr. 2022, 115, 211–221. [Google Scholar] [CrossRef]
- R Cardoso, B.; Machado, P.; Steele, E.M. Association between ultra-processed food consumption and cognitive performance in US older adults: A cross-sectional analysis of the NHANES 2011–2014. Eur. J. Nutr. 2022, 61, 3975–3985. [Google Scholar] [CrossRef]
- Martini, D.; Godos, J.; Bonaccio, M.; Vitaglione, P.; Grosso, G. Ultra-Processed Foods and Nutritional Dietary Profile: A Meta-Analysis of Nationally Representative Samples. Nutrients 2021, 13, 3390. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, H.; Zhang, B.; Popkin, B.M.; Du, S. Elevated Fat Intake Increases Body Weight and the Risk of Overweight and Obesity among Chinese Adults: 1991–2015 Trends. Nutrients 2020, 12, 3272. [Google Scholar] [CrossRef] [PubMed]
- Endy, E.J.; Yi, S.-Y.; Steffen, B.T.; Shikany, J.M.; Jacobs, D.R.; Goins, R.K.; Steffen, L.M. Added sugar intake is associated with weight gain and risk of developing obesity over 30 years: The CARDIA study. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Malesza, I.J.; Malesza, M.; Walkowiak, J.; Mussin, N.; Walkowiak, D.; Aringazina, R.; Bartkowiak-Wieczorek, J.; Mądry, E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021, 10, 3164. [Google Scholar] [CrossRef]
- Lane, M.M.; Gamage, E.; Du, S.; Ashtree, D.N.; McGuinness, A.J.; Gauci, S.; Baker, P.; Lawrence, M.; Rebholz, C.M.; Srour, B.; et al. Ultra-processed food exposure and adverse health outcomes: Umbrella review of epidemiological meta-analyses. BMJ 2024, 384, e077310. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Sandoval-Insausti, H.; Blanco-Rojo, R.; Graciani, A.; López-García, E.; Moreno-Franco, B.; Laclaustra, M.; Donat-Vargas, C.; Ordovás, J.M.; Rodríguez-Artalejo, F.; Guallar-Castillón, P.; et al. Ultra-processed Food Consumption and Incident Frailty: A Prospective Cohort Study of Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 75, 1126–1133. [Google Scholar] [CrossRef]
- Zupo, R.; Donghia, R.; Castellana, F.; Bortone, I.; De Nucci, S.; Sila, A.; Tatoli, R.; Lampignano, L.; Sborgia, G.; Panza, F.; et al. Ultra-processed food consumption and nutritional frailty in older age. GeroScience 2023, 45, 2229–2243. [Google Scholar] [CrossRef]
- Hao, J.; Zhou, P.; Qiu, H. Association between Ultra-Processed Food Consumption and Frailty in American Elder People: Evidence from a Cross-Sectional Study. J. Nutr. Health Aging 2022, 26, 688–697. [Google Scholar] [CrossRef]
- Ferrucci, L.; Bandinelli, S.; Benvenuti, E.; Di Iorio, A.; Macchi, C.; Harris, T.B.; Guralnik, J.M. Subsystems contributing to the decline in ability to walk: Bridging the gap between epidemiology and geriatric practice in the InCHIANTI study. J. Am. Geriatr. Soc. 2000, 48, 1618–1625. [Google Scholar] [CrossRef]
- Bartali, B.; Turrini, A.; Salvini, S.; Lauretani, F.; Russo, C.R.; Corsi, A.M.; Bandinelli, S.; D’aMicis, A.; Palli, D.; Guralnik, J.M.; et al. Dietary intake estimated using different methods in two Italian older populations. Arch. Gerontol. Geriatr. 2004, 38, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Cannon, G.; Levy, R.; Moubarac, J.-C.; Jaime, P.; Martins, A.P.; Canella, D.; Louzada, M.; Parra, D. NOVA. The star shines bright. World Nutr. 2016, 7, 28–38. [Google Scholar]
- Monteiro, C.A.; Levy, R.B.; Claro, R.M.; de Castro, I.R.R.; Cannon, G. A new classification of foods based on the extent and purpose of their processing. Cad. Saúde Pública 2010, 26, 2039–2049. [Google Scholar] [CrossRef] [PubMed]
- Kliemann, N.; Rauber, F.; Levy, R.B.; Viallon, V.; Vamos, E.P.; Cordova, R.; Freisling, H.; Casagrande, C.; Nicolas, G.; Aune, D.; et al. Food processing and cancer risk in Europe: Results from the prospective EPIC cohort study. Lancet Planet. Health 2023, 7, e219–e232. [Google Scholar] [CrossRef] [PubMed]
- Tomova, G.D.; Arnold, K.F.; Gilthorpe, M.S.; Tennant, P.W.G. Adjustment for energy intake in nutritional research: A causal inference perspective. Am. J. Clin. Nutr. 2022, 115, 189–198. [Google Scholar] [CrossRef]
- Hoogendijk, E.O.; Stenholm, S.; Ferrucci, L.; Bandinelli, S.; Inzitari, M.; Cesari, M. Operationalization of a frailty index among older adults in the InCHIANTI study: Predictive ability for all-cause and cardiovascular disease mortality. Aging Clin. Exp. Res. 2020, 32, 1025–1034. [Google Scholar] [CrossRef]
- Fabbri, E.; An, Y.; Zoli, M.; Simonsick, E.M.; Guralnik, J.M.; Bandinelli, S.; Boyd, C.M.; Ferrucci, L. Aging and the Burden of Multimorbidity: Associations With Inflammatory and Anabolic Hormonal Biomarkers. J. Gerontol. A Biol. Sci. Med. Sci. 2015, 70, 63–70. [Google Scholar] [CrossRef]
- Katz, S.; Ford, A.B.; Moskowitz, R.W.; Jackson, B.A.; Jaffe, M.W. Studies of Illness in the Aged. The index of Adl: A standardized measure of biological and phychological funcation. JAMA 1963, 185, 914–919. [Google Scholar] [CrossRef] [PubMed]
- Beekman, A.T.F.; Deeg, D.J.H.; Van Limbeek, J.; Braam, A.W.; De Vries, M.Z.; Van Tilburg, W. Criterion validity of the Center for Epidemiologic Studies Depression scale (CES-D): Results from a community-based sample of older subjects in The Netherlands. Psychol. Med. 1997, 27, 231–235. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. Nov. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Clayton-Chubb, D.; Vaughan, N.V.; George, E.S.; Chan, A.T.; Roberts, S.K.; Ryan, J.; Phyo, A.Z.Z.; McNeil, J.J.; Beilin, L.J.; Tran, C.; et al. Mediterranean Diet and Ultra-Processed Food Intake in Older Australian Adults—Associations with Frailty and Cardiometabolic Conditions. Nutrients 2024, 16, 2978. [Google Scholar] [CrossRef]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30, 67–77.e3. [Google Scholar] [CrossRef]
- Menezes, C.A.; Magalhães, L.B.; da Silva, J.T.; Lago, R.M.R.d.S.; Gomes, A.N.; Ladeia, A.M.T.; Vianna, N.A.; Oliveira, R.R. Ultra-Processed Food Consumption Is Related to Higher Trans Fatty Acids, Sugar Intake, and Micronutrient-Impaired Status in Schoolchildren of Bahia, Brazil. Nutrients 2023, 15, 381. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Chang, M.; Wang, J. Abdominal obesity, body mass index and the risk of frailty in community-dwelling older adults: A systematic review and meta-analysis. Age Ageing 2021, 50, 1118–1128. [Google Scholar] [CrossRef]
- Crow, R.S.; Lohman, M.C.; Titus, A.J.; Cook, S.B.; Bruce, M.L.; Mackenzie, T.A.; Bartels, S.J.; Batsis, J.A. Association of Obesity and Frailty in Older Adults: NHANES 1999–2004. J. Nutr. Health Aging 2018, 23, 138–144. [Google Scholar] [CrossRef]
- Hong, S.-H.; Choi, K.M. Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences. Int. J. Mol. Sci. 2020, 21, 494. [Google Scholar] [CrossRef]
- Batsis, J.A.; Villareal, D.T. Sarcopenic obesity in older adults: Aetiology, epidemiology and treatment strategies. Nat. Rev. Endocrinol. 2018, 14, 513–537. [Google Scholar] [CrossRef]
- Liu, T.; Wang, C.; Wang, Y.; Wang, L.; Ojo, O.; Feng, Q.; Jiang, X.; Wang, X. Effect of dietary fiber on gut barrier function, gut microbiota, short-chain fatty acids, inflammation, and clinical outcomes in critically ill patients: A systematic review and meta-analysis. J. Parenter. Enter. Nutr. 2021, 46, 997–1010. [Google Scholar] [CrossRef]
- Cronin, P.; Joyce, S.A.; O’Toole, P.W.; O’Connor, E.M. Dietary Fibre Modulates the Gut Microbiota. Nutrients 2021, 13, 1655. [Google Scholar] [CrossRef] [PubMed]
- Makki, K.; Deehan, E.C.; Walter, J.; Bäckhed, F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Tolhurst, G.; Heffron, H.; Lam, Y.S.; Parker, H.E.; Habib, A.M.; Diakogiannaki, E.; Cameron, J.; Grosse, J.; Reimann, F.; Gribble, F.M. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012, 61, 364–371. [Google Scholar] [CrossRef]
- den Besten, G.; Bleeker, A.; Gerding, A.; Van Eunen, K.; Havinga, R.; Van Dijk, T.H.; Oosterveer, M.H.; Jonker, J.W.; Groen, A.K.; Reijngoud, D.-J.; et al. Short-Chain Fatty Acids Protect Against High-Fat Diet-Induced Obesity via a PPARγ-Dependent Switch From Lipogenesis to Fat Oxidation. Diabetes 2015, 64, 2398–2408. [Google Scholar] [CrossRef]
- Tanaka, T.; Kafyra, M.; Jin, Y.; Chia, C.W.; Dedoussis, G.V.; Talegawkar, S.A.; Ferrucci, L. Quality Specific Associations of Carbohydrate Consumption and Frailty Index. Nutrients 2022, 14, 5072. [Google Scholar] [CrossRef] [PubMed]
- Asensi, M.T.; Napoletano, A.; Sofi, F.; Dinu, M. Low-Grade Inflammation and Ultra-Processed Foods Consumption: A Review. Nutrients 2023, 15, 1546. [Google Scholar] [CrossRef]
- Sánchez-Tapia, M.; Miller, A.W.; Granados-Portillo, O.; Tovar, A.R.; Torres, N. The development of metabolic endotoxemia is dependent on the type of sweetener and the presence of saturated fat in the diet. Gut Microbes 2020, 12, 1801301. [Google Scholar] [CrossRef]
- Candelli, M.; Franza, L.; Pignataro, G.; Ojetti, V.; Covino, M.; Piccioni, A.; Gasbarrini, A.; Franceschi, F. Interaction between Lipopolysaccharide and Gut Microbiota in Inflammatory Bowel Diseases. Int. J. Mol. Sci. 2021, 22, 6242. [Google Scholar] [CrossRef] [PubMed]
- Batsis, J.A.; Mackenzie, T.A.; Jones, J.D.; Lopez-Jimenez, F.; Bartels, S.J. Sarcopenia, sarcopenic obesity and inflammation: Results from the 1999–2004 National Health and Nutrition Examination Survey. Clin. Nutr. 2016, 35, 1472–1483. [Google Scholar] [CrossRef] [PubMed]
Variable | Total | UPF | p- Value 1 | |||
---|---|---|---|---|---|---|
Quartile 1 (Lowest) | Quartile 2 | Quartile 3 | Quartile 4 | |||
n | 938 | 230 | 240 | 248 | 220 | |
Age (years) | 74.0 (6.6) | 72.9 (6.0) | 74.2 (6.8) | 74.7 (6.7) | 74.2 (6.8) | 0.023 |
Female (%) | 518 (55.2) | 120 (52.2) | 110 (45.8) | 99 (39.9) | 91 (41.4) | 0.035 |
BMI (kg/m2) | 27.5 (4.1) | 27.5 (3.9) | 27.6 (4.2) | 27.5 (4.1) | 27.5 (4.2) | 0.98 |
Energy Intake (kcal/day) | 1936.1 (552.0) | 1973 (583.0) | 1867 (517.0) | 1853 (528.0) | 2067 (558.0) | <0.001 |
Smoking (%) | ||||||
Currently | 133 (14.2) | 33 (14.3) | 34 (14.2) | 34 (13.7) | 32 (14.5) | 0.970 |
Previously | 256 (27.3) | 68 (29.6) | 61 (25.4) | 66 (26.6) | 61 (27.7) | |
Never | 549 (58.5) | 129 (56.1) | 145 (60.4) | 148 (59.7) | 127 (57.7) | |
Education (years) | 5.5 (3.2) | 6.0 (3.8) | 5.5 (3.4) | 5.4 (3.0) | 5.1 (2.6) | 0.027 |
Study site (%) | ||||||
Greve in Chianti | 445 (47.4) | 115 (50.0) | 112 (46.7) | 121 (48.8) | 97 (44.1) | 0.608 |
Bagno a Ripoli | 493 (52.6) | 115 (50.0) | 128 (53.3) | 127 (51.2) | 123 (55.9) | |
Baseline Frailty Index (FI) | 0.133 (0.10) | 0.108 (0.08) | 0.140 (0.10) | 0.138 (0.10) | 0.146 (0.10) | <0.001 |
Variables | βs (Estimates) | 95% CI | p-Value |
---|---|---|---|
UPF consumption frequency | |||
Quartile 1 | (Ref) | ||
Quartile 2 | 0.022 | (0.007, 0.037) | 0.004 |
Quartile 3 | 0.014 | (−0.001, 0.029) | 0.071 |
Quartile 4 | 0.026 | (0.010, 0.041) | 0.001 |
Baseline age (years) | 0.007 | (0.006, 0.007) | <0.001 |
Sex (females) | 0.025 | (0.012, 0.038) | 0.0002 |
BMI (kg/m2) | 0.003 | (0.001, 0.004) | <0.001 |
Smoking | |||
Previously | −0.008 | (−0.026, 0.010) | 0.369 |
Never | −0.018 | (−0.035, −0.0007) | 0.041 |
Education (years) | −0.003 | (−0.004, −0.0008) | 0.004 |
Study site | |||
Bagno a Ripoli | −0.015 | (−0.026, −0.005) | 0.005 |
Variables | βs (Estimates) | 95% CI | p-Value |
---|---|---|---|
UPF consumption frequency | |||
Quartile 1 | (Ref) | ||
Quartile 2 | 0.015 | (0.004, 0.030) | 0.045 |
Quartile 3 | 0.010 | (−0.005, 0.025) | 0.197 |
Quartile 4 | 0.022 | (0.006, 0.037) | 0.006 |
Follow-up years (by visit) | 0.012 | (0.011, 0.013) | <0.001 |
Baseline age (years) | 0.007 | (0.007, 0.008) | <0.001 |
Sex (females) | 0.024 | (0.012, 0.037) | 0.0002 |
BMI (kg/m2) | 0.003 | (0.001, 0.004) | <0.001 |
Smoking | |||
Previously | −0.004 | (−0.021, 0.013) | 0.655 |
Never | −0.011 | (−0.028, 0.006) | 0.193 |
Education (years) | −0.003 | (−0.005, −0.001) | 0.001 |
Study Site | |||
Bagno a Ripoli | −0.015 | (−0.026, −0.005) | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Jin, Y.; Bandinelli, S.; Ferrucci, L.; Tanaka, T.; Talegawkar, S.A. Association Between Ultra-Processed Food Consumption Frequency and Frailty: Findings from the InCHIANTI Study of Aging. Geriatrics 2025, 10, 123. https://doi.org/10.3390/geriatrics10050123
Li X, Jin Y, Bandinelli S, Ferrucci L, Tanaka T, Talegawkar SA. Association Between Ultra-Processed Food Consumption Frequency and Frailty: Findings from the InCHIANTI Study of Aging. Geriatrics. 2025; 10(5):123. https://doi.org/10.3390/geriatrics10050123
Chicago/Turabian StyleLi, Xin, Yichen Jin, Stefania Bandinelli, Luigi Ferrucci, Toshiko Tanaka, and Sameera A. Talegawkar. 2025. "Association Between Ultra-Processed Food Consumption Frequency and Frailty: Findings from the InCHIANTI Study of Aging" Geriatrics 10, no. 5: 123. https://doi.org/10.3390/geriatrics10050123
APA StyleLi, X., Jin, Y., Bandinelli, S., Ferrucci, L., Tanaka, T., & Talegawkar, S. A. (2025). Association Between Ultra-Processed Food Consumption Frequency and Frailty: Findings from the InCHIANTI Study of Aging. Geriatrics, 10(5), 123. https://doi.org/10.3390/geriatrics10050123