Impact of Supplementing Phytobiotics as a Substitute for Antibiotics in Broiler Chicken Feed on Growth Performance, Nutrient Digestibility, and Biochemical Parameters
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Feed, Animal Feeding, and Dietary Supplement
- Dry matter by drying at a temperature of 100 °C (DM; method 934.01);
- Crude ash (method 942.05);
- Crude protein (CP; method 968.06);
- Essential extract (EE; method 920.39);
- Crude fiber (CF, method Ba 6-84);
- Calcium and phosphorus (ISO 27085:2009) [41].
2.3. Analysis of Growth Performance and Quality of Meat
- The live weight (g) was determined by the control individual weighing of broiler chickens (100 heads from each group) at the age of 7, 14, 21, 28, 32 days, and before slaughter.
- The absolute gain (A, g) is the increase in live weight over the period of the experiment; it was determined using Equation (1):
- 3.
- Average daily gain (ADG, g) was calculated by weighing the results; it was determined using Equation (2):
- 4.
- Feed cost per 1 kg of live weight gain (kg) was calculated by dividing the amount of feed consumed over the entire period of the experiment by the live weight gain of the broiler chickens during the growing period.
- 5.
- Productivity index (points) was calculated using Equation (3):
2.4. Digestibility of Nutrients
2.5. Blood Sampling and Analysis
2.6. Statistical Analysis
3. Results
3.1. Growth Performance and Meat Qualities of Broiler Chickens
3.2. Intake and Digestibility of Nutrients
3.3. Biochemical Parameters Blood Serum
4. Discussion
4.1. Growth Performance and Meat Quality of Broiler Chickens
4.2. Intake and Digestibility of Nutrients
4.3. Biochemical Parameters Blood Serum
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buryakov, N.P.; Buryakova, M.A. Influence of oak extract on rumen microorganisms in feeding nitrate diets to cows. In IV International Conference Actual Points for Veterinary Homoeopathy; St. Petersburg Academy of Veterinary Medicine: St. Peterburg, Russia, 2006; pp. 168–171. [Google Scholar]
- Hashemi, S.R.; Davoodi, H. Phytogenics as new class of feed additive in poultry industry. Adv. Anim. Vet. Sci. 2010, 9, 2295–2304. [Google Scholar] [CrossRef]
- Trukhachev, V.I.; Buryakov, N.P.; Shapovalov, S.O.; Shvydkov, A.N.; Buryakova, M.A.; Khardik, I.V.; Fathala, M.M.; Komarova, O.E.; Aleshin, D.E. Impact of Inclusion of Multicomponent Synbiotic Russian Holstein Dairy Cow’s Rations on Milk Yield, Rumen Fermentation, and Some Blood Biochemical Parameters. Front. Vet. Sci. 2022, 9, 884177. [Google Scholar] [CrossRef] [PubMed]
- Abudabos, A.M.; Alyemni, A.H.; Dafalla, Y.M.; Khan, R. U The effect of phytogenic feed additives to substitute in-feed antibiotics on growth traits and blood biochemical parameters in broiler chicks challenged with Salmonella typhimurium. Environ. Sci. Poll. Res. 2016, 23, 24151–24157. [Google Scholar] [CrossRef] [PubMed]
- Nikolaeva, A.I.; Lavrentiev, A.Y.; Sherne, V.S. Plant feed additive in compound feeds of broilers. Poult. Prod. 2018, 11–12, 43–44. [Google Scholar]
- Abed, A.H.; Radwan, I.A.; El-Aziz, M.M.A.; Ali, A. Antifungal activity of natural essential oils against molds and yeasts associated with respiratory problems in broiler chickens. Adv. Anim. Vet. Sci. 2021, 9, 348–355. [Google Scholar]
- Adedeji, O.S.; Oyetoro, B.A.; Oki, H.A. Effect of Dietary Cinnamon Powder on the Organolopetic Properties of Cockerel Chickens. Greener J. Agric. Sci. 2021, 11, 157–162. [Google Scholar]
- Alghirani, M.M.; Chung, E.L.T.; Jesse, F.F.A.; Sazili, A.Q.; Loh, T.C. Could Phytobiotics replace Antibiotics as Feed Additives to Stimulate Production Performance and Health Status in Poultry? An Overview. J. Adv. Vet. Res. 2021, 11, 254–265. [Google Scholar]
- Kosolapova, V.G.; Buryakov, N.P.; Mokrushina, O.G.; Kosolapov, A.V.; Aleshin, D.E. Scientific and Economic Justification of Application of Symbiotic Polycomponent Fodder Additive in Feeding High Productive Cows. IOP Conf. Ser. Earth Environ. Sci. 2021, 901, 012026. [Google Scholar] [CrossRef]
- Kaya, A.; Kaya, H.; Macit, M.; Celebi, S.; Esenbuga, N.; Yoruk, M.A.; Karaoglu, M. Effects of dietary inclusion of plant extract mixture and copper into layer diets on egg yield and quality, yolk cholesterol and fatty acid composition. Kafkas. Univ. Vet. Fak. 2013, 19, 673–679. [Google Scholar] [CrossRef]
- Khan, I.; Zaneb, H.; Masood, S.; Yousaf, M.S.; Rehman, H.F.; Rehman, H. Effect of Moringa oleifera leaf powder supplementation on growth performance and intestinal morphology in broiler chickens. J. Anim. Physiol. Anim. Nutr. 2017, 101, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.N.; Liu, Y.; Hu, L.L.; Suo, Y.L.; Zhang, L.; Jin, F.; Feng, X.A.; Teng, N.; Li, Y. Effects of dietary supplementation of quercetin on performance, egg quality, cecal microflora populations, and antioxidant status in laying hens. Poult. Sci. 2014, 93, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Hu, J.; Mahfuz, S.; Piao, X. Effects of hydrolysable tannins as zinc oxide substitutes on antioxidant status, immune function, intestinal morphology, and digestive enzyme activities in weaned piglets. Animals 2020, 10, 757. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Dal Pont, G.C.; Farnell, M.B.; Jarvis, S.; Battaglia, M.; Arsenault, R.J.; Kogut, M.H. Supplementing chestnut tannins in the broiler diet mediates a metabolic phenotype of the ceca. Poult. Sci. 2021, 100, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Youssef, I.M.; Männer, K.; Zentek, J. Effect of essential oils or saponins alone or in combination on productive performance, intestinal morphology and digestive enzymes’ activity of broiler chickens. J. Anim. Physiol. Anim. Nutr. 2021, 105, 99–107. [Google Scholar] [CrossRef]
- Erdogan, Z.; Erdogan, S.; Aslantaş, O.; Çelik, S. Effects of dietary supplementation of synbiotics and phytobiotics on performance, caecal coliform population and some oxidant/antioxidant parameters of broilers. J. Anim. Physiol. Anim. Nutr. 2010, 94, e40–e48. [Google Scholar] [CrossRef]
- Ganguly, S. Phytogenic growth promoter as replacers for antibiotic growth promoter in poultry birds. Adv. Pharm. Drug Saf. 2013, 2, e119. [Google Scholar] [CrossRef] [Green Version]
- Girard, M.; Bee, G. Invited review: Tannins as a potential alternative to antibiotics to prevent coliform diarrhea in weaned pigs. Animal 2020, 14, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Skoufos, I.; Bonos, E.; Anastasiou, I.; Tsinas, A.; Tzora, A. Effects of phytobiotics in healthy or disease challenged animals. In Feed Additives; Academic Press: Cambridge, MA, USA, 2020; pp. 311–337. [Google Scholar]
- Moharreri, M.; Vakili, R.; Oskoueian, E.; Rajabzadeh, G. Phytobiotic role of essential oil-loaded microcapsules in improving the health parameters in Clostridium perfringens-infected broiler chickens. Ital. J. Anim. Sci. 2021, 20, 2075–2085. [Google Scholar] [CrossRef]
- Ruesga-Gutierrez, E.; Ruvalcaba-Gómez, J.M.; Gómez-Godínez, L.J.; Villagrán, Z.; Gómez-Rodríguez, V.M.; Heredia-Nava, D.; Arteaga-Garibay, R.I. Allium-Based Phytobiotic for Laying Hens’ Supplementation: Effects on Productivity, Egg Quality, and Fecal Microbiota. Microorganisms 2022, 10, 117. [Google Scholar] [CrossRef]
- Borisenkova, A.N.; Drevilo, A.N.; Novikova, O.B. “Bifiliz-N”—The prospect of raising broiler chickens without vaccines, anabolics and antibiotics in industrial poultry farming. In The XVII International Conference “Innovative Developments and Their Development in Industrial Poultry Farming”; VNITIP: Segriyev Posad, Russia, 2012; pp. 517–519. [Google Scholar]
- Fisinin, V.I.; Kavtarashvili, A.S.; Kolokolnikova, T.N. How to deal with the heat stress of a poultry? Poult. Sci. 2014, 6, 2–11. [Google Scholar]
- Vakili, R.; Toroghian, M.; Torshizi, M.E. Saffron extract feed improves the antioxidant status of laying hens and the inhibitory effect on cancer cells (PC3 and MCF7) Growth. Vet. Med. Sci. 2022, 8, 2494–2503. [Google Scholar] [CrossRef] [PubMed]
- Majidzadeh Heravi, R.; Vakili, R. Performance and Egg Quality of Laying Hens Fed Diets Supplemented with Herbal Extracts and Flaxseed. Poult. Sci. J. 2016, 4, 107–116. [Google Scholar] [CrossRef]
- Windisch, W.; Rohrer, E.; Schedle, K. Phytogenic feed additives to young piglets and poultry: Mechanisms and application. In Phytogenies in Animal Nutrition; Steiner, T., Ed.; Nottingham University Press: Nottingham, UK, 2009. [Google Scholar]
- Buryakov, N.; Traynev, I.; Zaikina, A.; Buryakova, M.; Shaaban, M.; Zagarin, A. The Effects of the Extract of Sweet Chestnut in Diets for Broilers on the Digestibility of Dietary Nutrients and Productive Performance. In Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East (AFE-2021); Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2022; Volume 354, p. 268749. [Google Scholar]
- Abd El-Ghany, W.A.; Ismail, M. Tackling experimental colisepticaemia in broiler chickens using phytobiotic essential oils and antibiotic alone or in combination. Iran. J Vet. Res. 2014, 15, 110–115. [Google Scholar]
- Amer, S.A.; Taha, A.; El-Eraky, W.A. Effect of supplementation the broiler diets with some phytobiotics and probiotics on the growth performance, digestibility, immunity and cecal microbial count. In 4th International Food Safety Conference; University of Sadat City: Sadat City, Egypt, 2017. [Google Scholar]
- Amer, S.A.; Al-Khalaifah, H.S.; AlSadek, D.M.; Roushdy, E.M.; Sherief, W.R.; Farag, M.F.; Metwally, A.E. Effect of dietary medium-chain α-monoglycerides on the growth performance, intestinal histomorphology, amino acid digestibility, and broiler chickens’ blood biochemical parameters. Animals 2021, 11, 57. [Google Scholar] [CrossRef]
- Redondo, L.M.; Chacana, P.A.; Dominguez, J.E.; Fernandez Miyakawa, M.E. Perspectives in the use of tannins as alternative to antimicrobial growth promoter factors in poultry. Front. Microbiol. 2014, 5, 118. [Google Scholar] [CrossRef] [Green Version]
- Windisch, W.; Kroismayr, A. The Effects of Phytobiotics on Performance and Gut Function in Monogastrics. In World Nutrition Forum: The Future of Animal Nutrition; University of Natural Resources and Applied Life Sciences Vienna: Austria, Vienna, 2006; pp. 85–90. Available online: https://www.feedindustry.org/feed-articles/animal-nutrition/effect-of-phytobiotics-on-performance-and-gut-function-in-monogastrics/ (accessed on 1 December 2022).
- Lee, K.W.; Everts, H.; Kappert, H.J.; Frehner, M.; Losa, R.; Beynen, A.C. Effects of dietary essential oil components on growth performance, digestive enzymes and lipid metabolism in female broiler chickens. Br. Poult. Sci. 2003, 44, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Kroismayr, A.; Sehm, J.; Pfaffl, M.W.; Schedle, K.; Plitzner, C.; Windisch, W. Effects of avilamycin and essential oils on mRNA expression of apoptotic and inflammatory markers and gut morphology of piglets. Czech J. Veter. 2008, 9, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Mannelli, F.; Minieri, S.; Tosi, G.; Secci, G.; Daghio, M.; Massi, P.; Fiorentini, L.; Galigani, I.; Lancini, S.; Rapaccini, S.; et al. Effect of Chestnut Tannins and Short Chain Fatty Acids as Anti-Microbials and as Feeding Supplements in Broilers Rearing and Meat Quality. Animals 2019, 9, 659. [Google Scholar] [CrossRef] [Green Version]
- Mancini, S.; Moruzzo, R.; Minieri, S.; Turchi, B.; Cerri, D.; Gatta, D.; Sagona, S.; Felicioli, A.; Paci, G. Dietary supplementation of quebracho and chestnut tannins mix in rabbit: Effects on live performances, digestibility, carcase traits, antioxidant status, faecal microbial load and economic value. Ital. J. Anim. Sci. 2019, 18, 621–629. [Google Scholar] [CrossRef] [Green Version]
- Tosi, G.; Massi, P.; Antongiovanni, M.; Buccioni, A.; Minieri, S.; Marenchino, L.; Mele, M. Efficacy Test of a Hydrolysable Tannin Extract Against Necrotic Enteritis in Challenged Broiler Chickens. Ital. J. Anim. Sci. 2013, 12, e62. [Google Scholar] [CrossRef]
- Lysenko, M.A.; Stollyar, T.A.; Kavtarashvili, A.S.; Dychakovskaya, V.V.; Kalashnikov, A.I. Methodology of scientific and industrial research on feeding poultry: Molecular Genetic Methods for Determining the Intestinal Microflora; VNITIP: Sergiev Posad, Russia, 2013. [Google Scholar]
- ISO 6498:2012; Animal Feeding Stuffs—Guidelines for Sample Preparation. International Organization for Standardization: Geneva, Switzerland, 2012.
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- ISO 27085:2009; Animal Feeding Stuffs—Determination of Calcium, Sodium, Phosphorus, Magnesium, Potassium, Iron, Zinc, Copper, Manganese, Cobalt, Molybdenum, Arsenic, Lead and Cadmium by ICP-AES. International Organization for Standardization: Geneva, Switzerland, 2009.
- Saleeva, I.P.; Lysenko, V.P.; Shol, V.G.; Alekseev, F.F.; Gusev, V.A.; Belyakova, L.S.; Titov, V.Y.; Novatorov, E.N.; Kosenko, O.V.; Koroleva, N.A.; et al. Methodological Recommendations for Anatomical Cutting of Carcasses and Organoleptic Evaluation of the Quality of Meat and Eggs of Poultry and Egg Morphology; Lukashenko, V.S., Ed.; VNITIP: Sergiev Posad, Russia, 2015. [Google Scholar]
- Jankowski, J.; Zduńczyk, Z.; Juśkiewicz, J.; Kozłowski, K.; Lecewicz, A.; Jeroch, H. Gastrointestinal tract and metabolic response of broilers to diets with the Macleaya cordata alkaloid extract. Arch. Geflügelkunde 2009, 73, 95–101. [Google Scholar]
- Gheisar, M.; Hosseindoust, M.A.; Kim, I.H. Evaluating the effect of microencapsulated blends of organic acids and essential oils in broiler chickens diet J. Appl. Anim. Res. 2015, 24, 511–519. [Google Scholar]
- Jang, I.S.; Ko, Y.H.; Kang, S.Y.; Lee, C.Y. Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Anim. Feed. Sci. Technol. 2007, 134, 304–315. [Google Scholar] [CrossRef]
- Jang, I.S.; Ko, Y.H.; Yang, H.Y.; Ha, J.S.; Kim, J.Y.; Kim, J.Y.S.; Kang, S.Y.; Yoo, D.H.; Nam, D.S.; Kim, D.H.; et al. Influence of essential oil components on growth performance and the functional activity of the pancreas and small intestine in broiler chickens. Asian-Australas. J. Anim. Sci. 2004, 17, 394–400. [Google Scholar] [CrossRef]
- Amouei, H.; Ferronato, G.; Qotbi, A.A.A.; Bouyeh, M.; Dunne, P.G.; Prandini, A.; Seidavi, A. Effect of Essential Oil of Thyme (Thymus vulgaris L.) or Increasing Levels of a Commercial Prebiotic (TechnoMOS®) on Growth Performance and Carcass Characteristics of Male Broilers. Animals 2021, 11, 3330. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, F.; Madrid, J.; Garcia, V.; Orengo, J.; Megias, M.D. Influence of two plant extracts on broiler performance, digestibility, and digestive organ size. Poult. Sci. 2004, 83, 169–174. [Google Scholar] [CrossRef]
- Hafeez, A.; Shah, S.A.A.; Khan, R.U.; Ullah, Q.; Naz, S. Effect of diet supplemented with phytogenics and protease enzyme on performance, serum biochemistry and muscle histomorphology in broilers. J. Appl. Anim. Res. 2020, 48, 326–330. [Google Scholar] [CrossRef]
- Aljumaah, M.R.; Suliman, G.M.; Abdullatif, A.A.; Abudabos, A.M. Effects of phytobiotic feed additives on growth traits, blood biochemistry, and meat characteristics of broiler chickens exposed to Salmonella typhimurium. Poult. Sci. 2020, 99, 5744–5751. [Google Scholar] [CrossRef]
- Zdunczyk, Z.; Gruzauskas, R.; Juskiewicz, J.; Semaskaite, A.; Jankowski, J.; Godycka-Klos, I.; Jarule, V.; Mieželiene, A.; Alencikiene, G. Growth performance, gastrointestinal tract responses, and meat characteristics of broiler chickens fed a diet containing the natural alkaloid sanguinarine from Macleayacordata. J. Appl. Poult. Res. 2010, 19, 393–400. [Google Scholar] [CrossRef]
- Yang, Y.; Iji, P.A.; Choct, M. Dietary modulation of gut microflora in broiler chickens: A review of the role of six kinds of alternatives to in-feed antibiotics. World’s Poult. Sci. J. 2009, 65, 97–114. [Google Scholar] [CrossRef]
- Hashemi, S.R.; Davoodi, H. Herbal plants and their derivatives as growth and health promoters in animal nutrition. Vet. Res. Commun. 2011, 35, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Yadegari, M.; Ghahri, H.; Daneshyar, M.J.U.J.o.E. Efficiency of savory (Satureja Khuzestanica Jamzad) essential oil on performance, carcass traits, some blood parameters and immune function of Male Ross 308 heat stressed broiler chicks. Ukr. Ecol. J. 2019, 9, 512–520. [Google Scholar]
- Amad, A.A.; Manner, K.; Wendler, K.R.; Neumann, K.; Zentek, J. Effects of a phytogenic feed additive on growth performance and ileal nutrient digestibility in broiler chickens. Poult. Sci. 2011, 90, 2811–2816. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.; Losa, R. The use of essential oils and their compounds in poultry nutrition. World Poult. 2001, 17, 14–15. [Google Scholar]
- Platel, K.; Srinivasan, K. Influence of dietary spices and their active principles on pancreatic digestive enzymes in albino rats. Nahrung 2000, 44, 42–46. [Google Scholar] [CrossRef]
- Jamroz, D.; Orda, J.; Kamel, C.; Wiliczkiewicz, A.; Wertelecki, T.; Skorupinska, J. The influence of phytogenic extracts on performance, nutrient digestibility, carcass characteristics, and gut microbial status in broiler chickens. J. Anim. Feed. Sci. 2003, 12, 583–596. [Google Scholar] [CrossRef]
- Moharreria, M.; Vakilia, R.; Oskoueian, E.; Rajabzadeh, G. Effects of microencapsulated essential oils on growth performance and biomarkers of inflammation in broiler chickens challenged with Salmonella enteritidis. J. Saudi Soc. Agric. Sci. 2022, 21, 349–357. [Google Scholar] [CrossRef]
Groups | Poultry Quantity | Features of Feeding Broiler Chickens |
---|---|---|
FLA | 28,891 | Basic diet (BD) + antibiotic Flavomycin® (FLA), presented as a granular fermentation product of Streptomyces ghanaensis |
SCWE 1 | 28,965 | BD + plant feed additives from sweet chestnut wood extract (SCWE) at an amount of: poultry aged up to 10 days—500 g per ton of compound feed; poultry aged from 11 to 34 days or more—250 g per ton |
SCWE 2 | 28,853 | BD + SCWE at an amount of: poultry aged up to 10 days—650 g per ton of compound feed; poultry aged from 11 to 34 days or more—325 g per ton |
SCWE 3 | 30,929 | BD + SCWE at an amount of: poultry aged up to 10 days—800 g per ton compound feed; poultry aged from 11 to 34 days or more—400 g per ton |
Ingredients | Age of Poultry (Days) | |||
---|---|---|---|---|
0–10 (Starter) | 11–21 (Grower) | 22–33 (Finisher 1) | 34–38 (Finisher 2) | |
Whole wheat grain | – | 10.00 | 10.00 | – |
Wheat grain crushed | 36.07 | 26.80 | 34.18 | 47.53 |
Corn grain crushed | 17.28 | 20.00 | 17.00 | 14.80 |
Full-fat soybean | 5.00 | 8.00 | 10.00 | 13.00 |
Soybean meal | 32.51 | 22.41 | 11.82 | 6.67 |
Sunflower meal | – | 2.00 | 5.00 | 7.00 |
Fish meal | 2.68 | – | – | – |
Meat and bone meal | – | 3.00 | 4.00 | 4.04 |
Sunflower oil | 2.76 | 4.24 | 4.84 | 4.44 |
Lysine monochlorohydrate | 0.32 | 0.45 | 0.53 | 0.42 |
DL-methionine | 0.39 | 0.41 | 0.36 | 0.29 |
L-threonine | 0.15 | 0.21 | 0.19 | 0.17 |
Sodium chloride | 0.24 | 0.16 | 0.14 | 0.19 |
Sodium bicarbonate | 0.21 | 0.25 | 0.22 | 0.15 |
Monocalcium phosphate | 0.68 | 0.58 | 0.34 | 0.05 |
Limestone powder | 0.71 | 0.49 | 0.38 | 0.25 |
Vitamin–trace mineral premixes | 1.00 | 1.00 | 1.00 | 1.00 |
Antibiotic Flavomycin® (FLA) * | 150 | 150 | 150 | – |
Indicator | Age of Poultry (Days) | |||
---|---|---|---|---|
0–10 (Starter) | 11–21 (Grower) | 22–33 (Finisher 1) | 34–38 (Finisher 2) | |
Nutritional Value | ||||
Metabolic energy (kcal/100 g) | 303 | 316 | 322 | 322 |
Crude fiber (%) | 3.57 | 3.58 | 3.73 | 4.00 |
Crude protein (%) | 22.7 | 20.6 | 19.0 | 18.7 |
Lysine (%) | 1.43 | 1.34 | 1.25 | 1.13 |
Methionine (%) | 0.71 | 0.69 | 0.63 | 0.56 |
Methionine + cystine (%) | 1.06 | 1.02 | 0.94 | 0.87 |
Threonine (%) | 0.96 | 0.92 | 0.83 | 0.80 |
Tryptophan (%) | 0.28 | 0.24 | 0.21 | 0.21 |
Assimilable lysine (%) | 1.29 | 1.20 | 1.12 | 1.00 |
Assimilable methionine (%) | 0.68 | 0.65 | 0.59 | 0.52 |
Assimilable methionine + cystine (%) | 0.96 | 0.91 | 0.83 | 0.75 |
Assimilable threonine (%) | 0.83 | 0.79 | 0.70 | 0.67 |
Assimilable tryptophan (%) | 0.23 | 0.20 | 0.17 | 0.17 |
Essential extract (%) | 5.24 | 7.35 | 8.30 | 8.30 |
Linoleic acid (%) | 2.71 | 3.80 | 4.30 | 4.29 |
Calcium (%) | 1.00 | 0.96 | 0.93 | 0.85 |
Phosphorus (%) | 0.77 | 0.74 | 0.71 | 0.66 |
Phosphorus assimilable (%) | 0.50 | 0.48 | 0.45 | 0.40 |
Potassium (%) | 0.94 | 0.83 | 0.71 | 0.68 |
Sodium (%) | 0.20 | 0.20 | 0.20 | 0.20 |
Chlorine (%) | 0.28 | 0.26 | 0.27 | 0.28 |
Dietary Electrolyte Balance (meq/100 g) | 25.2 | 22.8 | 19.5 | 18.6 |
Age of Poultry | Type and Level of Growth Promoters | p-Value | |||
---|---|---|---|---|---|
FLA | SCWE 1 | SCWE 2 | SCWE 3 | ||
1 day | 48.00 ± 0.87 | 47.70 ± 0.69 | 48.00 ± 0.77 | 47.80 ± 0.80 | 0.99 |
7 days | 193.77 ± 3.38 ab | 186.95 ± 3.77 b | 196.02 ± 3.78 ab | 202.23 ± 5.34 a | 0.08 |
14 days | 518.37 ± 6.35 bc | 494.33 ± 8.32 c | 520.33 ± 6.17 b | 555.51 ± 5.42 a | 0.001 |
21 days | 1038.37 ± 14.04 b | 1030.28 ± 12.94 b | 1076.40 ± 11.05 ab | 1089.58 ± 12.67 a | 0.001 |
28 days | 1690.00 ± 22.91 | 1680.00 ± 21.98 | 1688.00 ± 21.17 | 1708.00 ± 21.06 | 0.83 |
35 days | 2317.00 ± 31.83 ab | 2268.00 ± 41.46 b | 2398.00 ± 40.98 ab | 2441.00 ± 44.00 a | 0.01 |
38 days | 2745 ± 31.17 | 2712 ± 48.14 | 2762 ± 36.88 | 2820 ± 38.30 | 0.56 |
Parameters | Type and Level of Growth Promoters | |||
---|---|---|---|---|
FLA | SCWE 1 | SCWE 2 | SCWE 3 | |
Quantity of poultry (n) | 28,891 | 28,965 | 28,853 | 30,929 |
Average live weight (1 day), g | 48.0 | 47.7 | 48.0 | 47.8 |
Average live weight (38 days), g | 2745 | 2712 | 2762 | 2820 |
Average live weight (only ♂, 38 days), g | 2494.70 a | – | – | 2635.60 b |
Average live weight (only ♀, 38 days), g | 2340.30 | – | – | 2344.86 |
Total daily live weight gain, g | 2697 | 2664.3 | 2714 | 2772.2 |
Average daily live weight gain, g | 71.0 | 70.1 | 71.4 | 73.0 |
Safety of livestock, % | 97.7 | 96.2 | 97.8 | 98.1 |
Feed costs per 1 kg of live weight gain, kg | 1.52 | 1.52 | 1.47 | 1.48 |
Meat production from 1 m2 of area, kg/m2 | 43.6 | 44.7 | 45.6 | 47.3 |
Productivity index, units | 464.3 | 451.73 | 483.6 | 491.9 |
Parameters | Type and Level of Growth Promoters | |||
---|---|---|---|---|
FLA | SCWE 1 | SCWE 2 | SCWE 3 | |
Finish weight (g) | 2691.67 ± 22.42 ab | 2636.67 ± 38.44 b | 2715.00 ± 28.43 ab | 2781.00 ± 19.35 a |
Uneviscerated poultry (g) | 2519.89 ± 27.55 bc | 2414.78 ± 26.65 c | 2561.40 ± 29.10 ab | 2643.69 ± 20.21 a |
Semieviscerated poultry (g) | 2224.97 ± 25.08 bc | 2144.64 ± 15.95 c | 2274.98 ± 24.49 ab | 2361.65 ± 28.45 a |
The weight of the eviscerated carcass (g) | 1967.26 ± 95.16 | 1947.13 ± 59.52 | 2064.03 ± 37.03 | 2197.34 ± 19.06 |
The weight of the pectoral muscles (g) | 573.75 ± 11.92 | 563.90 ± 28.89 | 608.81 ± 33.52 | 651.33 ± 63.85 |
Leg muscles mass weight (g) | 509.82 ± 4.14 ab | 461.59 ± 7.58 b | 538.79 ± 10.49 ab | 560.20 ± 35.51 a |
Parameters | Type and Level of Growth Promoters | p-Value | |||
---|---|---|---|---|---|
FLA | SCWE 1 | SCWE 2 | SCWE 3 | ||
Intake feeds (g) | 101.22 ± 4.02 | 98.72 ± 2.70 | 98.30 ± 2.41 | 98.94 ± 3.06 | 0.910 |
Dry matter (%) | 73.03 ± 0.42 ab | 72.37 ± 0.48 b | 74.41 ± 0.37 a | 74.09 ± 0.34 a | 0.010 |
Crude protein (%) | 89.92 ± 0.48 bc | 88.98 ± 0.46 c | 91.95 ± 0.42 a | 90.90 ± 0.36 ab | 0.001 |
Essential extract (%) | 84.86 ± 0.52 | 83.68 ± 0.33 | 85.43 ± 0.52 | 85.32 ± 0.47 | 0.065 |
Crude fiber (%) | 11.72 ± 0.26 ab | 10.70 ± 0.34 b | 12.11 ± 0.39 a | 11.91 ± 0.26 ab | 0.028 |
Nitrogen-Free Extractive Substances (%) | 81.38 ± 0.59 | 81.70 ± 0.72 | 82.37 ± 0.54 | 81.87 ± 0.66 | 0.738 |
Parameters | Units of Measurement | Type and Level of Growth Promoters | |||
---|---|---|---|---|---|
FLA | SCWE 1 | SCWE 2 | SCWE 3 | ||
Glucose | mmol/L | 13.6 ± 0.34 | 13.6 ± 0.44 | 13.3 ± 0.36 | 13.1 ± 0.36 |
Creatinine | umol/L | 22.2 ± 0.74 | 22.4 ± 1.11 | 22.8 ± 0.63 | 22.8 ± 0.58 |
Total protein | g/L | 33.2 ± 1.11 | 32.7 ± 0.37 | 33.5 ± 0.87 | 33.8 ± 0.97 |
Albumin | g/L | 13.0 ± 0.63 | 12.9 ± 0.62 | 12.8 ± 0.66 | 12.8 ± 0.49 |
Globulin | g/L | 20.2 ± 0.58 | 19.8 ± 0.73 | 20.7 ± 0.53 | 21.0 ± 0.55 |
Urea | mmol/L | 0.76 ± 0.040 | 0.82 ± 0.06 | 0.75 ± 0.05 | 0.74 ± 0.040 |
Uric acid | umol/L | 256.8 ± 45.89 | 273.76 ± 52.17 | 252.80 ± 44.09 | 251.0 ± 41.65 |
Cholesterol | mmol/L | 3.46 ± 0.153 | 3.34 ± 0.190 | 3.53 ± 0.200 | 3.52 ± 0.139 |
Triglycerides | mmol/L | 0.92 ± 0.102 | 0.71 ± 0.080 | 0.68 ± 0.090 | 0.65 ± 0.062 |
Total calcium | mmol/L | 2.36 ± 0.216 | 2.23 ± 0.130 | 2.54 ± 0.080 | 2.61 ± 0.043 |
Inorganic phosphorus | mmol/L | 2.87 ± 0.210 | 2.75 ± 0.190 | 2.66 ± 0.070 | 2.58 ± 0.027 |
Ca/P ratio | – | 0.85 ± 0.114 | 0.80 ± 0.150 | 0.96 ± 0.050 | 1.01 ± 0.014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaikina, A.S.; Buryakov, N.P.; Buryakova, M.A.; Zagarin, A.Y.; Razhev, A.A.; Aleshin, D.E. Impact of Supplementing Phytobiotics as a Substitute for Antibiotics in Broiler Chicken Feed on Growth Performance, Nutrient Digestibility, and Biochemical Parameters. Vet. Sci. 2022, 9, 672. https://doi.org/10.3390/vetsci9120672
Zaikina AS, Buryakov NP, Buryakova MA, Zagarin AY, Razhev AA, Aleshin DE. Impact of Supplementing Phytobiotics as a Substitute for Antibiotics in Broiler Chicken Feed on Growth Performance, Nutrient Digestibility, and Biochemical Parameters. Veterinary Sciences. 2022; 9(12):672. https://doi.org/10.3390/vetsci9120672
Chicago/Turabian StyleZaikina, Anastasiya S., Nikolai P. Buryakov, Maria A. Buryakova, Artem Yu. Zagarin, Artem A. Razhev, and Dmitrii E. Aleshin. 2022. "Impact of Supplementing Phytobiotics as a Substitute for Antibiotics in Broiler Chicken Feed on Growth Performance, Nutrient Digestibility, and Biochemical Parameters" Veterinary Sciences 9, no. 12: 672. https://doi.org/10.3390/vetsci9120672