Identification by MALDI-TOF MS and Antibiotic Resistance of Riemerella anatipestifer, Isolated from a Clinical Case in Commercial Broiler Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Selections of Cases
2.3. Post-Mortem Examination
2.4. Riemerella Anatipestifer Isolation and Identification
2.5. Sample Preparation for MALDI-TOF MS Identification: Parameters and Main Spectral Profile (MSP) Dendrogram Construction
2.6. Antibiotic Sensitivity Test
3. Results
3.1. Post-Mortem Findings
3.2. Isolation and Identification of Riemerella anatipestifer
3.3. Antibiotic Susceptibility Testing Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saif, Y.M.; Fadly, A.M.; Glisson, J.R.; McDougald, L.R.; Nolan, L.K.; Swayne, D.E. Diseases of Poultry, 12th ed.; Blackwell Publishing: Ames, IA, USA, 2008. [Google Scholar]
- Segers, P.; Mannheim, W.; Vancanneyt, M.; De Brandt, K.; Hinz, K.H.; Kersters, K.; Vandamme, P. Riemerella anatipestifer gen. nov., comb. nov., the causative agent of septicemia anserum exsudativa, and its phylogenetic affiliation within the Flavobacterium-Cytophaga rRNA homology group. Int. J. Syst. Evol. Microbiol. 1993, 43, 768–776. [Google Scholar] [CrossRef] [Green Version]
- Pathanasophon, P.; Phuektes, P.; Tanticharoenyos, T.; Narongsak, W.; Sawada, T. A potential new serotype of Riemerella anatipestifer isolated from ducks in Thailand. Avian Pathol. 2002, 31, 267–270. [Google Scholar] [CrossRef] [Green Version]
- Cooper, G.L. Pasteurella anatipestifer infections in California turkey flocks: Circumstantial evidence of a mosquito vector. Avian Dis. 1989, 33, 809–815. [Google Scholar] [CrossRef]
- Fulton, R.M.; Rimler, R.B. Epidemiologic investigation of Riemerella anatipestifer in a commercial duck company by serotyping and DNA fingerprinting. Avian Dis. 2010, 54, 969–972. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.Y.; Liu, Y.W.; Chou, S.J.; Chao, M.R.; Weng, B.C.; Tsay, J.G.; Chiu, C.H.; Wu, C.C.; Lin, T.S.; Chang, C.C.; et al. Genomic diversity and molecular differentiation of Riemerella anatipestifer associated with eight outbreaks in five farms. Avian Pathol. 2008, 37, 273–279. [Google Scholar] [CrossRef]
- Bruner, D.W.; Angstrom, C.I.; Price, J.I. Pasteurella anatipestifer infection in pheasants. A case report. Cornell. Vet. 1970, 50, 491–494. [Google Scholar]
- Karstad, L.; Lusis, P.; Long, J.R. Pasteurella anatipestifer as a cause of mortality in captive wild waterfowl. J. Wildl. Dis. 1970, 6, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Wobeser, G.A. Reimerella anatipestifer infection. In Diseases of Wild Waterfowl, 2nd ed.; Springer Science & Business Media, LLC: New York, NY, USA, 1997; pp. 78–81. [Google Scholar]
- Aviagen. ROSS 308 Broiler: Performance Objectives; Aviagen: Huntsville, AL, USA, 2014. [Google Scholar]
- Ryll, M.; Christensen, H.; Bisgaard, M.; Christensen, J.P.; Hinz, K.H.; Köhler, B. Studies on the prevalence of Riemerella anatipestifer in the upper respiratory tract of clinically healthy ducklings and characterization of untypable strains. J. Vet. Med. Ser. B 2001, 48, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Rubbenstroth, D.; Martin, R.; Hotzel, H.; Christensen, H.; Knobloch, J.; Rautenschlein, S.; Bisgaard, M. Description of Riemerella columbipharyngis sp. nov., isolated from the pharynx of healthy domestic pigeons (Columba livia f. domestica), and emended descriptions of the genus Riemerella, Riemerella anatipestifer and Riemerella columbina. Int. J. Syst. Evol. Microbiol. 2013, 63, 280–287. [Google Scholar] [CrossRef]
- Markey, B.; Leonard, F.A.; Archambault, M.; Cullinane, A.; Maguire, D. Clinical Veterinary Microbiology; Elsevier Health Sciences: Oxford, UK, 2013. [Google Scholar]
- Bastin, B.; Bird, P.; Benzinger, M.J.J.; Crowley, E.; Agin, J.; Goins, D. Confirmation and identification of Salmonella spp., Cronobacter spp., and other Gram-negative organisms by the Bruker MALDI biotyper method: Collaborative study, first action 2017.09. J. AOAC Int. 2018, 101, 1593–1609. [Google Scholar] [CrossRef]
- Bauer, A.W. Antibiotic susceptibility testing by a standardized single disc method. Am. J. Clin. Pathol. 1966, 45, 149–158. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-First Informational Supplement—CLSI Document M100-S21; Clinical & Laboratory Standards Institute: Wayne, PA, USA, 2011. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 5th ed.; CLSI Document VET01S; Clinical & Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Zhong, C.Y.; Cheng, A.C.; Wang, M.S.; Zhu, D.K.; Luo, Q.H.; Zhong, C.D.; Li, L.; Duan, Z. Antibiotic susceptibility of Riemerella anatipestifer field isolates. Avian Dis. 2009, 53, 601–607. [Google Scholar] [CrossRef]
- Gyuris, E.; Wehmann, E.; Czeibert, K.; Magyar, T. Antimicrobial susceptibility of Riemerella anatipestifer strains isolated from geese and ducks in Hungary. Acta Vet. Hung. 2017, 65, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Sauer, S.; Freiwald, A.; Maier, T.; Kube, M.; Reinhardt, R.; Kostrzewa, M.; Geider, K. Classification and Identification of bacteria by mass spectrometry and computational analysis. PLoS ONE 2008, 3, e2843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenfeld, L.E. Pasteurella anatipestifer infection in fowls in Australia. Aust. Vet. J. 1973, 49, 55–56. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Tang, Y.; Gao, J.Y.; Huang, C.H.; Ding, M.J. Riemerella anatipestifer infection in chickens. Pak. Vet. J. 2011, 31, 65–69. [Google Scholar]
- Hess, C.; Enichlmayr, H.; Jandreski-Cvetkovic, D.; Liebhart, D.; Bilic, I.; Hess, M. Riemerella anatipestifer outbreaks in commercial goose flocks and identification of isolates by MALDI-TOF mass spectrometry. Avian Pathol. 2013, 42, 151–156. [Google Scholar] [CrossRef]
- Smith, J.M.; Frame, D.D.; Cooper, G.; Bickford, A.A.; Ghazikhanian, G.Y.; Kelly, B.J. Pasteurella anatipestifer infection in commercial meat-type turkeys in California. Avian Dis. 1987, 31, 913–917. [Google Scholar] [CrossRef] [PubMed]
- Leibovitz, L. A Survey of the So-Called “Anatipestifer Syndrome”. Avian Dis. 1972, 16, 836–851. [Google Scholar] [CrossRef]
- Rubbenstroth, D.; Ryll, M.; Knobloch, J.K.M.; Köhler, B.; Rautenschlein, S. Evaluation of different diagnostic tools for the detection and identification of Riemerella anatipestifer. Avian Pathol. 2013, 42, 17–26. [Google Scholar] [CrossRef]
- Christensen, H.; Bisgaard, M. Phylogenetic relationships of Riemerella anatipestifer serovars and related taxa and an evaluation of specific PCR tests reported for R. anatipestifer. J. Appl. Microbiol. 2010, 108, 1612–1619. [Google Scholar] [CrossRef]
- Tsai, H.J.; Liu, Y.T.; Tseng, C.S.; Pan, M.J. Genetic variation of the ompA and 16S rRNA genes of Riemerella anatipestifer. Avian Pathol. 2005, 34, 55–64. [Google Scholar] [CrossRef]
- Rubbenstroth, D.; Hotzel, H.; Knobloch, J.; Teske, L.; Rautenschlein, S.; Ryll, M. Isolation and characterization of atypical Riemerella columbina strains from pigeons and their differentiation from Riemerella anatipestifer. Vet. Microbiol. 2011, 147, 103–112. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.; Zhu, D.; Yang, L.F.; Liu, M.F.; Yin, S.; Wang, M.S.; Jia, R.Y.; Chen, S.; Sun, K.F. Comparative genomics of Riemerella anatipestifer reveals genetic diversity. BMC Genom. 2014, 15, 479. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Hu, D.; Guo, J.; Wang, T.; Xiao, Y.; Wang, X.; Li, S.; Liu, M.; Li, Z.; Bi, D. Riemerella anatipestifer type IX secretion system is required for virulence and gelatinase secretion. Front. Microbiol. 2017, 8, 2553. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Shan, M.; He, J.; Wang, X.; Wang, S.; Tian, M.; Qi, J.; Luo, T.; Shi, Y.; Ding, C. Riemerella anatipestifer M949_0459 gene is responsible for the bacterial resistance to tigecycline. Oncotarget 2017, 8, 96615. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.F.; Jiang, H.X.; Xiang, R.; Na, S.; Zhang, Y.N.; Zhao, L.Q.; Peng, G.; Wang, L.Q.; Zeng, Z.L. Effects of two efflux pump inhibitors on the drug susceptibility of Riemerella anatipestifer isolates from China. J. Integr. Agric. 2016, 15, 929–933. [Google Scholar] [CrossRef]
- Yang, F.F.; Sun, Y.N.; Li, J.X.; Wang, H.; Zhao, M.J.; Su, J.; Zhang, Z.J.; Liu, H.J.; Jiang, S.J. Detection of aminoglycoside resistance genes in Riemerella anatipestifer isolated from ducks. Vet. Microbiol. 2012, 158, 451. [Google Scholar] [CrossRef] [PubMed]
- Chang, F.F.; Chen, C.C.; Wang, S.H.; Chen, C.L. Epidemiology and antibiogram of Riemerella anatipestifer isolated from waterfowl slaughterhouses in Taiwan. J. Vet. Res. 2019, 63, 79–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hornish, R.E.; Kotarski, S.F. Cephalosporins in veterinary medicine—Ceftiofur use in food animals. Curr. Top. Med. Chem. 2002, 2, 717–731. [Google Scholar] [CrossRef]
- Sun, N.; Liu, J.H.; Yang, F.; Lin, D.C.; Li, G.H.; Chen, Z.L.; Zeng, Z.L. Molecular characterization of the antimicrobial resistance of Riemerella anatipestifer isolated from ducks. Vet. Microbiol. 2012, 158, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Luo, H.Y.; Liu, M.F.; Wang, M.S.; Zhao, X.X.; Jia, R.Y.; Chen, S.; Sun, K.F.; Yang, Q.; Wu, Y.; Chen, X.Y. A novel resistance gene, lnu (H), conferring resistance to lincosamides in Riemerella anatipestifer CH-2. Int. J. Antimicrob. Agents 2018, 51, 136–139. [Google Scholar] [CrossRef]
- Turbahn, A.; De Jäckel, S.C.; Greuel, E.; De Jong, A.; Froyman, R.; Kaleta, E.F. Dose response study of enrofloxacin against Riemerella anatipestifer septicaemia in Muscovy and Pekin ducklings. Avian Pathol. 1997, 26, 791–802. [Google Scholar] [CrossRef] [PubMed]
- Soman, M.; Nair, S.R.; Mini, M.; Mani, B.K.; Joseph, S. Isolation and polymerase chain reaction-based identification of Riemerella anatipestifer from ducks in Kerala, India. Vet. World 2014, 7, 765–769. [Google Scholar] [CrossRef]
Culture Technique and Biochemical Tests | RA1 (Bird No.3- Air Sac) | RA2 (Bird No.5- Liver) | RA3 (Bird No.5- Pericardium) |
---|---|---|---|
Growth on Columbia sheep blood (CSB) agar aerobically | + | + | + |
Hemolysis on CSB agar | - | - | - |
Growth on CSB microaerophilically | + | + | + |
Growth on MacConkey agar | - | - | - |
Gram’s reaction | - | - | - |
Catalase test | + | + | + |
Oxidase test | + | + | + |
Gelatinase test | + | + | + |
MALDI-TOF MS analysis | |||
Matched pattern on the Bruker Daltonic database | R. anatipestifer GD 47 GDD | R. anatipestifer GD 47 GDD | R. anatipestifer GD 47 GDD |
Log (score) value * | 2.30 | 2.15 | 2.35 |
Interpretive Criteria: Zone Diameter (mm) | RA1 (Bird No.3- Air Sac) | RA2 (Bird No.5- Liver) | RA3 (Bird No.5- Pericardium) | |||
---|---|---|---|---|---|---|
Resistant | Intermediate | Susceptible | ||||
Amoxycillin (25 μg) | ≤18 | 19–20 | ≥21 | Sensitive | Sensitive | Sensitive |
Ampicillin (10 μg) | ≤23 | ≥24 | Resistant | Resistant | Sensitive | |
Ceftiofur (30 μg) | <18 | ≥21 | Sensitive | Sensitive | Sensitive | |
Ciprofloxacin (30 μg) | ≤15 | 16–20 | ≥21 | Sensitive | Sensitive | Intermediate |
Colistin Sulphate (10 μg) | ≤16 | 17–19 | ≥20 | Resistant | Resistant | Resistant |
Doxycycline (30 μg) | <22 | ≥23 | Resistant | Sensitive | Sensitive | |
Enrofloxacin (5 μg) | ≤16 | 17–22 | ≥23 | Resistant | Resistant | Sensitive |
Gentamicin (10 μg) | ≤12 | 13–14 | ≥15 | Resistant | Resistant | Resistant |
Lincomycin (15 μg) | <17 | ≥21 | Resistant | Resistant | Resistant | |
Neomycin (10 μg) | ≤16 | ≥17 | Resistant | Sensitive | Resistant | |
Oxytetracycline (30 μg) | <17 | ≥19 | Resistant | Resistant | Resistant | |
Penicillin G (10 μg) | ≤23 | ≥24 | Sensitive | Sensitive | Resistant | |
Spectinomycin (100 μg) | ≤15 | 16 | ≥17 | Resistant | Resistant | Resistant |
Sulphamethoxazole-Trimethoprim SΧΤ (25 μg) | ≤10 | 11–15 | ≥16 | Sensitive | Sensitive | Sensitive |
Tetracycline (30 μg) | ≤22 | ≥23 | Resistant | Resistant | Resistant | |
Tylosin (30 μg) | <14 | ≥18 | Resistant | Resistant | Resistant |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzora, A.; Skoufos, S.; Bonos, E.; Fotou, K.; Karamoutsios, A.; Nelli, A.; Giannenas, I.; Tsinas, A.; Skoufos, I. Identification by MALDI-TOF MS and Antibiotic Resistance of Riemerella anatipestifer, Isolated from a Clinical Case in Commercial Broiler Chickens. Vet. Sci. 2021, 8, 29. https://doi.org/10.3390/vetsci8020029
Tzora A, Skoufos S, Bonos E, Fotou K, Karamoutsios A, Nelli A, Giannenas I, Tsinas A, Skoufos I. Identification by MALDI-TOF MS and Antibiotic Resistance of Riemerella anatipestifer, Isolated from a Clinical Case in Commercial Broiler Chickens. Veterinary Sciences. 2021; 8(2):29. https://doi.org/10.3390/vetsci8020029
Chicago/Turabian StyleTzora, Athina, Stylianos Skoufos, Eleftherios Bonos, Konstantina Fotou, Achilleas Karamoutsios, Aikaterini Nelli, Ilias Giannenas, Anastasios Tsinas, and Ioannis Skoufos. 2021. "Identification by MALDI-TOF MS and Antibiotic Resistance of Riemerella anatipestifer, Isolated from a Clinical Case in Commercial Broiler Chickens" Veterinary Sciences 8, no. 2: 29. https://doi.org/10.3390/vetsci8020029
APA StyleTzora, A., Skoufos, S., Bonos, E., Fotou, K., Karamoutsios, A., Nelli, A., Giannenas, I., Tsinas, A., & Skoufos, I. (2021). Identification by MALDI-TOF MS and Antibiotic Resistance of Riemerella anatipestifer, Isolated from a Clinical Case in Commercial Broiler Chickens. Veterinary Sciences, 8(2), 29. https://doi.org/10.3390/vetsci8020029