Dexmedetomidine and Tear Production: Evaluation in Dogs as Spontaneous Model for Ocular Surface Disorders
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Sampling Protocol
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dartt, D.A.; Willcox, M.D.P. Complexity of the tear film: Importance in homeostasis and dysfunction during disease. Exp. Eye Res. 2013, 117, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Sherwin, J.C.; Kokavec, J.; Thornton, S.N. Hydration, fluid regulation and the eye: In health and disease. Clin. Exp. Ophthalmol. 2015. [Google Scholar] [CrossRef]
- Schey, K.L.; Wang, Z.L.; Wenke, J.; Qi, Y. Aquaporins in the eye: Expression, function, and roles in ocular disease. Biochim. Biophys. Acta 2014, 1840, 1513–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schey, K.L.; Petrova, R.; Gletten, R.B.; Donaldson, P.J. The Role of Aquaporins in Ocular Lens Homeostasis. Int. J. Mol. Sci. 2017, 18, 2693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zannetti, A.; Benga, G.; Brunetti, A.; Napolitano, F.; Avallone, L.; Pelagalli, A. Role of Aquaporins in the Physiological Functions of Mesenchymal Stem Cells. Cells 2020, 9, 2678. [Google Scholar] [CrossRef] [PubMed]
- Karasawa, K.; Tanaka, A.; Jung, K.; Matsuda, A.; Okamoto, N.; Oida, K.; Ohmori, K.; Matsuda, H. Patterns of aquaporin expression in the canine eye. Vet. J. 2011, 190, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Lamagna, B.; Ciaramella, P.; Lamagna, F.; Di Loria, A.; Brunetti, A.; Pelagalli, A. Aquaporin 1 (AQP1) expression in healthy dog tears. Animals 2020, 10, 820. [Google Scholar] [CrossRef]
- Zernii, E.Y.; Golovastova, M.O.; Baksheeva, V.E.; Kabanova, E.I.; Ishutina, I.E.; Gancharova, O.S.; Gusev, A.E.; Savchenko, M.S.; Loboda, A.P.; Sotnikova, L.F.; et al. Alterations in tear biochemistry associated with postanesthetic chronic dry eye syndrome. Biochemistry 2016, 81, 1549–1557. [Google Scholar] [CrossRef] [PubMed]
- Hodges, R.R.; Dartt, D.A. Regulatory pathways in lacrimal gland epithelium. Int. Rev. Cyt. 2003, 231, 129–196. [Google Scholar]
- Toshida, H.; Beuerman, R.W. Effects of preganglionic parasympathetic denervation on the rabbit lacrimation. Adv. Exp. Med. Biol. 2002, 506, 225–229. [Google Scholar]
- Nguyen, D.H.; Vadlamudi, V.; Toshida, H.; Beuerman, R.W. Loss of parasympathetic innervation leads to sustained expression of pro-inflammatory genes in the rat lacrimal gland. Auton. Neurosci. 2006, 124, 81–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krupin, T.; Cross, D.A.; Becker, B. Decreased basal tear production associated with general anesthesia. Arch. Ophthalmol. 1977, 95, 107–108. [Google Scholar] [CrossRef] [PubMed]
- Moos, D.D.; Lind, D.M. Detection and treatment of perioperative corneal abrasions. J. Perianesth. Nurs. 2006, 21, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Grover, V.K.; Kumar, K.V.; Sharma, S.; Sethi, N.; Grewal, S.P.S. Comparison of methods of eye production under general anaesthesia. Can. J. Anaesth. 1998, 45, 575–757. [Google Scholar] [CrossRef] [PubMed]
- White, E.; Crosse, M.M. The aetiology and prevention of peri-operative corneal abrasions. Anaesthesia 1998, 53, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Pontes, K.C.S.; Borges, A.P.B.; Eleotério, R.B.; Ferreira, P.S.; Duarte, T.S. Comparison of the effects of propofol and thiopental on tear production in dogs. Rev. Ceres 2010, 57, 757–761. [Google Scholar] [CrossRef]
- Komnenou, A.T.H.; Kazakos, G.M.; Savvas, I.; Thomas, A.L.N. Evaluation of aqueous tear production in dogs after general anaesthesia with medetomidine-propofol-carprofen-halothane. Vet. Rec. 2013, 173, 142. [Google Scholar] [CrossRef]
- Leonardi, F.; Costa, G.L.; Stagnoli, A.; Zubin, E.; Boschi, P.; Sabbioni, A.; Simonazzi, B. The effect of intramuscular dexmedetomidine-butorphanol combination on tear production in dogs. Can. Vet. J. 2019, 60, 55–59. [Google Scholar]
- Volk, H.A.; West, E.; Linn-Pearl, R.N.; Fricker, G.V.; Panti, A.; Gould, D.J. Effect of methadone and acepromazine premedication on tear production in dogs. Vet. Rec. Open 2018, 5, e000298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shepard, M.K.; Accola, P.J.; Lopez, L.A.; Shaughnessy, M.R.; Hofmeister, E.H. Effect of duration and type of anesthetic on tear production in dogs. Am. J. Vet. Res. 2011, 72, 608–612. [Google Scholar] [CrossRef]
- Mayordomo-Febrer, A.; Rubio, M.; Martínez-Gassent, M.; López-Murcia, M.M. Effects of morphine-alfaxalone-midazolam premedication, alfaxalone induction and sevoflurane maintenance on intraocular pressure and tear production in dogs. Vet. Rec. 2017, 180, 474. [Google Scholar] [CrossRef]
- Di Palma, C.; Micieli, F.; Lamagna, B.; Nieddu, A.; Uccello, V.; Fatone, G.; Vesce, G. Schirmer Tear Test Value and Corneal Lesions’ Incidence during General Anesthesia for Non-Ophthalmic Surgery in Non-Brachycephalic Dogs: A Pilot Study Comparing Three Different Lubricant Eye Drop Formulations. Vet. Sci. 2020, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Peche, N.; Köstlin, R.; Reese, S.; Pieper, K. Postanaesthetic tear production and ocular irritation in cats. Tierärztl Prax Kleintiere 2015, 43, 75–82. [Google Scholar]
- Di Pietro, S.; Macrì, F.; Bonarrigo, T.; Giudice, E.; Palumbo Piccionello, A.; Pugliese, A. Effects of a medetomidine-ketamine combination on Schirmer Tear Test I Results of clinically normal cats. Am. J. Vet. Res. 2016, 77, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Brightman, A.H.; Manning, J.P.; Benson, G.J.; Musselman, E.E. Decreased tear production associated with general anaesthesia in the horse. J. Am. Vet. Med. Assoc. 1983, 182, 243–244. [Google Scholar] [PubMed]
- Kol, A.; Arzi, B.; Athanasiou, K.A.; Farmer, D.L.; Nolta, J.A.; Rebhun, R.B.; Chen, X.; Griffiths, L.G.; Verstraete, F.J.; Murphy, C.J.; et al. Companion animals: Translational scientist’s new best friends. Sci. Transl. Med. 2015, 7, 308–321. [Google Scholar] [CrossRef] [Green Version]
- Garden, O.A.; Volk, S.W.; Mason, N.J.; Perry, J.A. Companion animals in comparative oncology: One Medicine in action. Vet. J. 2018, 240, 6–13. [Google Scholar] [CrossRef]
- Partridge, B.; Rossmeisl, J.H. Companion animal models of neurological disease. J. Neurosci. Methods 2020, 331, 108484. [Google Scholar] [CrossRef]
- Sebbag, L. An eye on the dog as a translational model for ocular pharmacology. Ph.D. Thesis, Iowa State University, Ames, IA, USA, August 2020. [Google Scholar]
- Holve, D.L.; Mundwiler, K.E.; Pritt, S.L. Incidence of spontaneous ocular lesions in laboratory rabbits. Comp. Med. 2011, 61, 436–440. [Google Scholar] [PubMed]
- Monk, C. Ocular Surface Disease in Rodents (Guinea Pigs, Mice, Rats, Chinchillas). Vet. Clin. North. Am. Exot. Anim. Pract. 2019, 22, 15–26. [Google Scholar] [CrossRef]
- Robaei, D.; Watson, S. Corneal blindness: A global problem. Clin. Exp. Ophthalmol. 2014, 42, 213–214. [Google Scholar] [CrossRef]
- Park, Y.W.; Son, W.S.; Jeong, M.B.; Seo, K.; Lee, L.Y.; Lee, I. Evaluation of risk factors for development of corneal ulcer after nonocular surgery in dogs: 14 cases (2009–2011). J. Am. Vet. Med. Assoc. 2013, 242, 1544–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackey, W.L. Pain management and sedation in children. In Nursing Care of the General Pediatric Surgical Patient; Wise, B.V., McKenna, C.J., Garvin, G., Eds.; Aspen Publishers: Gaithersburg, MD, USA, 2000; pp. 56–75. [Google Scholar]
- Tobias, J.D.; Leder, M. Procedural sedation: A review of sedative agents, monitoring, and management of complications. Saudi J. Anaesth. 2011, 5, 395–410. [Google Scholar] [CrossRef]
- Murell, J.C.; Hellebrekers, L.J. Medetomidine and dexmedetomidine: A review of cardiovascular effects and antinociceptive properties in the dog. Vet. Anaesth. Analg. 2005, 32, 117–127. [Google Scholar] [CrossRef]
- Cardoso, C.G.; Marque, D.R.C.; da Silva, T.H.M.; de Mattos, E.J. Cardiorespiratory, sedative and antinociceptive effects of dexmedetomidine alone or in combination with methadone, morphine or tramadol in dogs. Vet. Anaesth. Analg. 2014, 41, 636–643. [Google Scholar] [CrossRef]
- Ghaffari, M.S.; Malmasi, A.; Bokaie, S. Effect of acepromazine or xylazine on tear production as measured by Schirmer tear test in normal cats. Vet. Ophthalmol. 2010, 13, 1–3. [Google Scholar] [CrossRef]
- Soares, R.P.S.; Fernandes, A.P.N.L.; Botarelli, F.R.; Araújo, J.N.M.; Olímpio, J.A.; Vitor, A.F. Clinical indicators of dry eye severity nursing outcome in intensive care unit. Rev. Lat. Am. Enfermagem. 2019, 27, e3201. [Google Scholar] [CrossRef]
- Sanchez, R.F.; Mellor, D.; Mould, J. Effects of medetomidine and medetomidine-butorphanol combination on Schirmer tear test 1 readings in dogs. Vet. Ophthalmol. 2006, 9, 33–37. [Google Scholar] [CrossRef]
- Kanda, T.; Ishihara, S.; Oka, M.; Sako, K.; Sato, Y.; Maeta, N.; Tamura, K.; Furumoto, K.; Furukawa, T. Temporal effects of intramuscular administration of medetomidine hydrochloride or xylazine hydrochloride to healthy dogs on tear flow measured by use of a Schirmer tear test I. AJVR 2016, 77, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Dodam, J.R.; Branson, K.R.; Martin, D.D. Effects of intramuscular sedative and opioid combinations on tear production in dogs. Vet. Ophthalmol. 1998, 1, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Kanda, T.; Mizoguchi, Y.; Furumoto, K.; Shimizu, Y.; Maeta, N.; Furukawa, T. Effect of Intramuscular Medetomidine Administration on Tear Flow in Rats. Vet. Sci. 2020, 7, 42. [Google Scholar] [CrossRef] [Green Version]
- Lin, R.; Ansermino, J.M. Dexmedetomidine in paediatric anaesthesia. BJA Educ. 2020, 20, 348e353. [Google Scholar] [CrossRef]
- Van Best, J.A.; Benitez del Castillo, J.M.; Coulangeon, L.M. Measurement of basal tear turnover using a standardized protocol. European concerted action on ocular fluorometry. Graefe. Arch. Clin. Exp. Ophthalmol. 1995, 233, 1–7. [Google Scholar] [CrossRef]
- Sebbag, L.; Allbaugh, R.A.; Wehrman, R.F.; Uhl, L.K.; Ben-Shlomo, G.; Chen, T.; Mochel, J.P. Fluorophotometric Assessment of Tear Volume and Turnover Rate in Healthy Dogs and Cats. J. Ocul. Pharmacol. Ther. 2019, 35, 497–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whittaker, A.L.; Williams, D.L. Evaluation of Lacrimation Characteristics in Clinically Normal New Zealand White Rabbits by Using the Schirmer Tear Test I. J. Am. Assoc. Lab. Anim. Sci. 2015, 54, 783–787. [Google Scholar] [PubMed]
- Kaminer, J.; Powers, A.S.; Horn, K.G.; Hui, C.; Evinger, C. Characterizing the spontaneous blink generator: An animal model. J. Neurosci. 2011, 31, 11256–11267. [Google Scholar] [CrossRef] [Green Version]
- Winiarczyk, M.; Winiarczyk, D.; Banach, T.; Adaszek, L.; Madany, J.; Mackiewicz, J.; Pietras-Ozga, D.; Winiarczyk, S. Dog Tear Film Proteome In-Depth Analysis. PLoS ONE 2015, 10, e0144242. [Google Scholar] [CrossRef] [PubMed]
- Leonard, B.C.; Yañez-Soto, B.; Raghunathan, V.K.; Abbott, N.L.; Murphy, C.J. Species variation and spatial differences in mucin expression from corneal epithelial cells. Exp. Eye Res. 2016, 152, 43–48. [Google Scholar] [CrossRef]
- Butovich, I.A.; Lu, H.; McMahon, A.; Eule, J.C. Toward an animal model of the human tear film: Biochemical comparison of the mouse, canine, rabbit, and human meibomian lipidomes. Invest. Ophthalmol. Vis. Sci. 2012, 53, 6881–6896. [Google Scholar] [CrossRef] [PubMed]
- Stepp, M.A.; Zieske, J.D.; Trinkaus-Randall, V.; Kyne, B.M.; Pal-Ghosh, S.; Tadvalkar, G.; Pajoohesh-Ganji, A. Wounding the cornea to learn how it heals. Exp. Eye Res. 2014, 121, 178–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augusteyn, R.C.; Nankivil, D.; Mohamed, A.; Maceo, B.; Pierre, F.; Parel, J.M. Human ocular biometry. Exp. Eye Res. 2012, 102, 70–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strom, A.R.; Cortés, D.E.; Rasmussen, C.A.; Thomasy, S.M.; McIntyre, K.; Lee, S.F.; Kass, P.H.; Mannis, M.J.; Murphy, C.J. In vivo evaluation of the cornea and conjunctiva of the normal laboratory beagle using time- and Fourier-domain optical coherence tomography and ultrasound pachymetry. Vet. Ophthalmol. 2016, 19, 50–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, D.; Iliev, M.E.; Frueh, B.E.; Goldblum, D. In vivo pachymetry in normal eyes of rats, mice and rabbits with the optical low coherence reflectometer. Vis. Res. 2003, 43, 723–728. [Google Scholar] [CrossRef] [Green Version]
- Sebbag, L.; Allbaugh, R.A.; Weaver, A.; Seo, Y.J.; Mochel, J.P. Histamine-Induced Conjunctivitis and Breakdown of BloodTear Barrier in Dogs: A Model for Ocular Pharmacology and Therapeutics. Front. Pharmacol. 2019, 10, 752. [Google Scholar] [CrossRef] [PubMed]
- Gronkiewicz, K.M.; Giuliano, E.A.; Kuroki, K.; Bunyak, F.; Sharma, A.; Teixeira, L.B.C.; Hamm, C.W.; Mohan, R.R. Development of a novel in vivo corneal fibrosis model in the dog. Exp. Eye Res. 2016, 143, 75–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proietto, L.R.; Whitley, R.D.; Brooks, D.E.; Schultz, G.E.; Gibson, D.J.; Berkowski, W.M.; Salute, M.E.; Plummer, C.E. Development and Assessment of a Novel Canine Ex Vivo Corneal Model. Curr. Eye Res. 2017, 42, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Berkowski, W.M.; Gibson, D.J.; Seo, S.; Proietto, L.R.; Whitley, R.D.; Schultz, G.S.; Plummer, C.E. Assessment of Topical Therapies for Improving the Optical Clarity Following Stromal Wounding in a Novel Ex Vivo Canine Cornea Model. Invest. Ophthalmol. Vis. Sci. 2018, 59, 5509–5521. [Google Scholar] [CrossRef]
Data Points | ||||||
---|---|---|---|---|---|---|
T0 | T20 | T1 | T2 | T4 | T8 | |
Mean ± SD | 21.63 ± 1.43 | 13.63 ± 1.43 | 14.52 ± 1.37 | 15.38 ± 1.41 | 17.35 ± 1.69 | 20.70 ± 1.89 |
T0 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | NS | |
T20 | 0.0001 | NS | 0.001 | 0.0001 | 0.0001 | |
T1 | 0.0001 | NS | NS | 0.0001 | 0.0001 | |
T2 | 0.0001 | 0.001 | NS | 0.001 | 0.0001 | |
T4 | 0.0001 | 0.0001 | 0.0001 | 0.001 | 0.0001 | |
T8 | NS | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Pietro, S.; Giannetto, C.; Falcone, A.; Piccione, G.; Congiu, F.; Staffieri, F.; Giudice, E. Dexmedetomidine and Tear Production: Evaluation in Dogs as Spontaneous Model for Ocular Surface Disorders. Vet. Sci. 2021, 8, 28. https://doi.org/10.3390/vetsci8020028
Di Pietro S, Giannetto C, Falcone A, Piccione G, Congiu F, Staffieri F, Giudice E. Dexmedetomidine and Tear Production: Evaluation in Dogs as Spontaneous Model for Ocular Surface Disorders. Veterinary Sciences. 2021; 8(2):28. https://doi.org/10.3390/vetsci8020028
Chicago/Turabian StyleDi Pietro, Simona, Claudia Giannetto, Annastella Falcone, Giuseppe Piccione, Fulvio Congiu, Francesco Staffieri, and Elisabetta Giudice. 2021. "Dexmedetomidine and Tear Production: Evaluation in Dogs as Spontaneous Model for Ocular Surface Disorders" Veterinary Sciences 8, no. 2: 28. https://doi.org/10.3390/vetsci8020028
APA StyleDi Pietro, S., Giannetto, C., Falcone, A., Piccione, G., Congiu, F., Staffieri, F., & Giudice, E. (2021). Dexmedetomidine and Tear Production: Evaluation in Dogs as Spontaneous Model for Ocular Surface Disorders. Veterinary Sciences, 8(2), 28. https://doi.org/10.3390/vetsci8020028