Antimicrobial Resistance Profiles and Characterization of Escherichia coli Strains from Cases of Neonatal Diarrhea in Spanish Pig Farms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbiological Testing
2.2. Characterization of E. coli Virulence Factors and Toxins
2.3. Antimicrobial Resistance Phenotyping Analyses
2.4. Genetic Characterization of Antimicrobial Resistance Genes
2.5. Statistical Analysis
3. Results
3.1. Microbiological Identification and Characterization of E. coli Isolates
3.2. Antimicrobial Resistance Phenotyping and Genotyping
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fairbrother, J.M.; Nadeau, E. Colibacillosis. In Diseases of Swine, 11th ed.; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Zhang, J., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 807–835. [Google Scholar]
- DebRoy, C.; Maddox, C.W. Identification of virulence attributes of gastrointestinal Escherichia coli isolates of veterinary significance. Anim. Health Res. Rev. 2001, 2, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Mainil, J. Escherichia coli virulence factors. Vet. Immunopathol. 2013, 152, 2–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robins-Browne, R.M.; Holt, K.E.; Ingle, D.J.; Hocking, D.M.; Yang, J.; Tauschek, M. Are Escherichia coli pathotypes still relevant in the era of whole-genome sequencing? Front. Cell. Infect. Microbiol. 2016, 6, 141. [Google Scholar] [CrossRef] [Green Version]
- Angulo, F.J.; Nargund, V.N.; Chiller, T.C. Evidence of an association between use of anti-microbial agents in food animals and anti-microbial resistance among bacteria isolated from humans and the human health consequences of such resistance. J. Vet. Med. B Infect. Dis. Vet. Public Health 2004, 51, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Burow, E.; Simoneit, C.; Tenhagen, B.A.; Käsbohrer, A. Oral antimicrobials increase antimicrobial resistance. Prev. Vet. Med. 2014, 113, 364–375. [Google Scholar] [CrossRef] [PubMed]
- Livermore, D.M.; Canton, R.; Gniadkowski, M.; Nordmann, P.; Rossolini, G.M.; Arlet, G.; Ayala, J.; Coque, T.M.; Kern-Zdanowicz, I.; Luzzaro, F.; et al. CTX-M: Changing the face of ESBL in Europe. J. Antimicrob. Chemother. 2007, 59, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Carattoli, A.; Villa, L.; Feudi, C.; Curcio, L.; Orsini, S.; Luppi, A.; Pezzoti, G.; Magistrali, C.F. Novel plasmid-mediated mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill. 2017, 22, 30589. [Google Scholar] [CrossRef] [Green Version]
- Kibret, M.; Abera, B. Antimicrobial susceptibility patterns of E. coli from clinical sources in northeast Ethiopia. Afr. Health Sci. 2011, 11, 40–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacoby, G.A. β-Lactamase Nomenclature. Antimicrob. Agents Chemother. 2006, 50, 1123–1129. [Google Scholar] [CrossRef] [Green Version]
- Randall, L.P.; Lemma, F.; Rogers, J.P.; Cheney, T.E.A.; Powell, L.F.; Teale, C.J. Prevalence of extended-spectrum-β-lactamase-producing Escherichia coli from pigs at slaughter in the UK in 2013. J. Antimicrob. Chemother. 2014, 69, 2947–2950. [Google Scholar] [CrossRef] [Green Version]
- Hasman, H.; Mevius, D.; Veldman, K.; Olesen, I.; Aarestrup, F.M. β-Lactamases among extended-spectrum β-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in The Netherlands. J. Antimicrob. Chemother. 2005, 56, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Rhouma, M.; Beaudry, F.; Thériault, W.; Letellier, A. Colistin in pig production: Chemistry, mechanisms of antibacterial action, microbial resistance emergence and one health perspectives. Front. Microbiol. 2016, 7, 1789. [Google Scholar] [CrossRef] [PubMed]
- Boyen, F.; Vangroenweghe, F.; Butaye, P.; De Graef, E.; Castryck, F.; Heylen, P.; Vanrobaeys, M.; Haesebrouck, F. Disk prediffusion is a reliable method for testing colistin susceptibility in porcine E. coli strains. Vet. Microbiol. 2010, 144, 359–362. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, S.; Johnson, A.P. Transferable resistance to colistin: A new but old threat. J. Antimicrob. Chemother. 2016, 71, 2066–2070. [Google Scholar] [CrossRef]
- EMA. Updated Advice on the Use of Colistin Products in Animals within the European Union: Development of Resistance and Possible Impact on Human and Animal Health; EMA/CVMP/CHMP/231573/2016; European Medicines Agency: London, UK, 2016. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/updated-advice-use-colistin-products-animals-within-european-union-development-resistance-possible_en-0.pdf (accessed on 20 April 2020).
- Chan, G.; Farzan, A.; DeLay, J.; McEwen, B.; Prescott, J.F.; Friendship, R.M. A retrospective study on the etiological diagnoses of diarrhea in neonatal piglets in Ontario, Canada, between 2001 and 2010. Can. J. Vet. Res. 2013, 77, 254–260. [Google Scholar]
- Kongsted, H.; Pedersen, K.; Hjulsager, C.K.; Larsen, L.E.; Pedersen, K.S.; Jorsal, E.J.; Baekbo, P. Diarrhoea in neonatal piglets: A case control study on microbiological findings. Porc. Health Manag. 2018, 4, 17. [Google Scholar] [CrossRef]
- Vidal, A.; Martín-Valls, G.E.; Tello, M.; Mateu, E.; Martín, M.; Darwich, L. Prevalence of enteric pathogens in diarrheic and non-diarrheic samples from pig farms with neonatal diarrhea in the North East of Spain. Vet. Microbiol. 2019, 237, 108419. [Google Scholar] [CrossRef]
- Toledo, A.; Gómez, D.; Cruz, C.; Carreón, R.; López, J.; Giono, S.; Castro, A.M. Prevalence of virulence genes in Escherichia coli strains isolated from piglets in the suckling and weaning period in Mexico. J. Med. Microbiol. 2012, 61 Pt 1, 148–156. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 29th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; CLSI Supplement VET08; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- EUCAST. MIC and Zone Distributions and ECOFFs. Available online: http://www.eucast.org/mic_distributions_and_ecoffs/ (accessed on 16 March 2020).
- CA-SFM (Comité de L’Antibiogramme de la Société Française de Microbiologie). Recommandations Vétérinaires 2019. Available online: https://www.sfm-microbiologie.org/?s=CASFM_VET2019 (accessed on 14 April 2020).
- Darwich, L.; Vidal, A.; Seminati, C.; Albamonte, A.; Casado, A.; López, F.; Molina-López, R.; Migura-Garcia, L. High prevalence and diversity of extended-spectrum β-lactamase and emergence of OXA-48 producing Enterobacterales in wildlife in Catalonia. PLoS ONE 2019, 14, e0210686. [Google Scholar] [CrossRef] [Green Version]
- Martins, M.F.; Martinez-Rossi, N.M.; Ferreira, A.; Brocchi, M.; Yano, T.; Castro, A.F.; Silveira, W.D. Pathogenic characteristics of Escherichia coli strains isolated from newborn piglets with diarrhea in Brazil. Vet. Microbiol. 2000, 76, 51–59. [Google Scholar] [CrossRef]
- Ngeleka, M.; Pritchard, J.; Appleyard, G.; Middleton, D.M.; Fairbrother, J.M. Isolation and association of Escherichia coli AIDA-I/STb, rather than EAST1 pathotype, with diarrhea in piglets and antibiotic sensitivity of isolates. J. Vet. Diagn. Investig. 2003, 15, 242–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vu-Khac, H.; Holoda, E.; Pilipcinec, E.; Blanco, M.; Blanco, J.E.; Dahbi, G.; Mora, A.; López, C.; González, E.A.; Blanco, J. Serotypes, virulence genes, intimin types and PFGE profiles of Escherichia coli isolated from piglets with diarrhea in Slovakia. Vet. J. 2007, 174, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Savarino, S.J.; McVeigh, A.; Watson, J.; Cravioto, A.; Molina, J.; Echeverria, P.; Bhan, M.K.; Levine, M.M.; Fasano, A. Enteroaggregative Escherichia coli heat-stable enterotoxin is not restricted to enteroaggregative E. coli. J. Infect. Dis. 1996, 173, 1019–1022. [Google Scholar] [CrossRef] [Green Version]
- Ruan, X.; Crupper, S.S.; Schultz, B.D.; Robertson, D.C.; Zhang, Z. Escherichia coli expressing EAST1 toxin did not cause an increase of cAMP or cGMP levels in cells, and no diarrhea in 5-day old gnotobiotic piglets. PLoS ONE 2012, 7, e43203. [Google Scholar] [CrossRef]
- Zajacova, Z.S.; Faldyna, M.; Kulich, P.; Kummer, V.; Maskova, J.; Alexa, P. Experimental infection of gnotobiotic piglets with Escherichia coli strains positive for EAST1 and AIDA. Vet. Immunol. Immunopathol. 2013, 152, 176–182. [Google Scholar] [CrossRef]
- Mateu, E.; Martín, M. Antimicrobial resistance in enteric porcine Escherichia coli strains in Spain. Vet. Rec. 2000, 146, 703–705. [Google Scholar] [CrossRef]
- Sáenz, Y.; Zarazaga, M.; Briñas, L.; Lantero, M.; Ruiz-Larrea, F.; Torres, C. Antibiotic resistance in Escherichia coli isolates obtained from animals, foods and humans in Spain. Int. J. Antimicrob. Agents 2001, 18, 353–358. [Google Scholar] [CrossRef]
- Gibbons, J.F.; Boland, F.; Egan, J.; Fanning, S.; Markey, B.K.; Leonard, F.C. Antimicrobial resistance of faecal Escherichia coli isolates from pig farms with different durations of In-feed antimicrobials use. Zoonoses Public Health 2016, 63, 241–250. [Google Scholar] [CrossRef]
- Boerlin, P.; Travis, R.; Gyles, C.L.; Reid-Smith, R.; Janecko, N.; Lim, H.; Nicholson, V.; McEwen, S.A.; Friendship, R.; Archambault, M. Antimicrobial resistance and virulence genes of Escherichia coli isolates from swine in Ontario. Appl. Environ. Microbiol. 2005, 71, 6753–6761. [Google Scholar] [CrossRef] [Green Version]
- Rosager, W.N.; Peter, N.J.; Erik Lind, J.S.; Svend, H.; Matthew, D.; Steen, P.K. Comparison of antimicrobial resistance in E. coli isolated from rectal and floor samples in pens with diarrhoeic nursery pigs in Denmark. Prev. Vet. Med. 2017, 147, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.H.; Lee, H.J.; Park, K.S.; Suh, J.T. Molecular characteristics of extended spectrum β-lactamases in Escherichia coli and Klebsiella pneumoniae and the prevalence of qnr in extended spectrum β-lactamase isolates in a tertiary care hospital in Korea. Yonsei Med. J. 2010, 51, 768–774. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; He, T.; Han, J.; Wang, J.; Foley, S.L.; Yang, G.; Wan, S.; Shen, J.; Wu, C. Prevalence of ESBLs and PMQR genes in fecal Escherichia coli isolated from the non-human primates in six zoos in China. Vet. Microbiol. 2012, 159, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.E.; Sun, J.; Li, L.; Deng, H.; Liu, B.T.; Fang, L.X.; Liao, X.P.; Liu, Y.H. IncF plasmid diversity in multi-drug resistant Escherichia coli strains from animals in China. Front. Microbiol. 2015, 6, 964. [Google Scholar] [CrossRef] [PubMed]
- Azargun, R.; Sadeghi, M.R.; Soroush Barhaghi, M.H.; Samadi Kafil, H.; Yeganeh, F.; Ahangar Oskouee, M.; Ghotaslou, R. The prevalence of plasmid-mediated quinolone resistance and ESBL-production in Enterobacteriaceae isolated from urinary tract infections. Infect. Drug Resist. 2018, 11, 1007–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carattoli, A. Animal reservoirs for extended spectrum β-lactamase producers. Clin. Microbiol. Infect. 2008, 1, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Zeng, Z.; Chen, S.; Liu, Y.; Yao, Q.; Deng, Y.; Chen, X.; Lv, L.; Zhuo, C.; Chen, Z.; et al. Prevalence and characterisation of CTX-M β-lactamases amongst Escherichia coli isolates from healthy food animals in China. Int. J. Antimicrob. Agents 2012, 39, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Landman, D.; Georgescu, C.; Martin, A.; Quale, J. Polymyxins revisited. Clin. Microbiol. Rev. 2008, 21, 449–465. [Google Scholar] [CrossRef] [Green Version]
- Wasyl, D.; Hoszowski, A.; Zajac, M.; Szulowski, K. Antimicrobial resistance in commensal Escherichia coli isolated from animals at slaughter. Front. Microbiol. 2013, 4, 221. [Google Scholar] [CrossRef] [Green Version]
- Perrin-Guyomard, A.; Bruneau, M.; Houée, P.; Deleurme, K.; Legrandois, P.; Poirier, C.; Soumet, C.; Sanders, P. Prevalence of mcr-1 in commensal Escherichia coli from French livestock, 2007 to 2014. Euro Surveill. 2016, 21, 30135. [Google Scholar] [CrossRef]
- Irrgang, A.; Roschanski, N.; Tenhagen, B.A.; Grobbel, M.; Skladnikiewicz-Zierner, T.; Thomas, K.; Roesler, U.; Käsbohrer, A. Prevalence of mcr-1 in E. coli from livestock and food in Germany, 2010–2015. PLoS ONE 2016, 11, e0159863. [Google Scholar] [CrossRef]
- Stannarius, C.; Bürgi, E.; Regula, G.; Zychowska, M.A.; Zweifel, C.; Stephan, R. Antimicrobial resistance in Escherichia coli strains isolated from Swiss weaned pigs and sows. Schweiz. Arch. Tierheilkd. 2009, 151, 119–125. [Google Scholar] [CrossRef] [Green Version]
- García, V.; García-Meniño, I.; Mora, A.; Flament-Simon, S.C.; Díaz-Jiménez, D.; Blanco, J.E.; Alonso, M.P.; Blanco, J. Co-occurence of mcr-1, mcr-4 and mcr-5 genes in multidrug-resistant ST10 enterotoxigenic and Shiga toxin-producing Escherichia coli in Spain (2006–2017). Int. J. Antimicrob. Agents 2018, 52, 104–108. [Google Scholar] [CrossRef]
- Roschanski, N.; Falgenhauer, L.; Grobbel, M.; Guenther, S.; Kreienbrock, L.; Imirzalioglu, C.; Roesler, U. Retrospective survey of mcr-1 and mcr-2 in German pig-fattening farms, 2011–2012. Int. J. Antimicrob. Agents 2017, 50, 266–271. [Google Scholar] [CrossRef]
- Xavier, B.B.; Lammens, C.; Ruhal, R.; Kumar-Singh, S.; Butaye, P.; Goossens, H.; Malhotra-Kumar, S. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveill. 2016, 21, 30280. [Google Scholar] [CrossRef]
- Delannoy, S.; Le Devendec, L.; Jouy, E.; Fach, P.; Drider, D.; Kempf, I. Characterization of colistin-resistant Escherichia coli isolated from diseased pigs in France. Front. Microbiol. 2017, 8, 2278. [Google Scholar] [CrossRef] [Green Version]
- Duggett, N.A.; Randall, L.P.; Horton, R.A.; Lemma, F.; Kirchner, M.; Nunez-Garcia, J.; Brena, C.; Williamson, S.M.; Teale, C.; Anjum, M.F. Molecular epidemiology of isolates with multiple mcr plasmids from a pig farm in Great Britain: The effects of colistin withdrawal in the short and long term. J. Antimicrob. Chemother. 2018, 73, 3025–3033. [Google Scholar] [CrossRef] [Green Version]
- Morales, A.S.; Fragoso de Araújo, J.; de Moura Gomes, V.T.; Reis Costa, A.T.; dos Prazeres Rodrigues, D.; Porfida Ferreira, T.S.; de Lima Filsner, P.H.; Felizardo, M.R.; Micke Moreno, A. Colistin resistance in Escherichia coli and Salmonella enterica strains isolated from swine in Brazil. Sci. World J. 2012, 2012, 109795. [Google Scholar] [CrossRef] [Green Version]
Antibiotic a | Concentration (µg/mg) (Brand, Country) | Breakpoint (mm) | Reference b | |
---|---|---|---|---|
S | R | |||
Amoxicillin (AMX) | 25 (BD, USA) | ≥17 | ≤13 | CLSI M100; human [21] |
Amoxicillin/clavulanic (AXC) | 20/10 (Oxoid, UK) | ≥18 | ≤13 | CLSI M100; human [21] |
Ampicillin (AMP) | 10 (BD, USA) | ≥17 | ≤13 | CLSI VET08; dog [22] |
Ceftiofur (CEFT) | 30 (BD, USA) | ≥21 | ≤17 | CLSI VET08; cattle E. coli and swine Salmonella Cholerasuis [22] |
Cephalexin (CFL) | 30 (Oxoid, UK) | ≥18 | ≤14 | CLSI VET08; dog [22] |
Cefquinome (CFQ) | 10 (Conda Lab, Spain) | ≥21 | ≤17 | CLSI VET08 [22] |
Ceftriaxone (CFX) | 30 (BD, USA) | ≥21 | ≤13 | CLSI VET08 [22] |
Ciprofloxacin (CIP) | 5 (BD, USA | ≥21 | ≤15 | CLSI M100; human [21] |
Enrofloxacin (ENR) | 5 (BD, USA) | ≥23 | ≤16 | CLSI VET08; dog, cat and poultry [22] |
Flumequine (FLU) | 30 (BD, USA) | ≥25 | <21 | EUCAST [23] |
Gentamicin (GEN) | 10 (BD, USA) | ≥16 | ≤12 | CLSI VET08: dog, horse [22] |
Neomycin (NEO) | 30 (BD, USA) | ≥17 | ≤12 | CLSI VET08 [22] |
Streptomycin (STR) | 10 (BD, USA) | ≥15 | ≤11 | CLSI M100; human [21] |
Apramycin (APR) | 15 (Oxoid, UK) | ≥15 | ≤10 | CLSI VET08 [22] |
Tetracycline (TET) | 30 (BD, USA) | ≥15 | ≤11 | CLSI M100; human [21] |
Doxycycline (DOX) | 30 (Oxoid, UK) | ≥16 | ≤12 | CLSI VET08; horse [22] |
Sulfonamide (SULF) | 300 (Oxoid, UK) | ≥17 | ≤12 | EUCAST [23] |
Sulfamethoxazole/trimethoprim (SXT) | 23.75 + 1.25 (BD, USA) | ≥16 | ≤10 | CLSI VET08 [22] |
Florfenicol (FF) | 30 (Oxoid, UK) | ≥22 | ≤18 | CLSI VET08; swine [22] |
Colistin (CLT) | 50 (BD, USA) | ≥18 | <15 | CA-SFM, veterinary c [24] |
Lincospectin (LS) | 2 (Oxoid, UK) | ≥20 | ≤16 | EUCAST [23] |
Virulence Factors/Toxins 1 | Diarrheic n = 94 | Non-Diarrheic n = 28 |
---|---|---|
n (%) | n (%) | |
LT | 2 (2.1) | 0 |
Sta | 4 (4.3) | 0 |
Stb | 12 (12.8) | 1 (3.5) |
EAST1 | 66 (70.2) | 24 (85.7) |
VT1 | 1 (1.1) | 0 |
VT2 | 3 (3.2) | 0 |
F4 | 4 (4.3) | 0 |
F5 | 0 | 0 |
F6 | 0 | 0 |
F18 | 1 (1.1) | 1 (3.5) |
F41 | 3 (3.2) | 1 (3.5) |
eae | 11 (11.8) | 6 (21.4) |
Pathotype 1 | Diarrheic (n = 94) | Non-Diarrheic (n = 28) | Total (n = 122) |
---|---|---|---|
ETEC (n = 11) | |||
Stb+, EAST1+ | 6 | 1 | 7 |
Stb+, EAST1+, Sta+ | 1 | 0 | 1 |
Stb+, EAST1+, Sta+, F4+ | 2 | 0 | 2 |
LT+ | 1 | 0 | 1 |
LT+, EAST1+ Total n (%) | 1 11 (11.7%) | 0 1 (3.5%) | 1 12 (9.8%) |
ETEC/EPEC (n = 1) | |||
Stb+, eae+, EAST1+, F41+ Total n (%) | 1 1 (1.1%) | 0 0 | 1 1 (0.8) |
EPEC (n = 16) | |||
eae+ | 1 | 0 | 1 |
eae+, EAST1+ | 7 | 5 | 12 |
eae+, EAST1+, F41+ | 1 | 1 | 2 |
eae+, EAST1+, F18+ Total n (%) | 1 10 (10.6%) | 0 6 (21%) | 1 16 (13.1%) |
VTEC (n = 1) | |||
VT1+ Total n (%) | 1 1 (1.1%) | 0 0 | 1 1 (0.8) |
VTEC/ETEC (n = 3) | |||
Stb+, VT2+ | 1 | 0 | 1 |
Stb+, VT2+, EAST1+ | 1 | 0 | 1 |
Stb+, VT2+, EAST1+, Sta+, F4+ Total n (%) | 1 3 (3.2%) | 0 0 | 1 3 (2.5%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidal, A.; Aguirre, L.; Seminati, C.; Tello, M.; Redondo, N.; Martín, M.; Darwich, L. Antimicrobial Resistance Profiles and Characterization of Escherichia coli Strains from Cases of Neonatal Diarrhea in Spanish Pig Farms. Vet. Sci. 2020, 7, 48. https://doi.org/10.3390/vetsci7020048
Vidal A, Aguirre L, Seminati C, Tello M, Redondo N, Martín M, Darwich L. Antimicrobial Resistance Profiles and Characterization of Escherichia coli Strains from Cases of Neonatal Diarrhea in Spanish Pig Farms. Veterinary Sciences. 2020; 7(2):48. https://doi.org/10.3390/vetsci7020048
Chicago/Turabian StyleVidal, Anna, Laia Aguirre, Chiara Seminati, Montse Tello, Noelia Redondo, Marga Martín, and Laila Darwich. 2020. "Antimicrobial Resistance Profiles and Characterization of Escherichia coli Strains from Cases of Neonatal Diarrhea in Spanish Pig Farms" Veterinary Sciences 7, no. 2: 48. https://doi.org/10.3390/vetsci7020048
APA StyleVidal, A., Aguirre, L., Seminati, C., Tello, M., Redondo, N., Martín, M., & Darwich, L. (2020). Antimicrobial Resistance Profiles and Characterization of Escherichia coli Strains from Cases of Neonatal Diarrhea in Spanish Pig Farms. Veterinary Sciences, 7(2), 48. https://doi.org/10.3390/vetsci7020048