Atypical Multibacterial Granulomatous Myositis in a Horse: First Report in Italy
Abstract
:1. Introduction
2. Case Description
3. Discussion
4. Conclusions
Accession Number
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DNA | Deoxyribonucleic acid |
CL | Caseous lymphadenitis |
CMNR | Corynebacterium, Mycobacterium, Nocardia, and Rhodococcus group |
C.N.A.M. | Colistin nalidixic acid modified |
HCCA | α-cyano-4-hydroxycinnamic acid |
HE | Hematoxylin-eosin |
PCR | Polymerase chain reaction |
IZS | Experimental Zooprophylactic Institute |
IU | International unit |
MALDI-TOF MS | Matrix-assisted laser desorption/ionization time-of-flight Mass Spectrometry |
PAS | Periodic acid—Schiff |
QH | Quarter Horse |
rRNA | Ribosomal ribonucleic Acid |
References
- Freestone, F.J.; Carlson, G.R. Muscle disorders in the horse: A retrospective study. Equine Vet. J. 1991, 23, 86–90. [Google Scholar] [CrossRef]
- Prieto-González, S.; Grau, J.M. Diagnosis and classification of granulomatous myositis. Autoimmun. Rev. 2014, 13, 372–374. [Google Scholar] [CrossRef]
- Crum-Cianflone, N.F. Bacterial, fungal, parasitic, and viral myositis. Clin. Microbiol. Rev. 2008, 21, 473–494. [Google Scholar] [CrossRef] [Green Version]
- Valentine, B.A. Pathologic findings in equine muscle (excluding polysaccharide storage): A necropsy study. J. Vet. Diagn. Investig. 2008, 20, 572–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorella, A.F.; Pacheco Carvalho, L.G.; Oliveira, S.C.; Miyoshi, A.; Azevedo, V. Corynebacterium pseudotuberculosis: Microbiology, biochemical properties, pathogenesis and molecular studies of virulence. Vet. Res. 2006, 37, 201–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobrinho Santos, E.M.; Otacílio Santos, H.; Rodrigues Cangussu, A.; Souza Costa, K.; dos Santos Dias, I. Antigens of Corynebacterium pseudotuberculosis with promising potential for caseous lymphadenitis vaccine development: A literature review. Cad. Ciênc. Agrá. 2016, 8, 90–99. [Google Scholar]
- Williamson, L.H. Caseous lymphadenitis in small ruminants. Vet. Clin. North Am. Food Anim. Pract. 2001, 17, 359–371. [Google Scholar] [CrossRef]
- Paton, M.W.; Walker, S.B.; Rose, I.R.; Watt, G.F. Prevalence of caseous lymphadenitis and usage of caseous lymphadenitis vaccines in sheep flocks. Aust. Vet. J. 2003, 81, 91–95. [Google Scholar] [CrossRef]
- Foley, J.E.; Spier, S.J.; Mihalyi, J.; Drazenovich, N.; Leutenegger, C.M. Molecular epidemiologic features of Corynebacterium pseudotuberculosis isolated from horses. Am. J. Vet. Res. 2004, 65, 1734–1737. [Google Scholar] [CrossRef]
- Seyffert, N.; Guimarães, A.S.; Pacheco, L.G.; Portela, R.W.; Bastos, B.L.; Dorella, A.F.; Heinemann, M.B.; Lage, A.P.; Gouveia, A.M.G.; Meyer, R.; et al. High seroprevalence of caseous lymphadenitis in Brazilian goat herds revealed by Corynebacterium pseudotuberculosis secreted proteins-based ELISA. Res. Vet. Sci. 2010, 88, 50–55. [Google Scholar] [CrossRef]
- Kumar, J.; Singh, F.; Tripathi, B.N.; Kumar, R.; Dixit, S.K.; Sonawane, G.G. Epidemiological, bacteriological and molecular studies on caseous lymphadenitis in Sirohi goats of Rajasthan, India. Trop. Anim. Health Prod. 2012, 44, 1319–1322. [Google Scholar] [CrossRef] [PubMed]
- Peel, M.M.; Palmer, G.G.; Stacpoole, A.M.; Kerr, T.G. Human lymphadenitis due to Corynebacterium pseudotuberculosis: Report of ten cases from Australia and review. Clin Infect. Dis. 1997, 24, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Selim, A.S. Oedematous skin disease of buffalo in Egypt. J. Vet. Med. B. Infect. Dis. Vet. Public Health. 2001, 48, 241–258. [Google Scholar] [CrossRef] [PubMed]
- Yeruham, I.; Friedman, S.; Perl, S.; Elad, D.; Berkovich, Y.; Kalgard, Y. A herd level analysis of a Corynebacterium pseudotuberculosis outbreak in a dairy cattle herd. Vet. Dermatol. 2004, 15, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Trost, E.; Ott, L.; Schneider, J.; Schröder, J.; Jaenicke, S.; Goesmann, A.; Husemann, P.; Stoye, J.; Dorella, F.A.; Souza Rocha, F.; et al. The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence. BMC Genom. 2010, 11, 728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, R.; Smith, J.; Locke, S.; Phillips, E.; Erol, E.; Carter, C.; Odoi, A. An epidemiologic study of antimicrobial resistance of Staphylococcus species isolated from equine samples submitted to a diagnostic laboratory. BMC Vet. Res. 2018, 14, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascual, C.; Lawson, P.A.; Farrow, J.A.; Gimenez, M.N.; Collins, M.D. Phylogenetic analysis of the genus Corynebacterium based on 16S rRNA gene sequences. Int. J. Syst. Evol. Bacteriol. 1995, 45, 724–728. [Google Scholar] [CrossRef] [PubMed]
- Hutson, R.A.; Thompson, D.E.; Collins, M.D. Genetic interrelationships of saccharolytic Clostridium botulinum types B, E and F and related clostridia as revealed by small-subunit rRNA gene sequences. FEMS Microbiol. Lett. 1993, 108, 103–110. [Google Scholar] [CrossRef]
- Lanteri, G.; Macrì, F.; Rapisarda, G.; Basile, F.; Reale, S.; Marino, F. Systemic candidiasis in farm-reared red-legged partridges (Alectoris rufa) caused by Leucosporidium spp. BMC Vet. Res. 2012, 8, 81. [Google Scholar] [CrossRef] [Green Version]
- Markey, B.; Leonard, F.; Archambault, M.; Cullinane, A.; Maguire, D. Clinical Veterinary Microbiology, 2nd ed.; Mosby Ltd.: Philadelphia, PA, USA, 2013. [Google Scholar]
- Hudzicki, J. Kirby-bauer disk diffusion susceptibility test protocol. Am. Soc. Microbiol. 2009, 1, 1–23. [Google Scholar]
- National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Susceptibility Testing for Bacteria Isolated from Animals VET06 ED:1; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016. [Google Scholar]
- Pacheco, L.G.C.; Pena, R.R.; Castro, T.L.P.; Dorella, F.A.; Bahia, R.C.; Carminati, R.; Frota, M.N.L.; Oliveira, S.C.; Meyer, R.; Alves, F.S.F.; et al. Multiplex PCR assay for identification of Corynebacterium pseudotuberculosis from pure cultures and for rapid detection of this pathogen in clinical samples. J. Med. Microbiol. 2007, 56, 480–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, S.; Dorneles, E.M.S.; Diniz, C.; Abreu, V.; Sousa, C.; Alves, J.; Carneiro, A.; Bagano, P.; Spier, S.J.; Barh, D.; et al. Quadruplex PCR assay for identification of Corynebacterium pseudotuberculosis differentiating biovar Ovis and Equi. BMC Vet. Res. 2017, 13, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assis, G.B.N.; Pereira, F.L.; Zegarra, A.U.; Tavares, G.C.; Leal, C.A.; Figueiredo, H.C.P. Use of MALDI-TOF Mass Spectrometry for the Fast Identification of Gram-Positive Fish Pathogens. Front. Microbiol. 2017, 8, 1492. [Google Scholar] [CrossRef] [PubMed]
- Seibold, E.; Maier, T.; Kostrzewa, M.; Zeman, E.; Splettstoesser, W. Identification of Francisella tularensis by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry: Fast, reliable, robust, and cost-effective differentiation on species and subspecies levels. J. Clin. Microbiol. 2010, 48, 1061–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busse, H.J. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Int. J. Syst. Evol. Microbiol. 2016, 66, 9–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spier, S.J.; Leutenegger, C.M.; Carroll, S.P.; Loye, J.E.; Pusterla, J.B.; Carpenter, T.E.; Mihalyi, J.E.; Madigan, J.E. Use of a real-time polymerase chain reaction-based fluorogenic 5′ nuclease assay to evaluate insect vectors of Corynebacterium pseudotuberculosis infections in horses. Am. J. Vet. Res. 2004, 65, 829–834. [Google Scholar] [CrossRef] [Green Version]
- Biberstein, E.L.; Knight, H.D.; Jang, S. Two biotypes of Corynebacterium pseudotuberculosis. Vet. Rec. 1971, 89, 691–692. [Google Scholar] [CrossRef]
- Muckle, C.A.; Gyles, C.L. Characterization of strains of Corynebacterium pseudotuberculosis. Can. J. Comp. Med. 1982, 46, 206–208. [Google Scholar]
- Baird, G.J.; Fontaine, M.C. Corynebacterium pseudotuberculosis and its role in ovine caseous lymphadenitis. J. Comp. Pathol. 2007, 137, 179–210. [Google Scholar] [CrossRef]
- Shpigel, N.Y.; Elad, D.; Yeruham, I.; Winkler, M.; Saran, A. An outbreak of Corynebacterium pseudotuberculosis infection in an Israeli dairy herd. Vet. Rec. 1993, 133, 89–94. [Google Scholar] [CrossRef]
- Britz, E.; Spier, S.J.; Kass, P.H.; Edman, J.M.; Foley, J.E. The relationship between Corynebacterium pseudotuberculosis biovar equi phenotype with location and extent of lesions in horses. Vet. J. 2004, 200, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Nogradi, N.; Spier, S.J.; Toth, B.; Vaughan, B. Musculoskeletal Corynebacterium pseudotuberculosis infection in horses: 35 cases (1999–2009). J. Am. Vet. Med. Assoc. 2012, 241, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Boysen, C.; Davis, E.G.; Beard, L.A.; Lubbers, B.V.; Raghavan, R.K. Bayesian geostatistical analysis and ecoclimate determinants of Corynebacterium pseudotuberculosis infection among horses. PLoS ONE 2015, 10, e0140666. [Google Scholar] [CrossRef] [PubMed]
- Aleman, M.; Spier, S.J.; Wilson, W.D.; Doherr, M. Corynebacterium pseudotuberculosis infection in horses: 538 cases (1982–1993). J. Am. Vet. Med. Assoc. 1996, 209, 804–809. [Google Scholar]
- Bemer-Melchior, P.; Haloun, A.; Riegel, P.; Drugeon, H.B. Bacteremia due to Dietzia maris in an immunocompromised patient. Clin. Infect. Dis. 1999, 29, 1338–1340. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, K.; Szewczyk, R.; Druszczyńska, M. Mycolic acids-potential biomarkers of opportunistic infections caused by bacteria of the suborder Corynebacterineae. Postepy Hig. Med. Dosw. 2012, 66, 461–468. [Google Scholar] [CrossRef]
- Rainey, F.A.; Klatte, S.; Kroppenstedt, R.M.; Stackebrandt, E. Dietzia, a new genus including Dietzia maris comb. nov. formerly Rhodococcus maris. Int. J. Syst. Bacteriol. 1995, 45, 32–36. [Google Scholar] [CrossRef] [Green Version]
- Kanae, T.; Tomohiko, T.; Satoshi, H.; Takafumi, S.; Hiroko, K.; Ken-ichiro, S.; Hiroaki, S. Simple and rapid characterization of mycolic acids from Dietzia strains by using MALDI spiral-TOFMS with ultra high mass-resolving power. J. Antibiot. 2013, 66, 713–717. [Google Scholar] [CrossRef]
- Yassin, A.F.; Spröer, C.; Siering, C.; Hupfer, H.; Schumann, P. Arthrobacter equi sp. nov., isolated from veterinary clinical material. Int. J. Syst. Evol. Microbiol. 2011, 61, 2089–2094. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1663 (accessed on 3 December 2019).
- Available online: https://www.namesforlife.com/10.1601/tx.5839 (accessed on 30 March 2020).
- Available online: https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP034412.1 (accessed on 2 April 2020).
- Vargha, M.; Takáts, Z.; Konopka, A.; Nakatsu, C.H. Optimization of MALDI-TOF MS for strain level differentiation of Arthrobacter isolates. J. Microbiol. Methods 2006, 66, 399–409. [Google Scholar] [CrossRef]
- Mages, I.S.; Frodl, R.; Bernard, K.A.; Funke, G. Identities of Arthrobacter spp. and Arthrobacter-like bacteria encountered in human clinical specimens. J. Clin. Microbiol. 2008, 46, 2980–2986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, K.; Hayakawa, K.; Nagamatsu, M.; Fujiya, Y.; Mawatari, M.; Kutsuna, S.; Takeshita, N.; Tamura, S.; Mezaki, K.; Ohmagari, N. Bacteremia due to Arthrobacter creatinolyticus in an elderly diabetic man with acute cholangitis. Jpn. J. Infect. Dis. 2017, 70, 201–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osorio, C.R.; Barja, J.L.; Hutson, R.A.; Collins, M.D. Arthrobacter rhombi sp. nov., isolated from Greenland halibut (Reinhardtius hippoglossoides). Int. J. Syst. Evol. Bacteriol. 1999, 49, 1217–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, M.D.; Hoyles, L.; Foster, G.; Falsen, E.; Weiss, N. Arthrobacter nasiphocae sp. nov., from the common seal (Phoca vitulina). Int. J. Syst. Evol. Microbiol. 2002, 52, 569–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storms, V.; Devriese, L.A.; Coopman, R.; Schumann, P.; Vyncke, F.; Gillis, M. Arthrobacter gandavensis sp. nov., for strains of veterinary origin. Int. J. Syst. Evol. Microbiol. 2003, 53, 1881–1884. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rifici, C.; Attili, A.-R.; De Biase, D.; Gonçalves dos Santos, R.; Seyffert, N.; De Paula Castro, T.L.; Pereira Figueiredo, H.C.; Scaramozzino, C.; Reale, S.; Paciello, O.; et al. Atypical Multibacterial Granulomatous Myositis in a Horse: First Report in Italy. Vet. Sci. 2020, 7, 47. https://doi.org/10.3390/vetsci7020047
Rifici C, Attili A-R, De Biase D, Gonçalves dos Santos R, Seyffert N, De Paula Castro TL, Pereira Figueiredo HC, Scaramozzino C, Reale S, Paciello O, et al. Atypical Multibacterial Granulomatous Myositis in a Horse: First Report in Italy. Veterinary Sciences. 2020; 7(2):47. https://doi.org/10.3390/vetsci7020047
Chicago/Turabian StyleRifici, Claudia, Anna-Rita Attili, Davide De Biase, Roselane Gonçalves dos Santos, Núbia Seyffert, Thiago Luiz De Paula Castro, Henrique Cesar Pereira Figueiredo, Carmelo Scaramozzino, Stefano Reale, Orlando Paciello, and et al. 2020. "Atypical Multibacterial Granulomatous Myositis in a Horse: First Report in Italy" Veterinary Sciences 7, no. 2: 47. https://doi.org/10.3390/vetsci7020047