Decoupling of Ecological and Hydrological Drought Conditions in the Limpopo River Basin Inferred from Groundwater Storage and NDVI Anomalies
Abstract
:1. Introduction
1.1. Background
1.2. Motivation
2. Materials and Methods
2.1. Study Area
2.2. In Situ Datasets
2.3. Time Series of Additional Remotely Sensed and Modeled Datasets
2.4. Drought Indices (Standardized Anomalies, VHI, SPEI)
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tabari, H. Climate Change Impact on Flood and Extreme Precipitation Increases with Water Availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef]
- Trenberth, K.E. Framing the Way to Relate Climate Extremes to Climate Change. Clim. Change 2012, 115, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Pörtner, H.-O.; Roberts, D.C.; Tignor, M.; Poloczanska, E.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. (Eds.) IPCC Climate Change 2022: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar]
- FAO. Drought Impact Mitigation and Prevention in the Limpopo River Basin: A Situation Analysis; FAO: Washington, DC, USA, 2004; p. 178. [Google Scholar]
- Petrie, B.; Chapman, A.; Midgley, A.; Parker, R. Risk, Vulnerability, and Resilience in the Limpopo River Basin System: Climate Change, Water and Biodiversity—A Synthesis. For the USAID Southern Africa “Resilience in the Limpopo River Basin” (Resilim) Program; OneWorld Sustainable Investments: Cape Town, South Africa, 2014. [Google Scholar]
- Gebre, S.; Getahun, Y. Analysis of Climate Variability and Drought Frequency Events on Limpopo River Basin, South Africa. J. Waste Water Treat. Anal. 2016, 7, 1–7. [Google Scholar] [CrossRef]
- Hoell, A.; Gaughan, A.E.; Shukla, S.; Magadzire, T. The Hydrologic Effects of Synchronous El Niño–Southern Oscillation and Subtropical Indian Ocean Dipole Events over Southern Africa. J. Hydrometeorol. 2017, 18, 2407–2424. [Google Scholar] [CrossRef]
- Manatsa, D.; Mushore, T.; Lenouo, A. Improved Predictability of Droughts over Southern Africa Using the Standardized Precipitation Evapotranspiration Index and ENSO. Theor. Appl. Climatol. 2017, 127, 259–274. [Google Scholar] [CrossRef]
- Rapolaki, R.S.; Blamey, R.C.; Hermes, J.C.; Reason, C.J.C. A Classification of Synoptic Weather Patterns Linked to Extreme Rainfall over the Limpopo River Basin in Southern Africa. Clim. Dyn. 2019, 53, 2265–2279. [Google Scholar] [CrossRef]
- Rapolaki, R.S.; Blamey, R.C.; Hermes, J.C.; Reason, C.J.C. Moisture Sources Associated with Heavy Rainfall over the Limpopo River Basin, Southern Africa. Clim. Dyn. 2020, 55, 1473–1487. [Google Scholar] [CrossRef]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A Review of Drought Indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef] [Green Version]
- Crausbay, S.D.; Ramirez, A.R.; Carter, S.L.; Cross, M.S.; Hall, K.R.; Bathke, D.J.; Betancourt, J.L.; Colt, S.; Cravens, A.E.; Dalton, M.S.; et al. Defining Ecological Drought for the Twenty-First Century. Bull. Am. Meteorol. Soc. 2017, 98, 2543–2550. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; Weather Bureau Research Paper No. 45; US Deptartment of Commerce: Washington, DC, USA, 1965.
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Kogan, F. Satellite-Observed Sensitivity of World Land Ecosystems to El Niño/La Niña. Remote Sens. Environ. 2000, 74, 445–462. [Google Scholar] [CrossRef]
- Bento, V.A.; Gouveia, C.M.; DaCamara, C.C.; Trigo, I.F. A Climatological Assessment of Drought Impact on Vegetation Health Index. Agric. For. Meteorol. 2018, 259, 286–295. [Google Scholar] [CrossRef]
- Bento, V.A.; Gouveia, C.M.; DaCamara, C.C.; Libonati, R.; Trigo, I.F. The Roles of NDVI and Land Surface Temperature When Using the Vegetation Health Index over Dry Regions. Glob. Planet. Change 2020, 190, 103198. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized Precipitation Evapotranspiration Index (SPEI) Revisited: Parameter Fitting, Evapotranspiration Models, Tools, Datasets and Drought Monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Chen, J.; Kato, H.; Famiglietti, J.S.; Nigro, J.; Wilson, C.R. Estimating Groundwater Storage Changes in the Mississippi River Basin (USA) Using GRACE. Hydrogeol. J. 2007, 15, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.-H. Emerging Trends in Global Freshwater Availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef]
- Li, B.; Rodell, M.; Zaitchik, B.F.; Reichle, R.H.; Koster, R.D.; van Dam, T.M. Assimilation of GRACE Terrestrial Water Storage into a Land Surface Model: Evaluation and Potential Value for Drought Monitoring in Western and Central Europe. J. Hydrol. 2012, 446–447, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Rodell, M.; Kumar, S.; Beaudoing, H.K.; Getirana, A.; Zaitchik, B.F.; de Goncalves, L.G.; Cossetin, C.; Bhanja, S.; Mukherjee, A.; et al. Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges. Water Resour. Res. 2019, 55, 7564–7586. [Google Scholar] [CrossRef] [Green Version]
- Lakshmi, V.; Fayne, J.; Bolten, J. A comparative study of available water in the major river basins of the world. J. Hydrol. 2018, 567, 510–553. [Google Scholar] [CrossRef]
- Mohammed, I.; Bolten, J.; Srinivasan, R.; Lakshmi, L. Improved hydrological decision support system for the Lower Mekong River Basin using satellite-based earth observations. Remote Sens. 2018, 10, 885. [Google Scholar] [CrossRef]
- Mohammed, I.; Bolten, J.; Srinivasan, R.; Lakshmi, V. Satellite observations and modeling to understand Lower Mekong River basin streamflow variability. J. Hydrol. 2018, 564, 559–573. [Google Scholar] [CrossRef]
- Mohammed, I.; Bolten, J.; Srinivasan, R.; Meechiya, C.; Spruce, J.; Lakshmi, V. Ground and satellite-based observation datasets for the Lower Mekong River Basin. Data Brief 2018, 21, 2020–2027. [Google Scholar] [CrossRef]
- Le, M.-H.; Lakshmi, V.; Bolten, J.; Bui, D. Adequacy of Satellite-derived Precipitation Estimate for Hydrological Modeling in Vietnam Basins. J. Hydrol. 2020, 586, 124820. [Google Scholar] [CrossRef]
- Mondal, A.; Le, M.-H.; Lakshmi, V. Land use, climate, and water change in the Vietnamese Mekong Delta (VMD) using earth observation and hydrological modeling. J. Hydrol. Reg. Stud. 2022, 42, 101132. [Google Scholar] [CrossRef]
- Kansara, P.; Lakshmi, V. Estimation of land-cover linkage to trends in hydrological variables of river basins in the Indian sub-continent using satellite observation and model outputs. J. Hydrol. 2021, 603B, 126997. [Google Scholar] [CrossRef]
- Alshehri, F.; Mohamed, A. Analysis of Groundwater Storage Fluctuations Using GRACE and Remote Sensing Data in Wadi As-Sirhan, Northern Saudi Arabia. Water 2023, 15, 282. [Google Scholar] [CrossRef]
- Voss, K.A.; Famiglietti, J.S.; Lo, M.; de Linage, C.; Rodell, M.; Swenson, S.C. Groundwater Depletion in the Middle East from GRACE with Implications for Transboundary Water Management in the Tigris-Euphrates-Western Iran Region. Water Resour. Res. 2013, 49, 904–914. [Google Scholar] [CrossRef] [Green Version]
- Al-Barakat, R.; Le, M.-H.; Lakshmi, V. Assessment of drought conditions over Iraqi Transboundary Rivers using FLDAS and satellite data sets. J. Hydrol. Reg. Stud. 2022, 41, 101075. [Google Scholar] [CrossRef]
- Fang, B.; Kansara, P.; Dandridge, C.; Lakshmi, V. Drought Monitoring Using High Spatial Resolution Soil Moisture Data over Australia in 2015–2019. J. Hydrol. 2021, 594, 125960. [Google Scholar] [CrossRef]
- Le, M.-H.; Kim, H.; Moon, H.; Zhang, R.; Lakshmi, V.; Nguyen, L.B. Assessment of drought conditions over Vietnam using Standard Precipitation Evapotranspiration Index, MERRA-2 Reanalyses, and dynamic land cover. J. Hydrol. Reg. Stud. 2020, 32, 100767. [Google Scholar] [CrossRef]
- Rebello, V.; Getirana, A.; Filho, O.; Lakshmi, V. Spatiotemporal Vegetation Response to Extreme Droughts in Eastern Brazil. Remote Sens. Appl. Soc. Environ. 2020, 18, 100294. [Google Scholar] [CrossRef]
- Saby, L.; Kansara, P.; Lakshmi, V.; Goodall, J.; Band, L.; McKee, K. Sensitivity of Remotely Sensed Vegetation to Hydrologic Predictors across the Colorado River Basin, 2001–2019. J. Am. Water Resour. Assoc. 2021, 58, 1017–1029. [Google Scholar] [CrossRef]
- Fayne, J.; Bolten, J.; Doyle, C.; Fuhrmann, S.; Rice, M.; Houser, P.; Lakshmi, V. Flood mapping in the Lower Mekong Basin using MODIS observations. Int. J. Remote Sens. 2017, 38, 1737–1757. [Google Scholar] [CrossRef]
- Lakshmi, V.; Schaaf, K. Analysis of the 1993 midwestern flood using satellite and ground data. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1736–1743. [Google Scholar] [CrossRef]
- Parinussa, R.M.; Lakshmi, V.; Johnson, F.M.; Sharma, A. A new framework for monitoring flood inundation using readily available satellite data. Geophys. Res. Lett. 2016, 43, 2599–2605. [Google Scholar] [CrossRef]
- Trambauer, P.; Maskey, S.; Werner, M.; Pappenberger, F.; van Beek, L.P.H.; Uhlenbrook, S. Identification and Simulation of Space–Time Variability of Past Hydrological Drought Events in the Limpopo River Basin, Southern Africa. Hydrol. Earth Syst. Sci. 2014, 18, 2925–2942. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.; Sultan, M.; Wahr, J.; Yan, E. The Use of GRACE Data to Monitor Natural and Anthropogenic Induced Variations in Water Availability across Africa. Earth-Sci. Rev. 2014, 136, 289–300. [Google Scholar] [CrossRef]
- Anyah, R.O.; Forootan, E.; Awange, J.L.; Khaki, M. Understanding Linkages between Global Climate Indices and Terrestrial Water Storage Changes over Africa Using GRACE Products. Sci. Total Environ. 2018, 635, 1405–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonsor, H.C.; Shamsudduha, M.; Marchant, B.P.; MacDonald, A.M.; Taylor, R.G. Seasonal and Decadal Groundwater Changes in African Sedimentary Aquifers Estimated Using GRACE Products and LSMs. Remote Sens. 2018, 10, 904. [Google Scholar] [CrossRef] [Green Version]
- Kolusu, S.R.; Shamsudduha, M.; Todd, M.C.; Taylor, R.G.; Seddon, D.; Kashaigili, J.J.; Ebrahim, G.Y.; Cuthbert, M.O.; Sorensen, J.P.R.; Villholth, K.G.; et al. The El Niño Event of 2015–2016: Climate Anomalies and Their Impact on Groundwater Resources in East and Southern Africa. Hydrol. Earth Syst. Sci. 2019, 23, 1751–1762. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, B.R.; Rateb, A.; Anyamba, A.; Kebede, S.; MacDonald, A.M.; Shamsudduha, M.; Small, J.; Sun, A.; Taylor, R.G.; Xie, H. Linkages between GRACE Water Storage, Hydrologic Extremes, and Climate Teleconnections in Major African Aquifers. Environ. Res. Lett. 2022, 17, 014046. [Google Scholar] [CrossRef]
- Le Maitre, D.C.; Scott, D.F.; Colvin, C. A review of information on interactions between vegetation and groundwater. Water 1999, 25, 16. [Google Scholar]
- D’Odorico, P.; Caylor, K.; Okin, G.S.; Scanlon, T.M. On Soil Moisture–Vegetation Feedbacks and Their Possible Effects on the Dynamics of Dryland Ecosystems. J. Geophys. Res. Biogeosciences 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Miller, G.R.; Chen, X.; Rubin, Y.; Ma, S.; Baldocchi, D.D. Groundwater Uptake by Woody Vegetation in a Semiarid Oak Savanna. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Le Maitre, D.C.; Gush, M.B.; Dzikiti, S. Impacts of Invading Alien Plant Species on Water Flows at Stand and Catchment Scales. AoB PLANTS 2015, 7, plv043. [Google Scholar] [CrossRef] [Green Version]
- Saha, M.V.; Scanlon, T.M.; D’Odorico, P. Examining the Linkage between Shrub Encroachment and Recent Greening in Water-Limited Southern Africa. Ecosphere 2015, 6, art156. [Google Scholar] [CrossRef] [Green Version]
- Le Maitre, D.C.; Blignaut, J.N.; Clulow, A.; Dzikiti, S.; Everson, C.S.; Görgens, A.H.M.; Gush, M.B. Impacts of Plant Invasions on Terrestrial Water Flows in South Africa. In Biological Invasions in South Africa; van Wilgen, B.W., Measey, J., Richardson, D.M., Wilson, J.R., Zengeya, T.A., Eds.; Invading Nature—Springer Series in Invasion Ecology; Springer International Publishing: Cham, Switzerland, 2020; pp. 431–457. ISBN 978-3-030-32394-3. [Google Scholar]
- Busari, O. Groundwater in the Limpopo Basin: Occurrence, Use and Impact. Environ. Dev. Sustain. 2007, 10, 943–957. [Google Scholar] [CrossRef]
- Saveca, P.S.L.; Abi, A.; Stigter, T.Y.; Lukas, E.; Fourie, F. Assessing Groundwater Dynamics and Hydrological Processes in the Sand River Deposits of the Limpopo River, Mozambique. Front. Water 2021, 3, 731642. [Google Scholar] [CrossRef]
- Walker, D.; Jovanovic, N.; Bugan, R.; Abiye, T.; du Preez, D.; Parkin, G.; Gowing, J. Alluvial Aquifer Characterisation and Resource Assessment of the Molototsi Sand River, Limpopo, South Africa. J. Hydrol. Reg. Stud. 2018, 19, 177–192. [Google Scholar] [CrossRef]
- Abiye, T.A.; Tshipala, D.; Leketa, K.; Villholth, K.G.; Ebrahim, G.Y.; Magombeyi, M.; Butler, M. Hydrogeological Characterization of Crystalline Aquifer in the Hout River Catchment, Limpopo Province, South Africa. Groundw. Sustain. Dev. 2020, 11, 100406. [Google Scholar] [CrossRef]
- Masiyandima, M.; Van der Stoep, I.; Mwanasawani, T.; Pfupajena, S.C. Groundwater Management Strategies and Their Implications on Irrigated Agriculture: The Case of Dendron Aquifer in Northern Province, South Africa. Phys. Chem. Earth Parts A/B/C 2002, 27, 935–940. [Google Scholar] [CrossRef]
- Didan, K.; Munoz, A.B. MODIS Vegetation Index User’s Guide (MOD13 Series); The University of Arizona: Tucson, AZ, USA, 2019; p. 33. [Google Scholar]
- Huffman, G.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Tan, J.; Xie, P. NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). In Algorithm Theoretical Basis Document (ATBD); NASA: Washington, DC, USA, 2019; Version 06. [Google Scholar]
- Wan, Z. New Refinements and Validation of the Collection MODIS Land-Surface Temperature/Emissivity Product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Running, S.W.; Mu, Q.; Zhao, M.; Moreno, A. MODIS Global Terrestrial Evapotranspiration (ET) Product (MOD16A2/A3 and Year-end Gap-Filled MOD16A2GF/A3GF) NASA Earth Observing System MODIS Land Algorithm (For Collection 6.1); The University of Montana: Missoula, MT, USA, 2021; Version 6.1. [Google Scholar]
- Fang, B.; Lakshmi, V.; Cosh, M.; Liu, P.-W.; Bindlish, R.; Jackson, T.J. A Global 1-Km Downscaled SMAP Soil Moisture Product Based on Thermal Inertia Theory. Vadose Zone J. 2022, 21, e20182. [Google Scholar] [CrossRef]
- Watkins, M.M.; Wiese, D.N.; Yuan, D.-N.; Boening, C.; Landerer, F.W. Improved Methods for Observing Earth’s Time Variable Mass Distribution with GRACE Using Spherical Cap Mascons. J. Geophys. Res. Solid. Earth 2015, 120, 2648–2671. [Google Scholar] [CrossRef]
- Esri. Sentinel-2 10 m Land Use/Land Cover Change from 2018 to 2021. Impact Observatory, Microsoft, and Esri 2022. Available online: https://env1.arcgis.com/arcgis/rest/services/Sentinel_2_10m_Land_Cover_Change/ImageServer (accessed on 10 May 2023).
- Sayre, R. Africa Terrestrial Ecosystems: U.S. Geological Survey Data Release; U.S. Geological Survey: Reston, VA, USA, 2023. [CrossRef]
- Cai, X.; Magidi, J.; Nhamo, L.; van Koppen, B. Mapping Irrigated Areas in the Limpopo Province, South Africa; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2017. [Google Scholar]
- Mosase, E.; Ahiablame, L. Rainfall and Temperature in the Limpopo River Basin, Southern Africa: Means, Variations, and Trends from 1979 to 2013. Water 2018, 10, 364. [Google Scholar] [CrossRef] [Green Version]
- Ebrahim, G.Y.; Villholth, K.G.; Boulos, M. Integrated Hydrogeological Modelling of Hard-Rock Semi-Arid Terrain: Supporting Sustainable Agricultural Groundwater Use in Hout Catchment, Limpopo Province, South Africa. Hydrogeol. J. 2019, 27, 965–981. [Google Scholar] [CrossRef] [Green Version]
- van der Zaag, P.; Juizo, D.; Vilanculos, A.; Bolding, A.; Uiterweer, N.P. Does the Limpopo River Basin Have Sufficient Water for Massive Irrigation Development in the Plains of Mozambique? Phys. Chem. Earth Parts A/B/C 2010, 35, 832–837. [Google Scholar] [CrossRef]
- Zhu, T.; Ringler, C. Climate Change Impacts on Water Availability and Use in the Limpopo River Basin. Water 2012, 4, 63–84. [Google Scholar] [CrossRef] [Green Version]
- Dzurume, T.; Dube, T.; Thamaga, K.H.; Shoko, C.; Mazvimavi, D. Use of Multispectral Satellite Data to Assess Impacts of Land Management Practices on Wetlands in the Limpopo Transfrontier River Basin, South Africa. S. Afr. Geogr. J. 2021, 104, 193–212. [Google Scholar] [CrossRef]
- Mugari, E.; Masundire, H. Consistent Changes in Land-Use/Land-Cover in Semi-Arid Areas: Implications on Ecosystem Service Delivery and Adaptation in the Limpopo Basin, Botswana. Land 2022, 11, 2057. [Google Scholar] [CrossRef]
- SA National Land-Cover Datasets. Available online: https://egis.environment.gov.za/sa_national_land_cover_datasets (accessed on 23 October 2022).
- Department of Water and Sanitation. Hydrological Information System. Available online: https://www.dws.gov.za/Hydrology/default.aspx (accessed on 30 August 2022).
- Global Runoff Data Centre. Available online: https://portal.grdc.bafg.de/applications/public.html?publicuser=PublicUser (accessed on 5 May 2023).
- Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T.; Cosh, M.; Basara, J. Passive Microwave Soil moisture downscaling using vegetation index and surface temperatures. Vadose Zone J. 2013, 12, 4. [Google Scholar] [CrossRef]
- Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T. AMSR2 soil moisture downscaling using temperature and vegetation data. Remote Sens. 2018, 10, 1575. [Google Scholar] [CrossRef] [Green Version]
- Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T. Downscaling of SMAP soil moisture using temperature and vegetation data. Vadose Zone J. 2018, 17, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Fang, B.; Lakshmi, V.; Jackson, T.; Bindlish, R.; Colliander, A. Passive/active microwave soil moisture change disaggregation using SMAPVEX12 data. J. Hydrol. 2019, 574, 1085–1098. [Google Scholar] [CrossRef]
- Adams, J. Climate-Indices, an Open Source Python Library Providing Reference Implementations of Commonly Used Climate Indices. 2017. Available online: https://github.com/monocongo/climate_indices (accessed on 23 October 2022).
- Hussain, M.M.; Mahmid, I. pyMannKendall: A python package for non-parametric Mann Kendall family of trend tests. J. Open Source Softw. 2019, 39, 4. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann–Kendall and Spearman’s Rho Tests for Detecting Monotonic Trends in Hydrological Series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Bargués-Tobella, A.; Hasselquist, N.J.; Bazié, H.R.; Bayala, J.; Laudon, H.; Ilstedt, U. Trees in African Drylands Can Promote Deep Soil and Groundwater Recharge in a Future Climate with More Intense Rainfall. Land. Degrad. Dev. 2020, 31, 81–95. [Google Scholar] [CrossRef] [Green Version]
- Oussou, F.E.; Ndehedehe, C.E.; Oloukoi, J.; Yalo, N.; Boukari, M.; Diaw, A.T. Characterization of the Hydro-Geological Regime of Fractured Aquifers in Benin (West-Africa) Using Multi-Satellites and Models. J. Hydrol. Reg. Stud. 2022, 39, 100987. [Google Scholar] [CrossRef]
- CSIR. Protection and Strategic Uses of Groundwater Resources in Drought Prone Areas of the SADC Region: Groundwater Situation Analysis of the Limpopo River Basin Final Report; Project No. JQ390, Report No. ENV-P-C-2003-026; CSIR Division of Water, Environment and Forestry Technology: Pretoria, South Africa, 2003. [Google Scholar]
- Prieto, I.; Armas, C.; Pugnaire, F.I. Water Release through Plant Roots: New Insights into Its Consequences at the Plant and Ecosystem Level. New Phytol. 2012, 193, 830–841. [Google Scholar] [CrossRef]
- Scanlon, T.M.; Caylor, K.K.; Manfreda, S.; Levin, S.A.; Rodriguez-Iturbe, I. Dynamic Response of Grass Cover to Rainfall Variability: Implications for the Function and Persistence of Savanna Ecosystems. Adv. Water Resour. 2005, 28, 291–302. [Google Scholar] [CrossRef]
- Cendón, D.I.; Haldorsen, S.; Chen, J.; Hankin, S.; Nogueira, G.E.H.; Momade, F.; Achimo, M.; Muiuane, E.; Mugabe, J.; Stigter, T.Y. Hydrogeochemical Aquifer Characterization and Its Implication for Groundwater Development in the Maputo District, Mozambique. Quat. Int. 2020, 547, 113–126. [Google Scholar] [CrossRef]
- Abiye, T.A.; Leketa, K.C. The Need for Managing Historic Groundwater in the Limpopo River Basin, Southern Africa: Based on the Δ18O, Δ2H and 14C Data. Groundw. Sustain. Dev. 2021, 14, 100583. [Google Scholar] [CrossRef]
- Baudoin, M.-A.; Vogel, C.; Nortje, K.; Naik, M. Living with Drought in South Africa: Lessons Learnt from the Recent El Niño Drought Period. Int. J. Disaster Risk Reduct. 2017, 23, 128–137. [Google Scholar] [CrossRef]
- Botai, C.M.; Botai, J.O.; Zwane, N.N.; Hayombe, P.; Wamiti, E.K.; Makgoale, T.; Murambadoro, M.D.; Adeola, A.M.; Ncongwane, K.P.; de Wit, J.P.; et al. Hydroclimatic Extremes in the Limpopo River Basin, South Africa, under Changing Climate. Water 2020, 12, 3299. [Google Scholar] [CrossRef]
Variable | Unit | Dataset Source | Spatial Resolution | Temporal Resolution | Citation |
---|---|---|---|---|---|
Land Surface Temperature | K | MOD11A1 | 1 km | Daily | Wan (2014) [60] |
MYD11A1 | |||||
Normalized Difference Vegetation Index | - | MOD13A3 | 250 m | Monthly | Didan and Munoz (2019) [58] |
MYD13A3 | |||||
Precipitation Accumulation | mm | GPM IMERG | 0.10° | Daily | Huffman et al. (2019) [59] |
Evapotranspiration | kg m−2 | MOD16A2GF | 500 m | 8-day | Running et al. (2021) [61] |
MYD16A2GF | |||||
Groundwater Water Storage | mm | GLDAS CLSM | 0.25° | Daily | Li et al. (2019) [23] |
Surface Runoff | kg m−2 s−1 | ||||
Soil Moisture | kg m−2 | ||||
m3 m−3 | SMAP | 1 km | Monthly | Fang et al. (2022) [62] | |
Total Water Storage Anomaly | m | GRACE TWSA mascon | 0.5° | Monthly | Watkins et al. (2015) [63] |
Land Cover | - | Sentinel-2 | 10 m | Annual | Esri (2021) [64] |
Surface Lithology | - | USGS | 90 m | - | Sayre (2023) [65] |
Variable | Unit | Dataset Source | Station Count | Frequency | Time Period | Version Citation |
---|---|---|---|---|---|---|
Groundwater Levels | m | South African DWS | 174 | Monthly | October 1999–July 2022 | SA DWS [74] (Downloaded 3 January 2023) |
Precipitation | mm | 15 | Daily | January 2002–March 2021 | SA DWS [74] (Downloaded 30 August 2022) | |
Discharge | m3 s−1 | GRDC | 36 | Daily | October 2002–July 2022 | GRDC [75] (Downloaded 5 May 2023) |
Variable | Time Domain | Mann-Kendall | Spearman’s Rank | |||
---|---|---|---|---|---|---|
Trend | S-Statistic | p-Value | rho | p-Value | ||
ET | Growing | none | 13 | 0.670 | 0.128 | 0.601 |
Monthly | increasing | 442 | 0.001 | 0.095 | 0.133 | |
GW | Growing | none | −57 | 0.050 | −0.421 | 0.073 |
Monthly | decreasing | −628 | 0.000 | −0.300 | 0.000 | |
LST | Growing | none | −3 | 0.944 | −0.040 | 0.870 |
Monthly | none | 39 | 0.720 | −0.010 | 0.877 | |
NDVI | Growing | none | 9 | 0.779 | 0.130 | 0.596 |
Monthly | increasing | 302 | 0.005 | 0.199 | 0.083 | |
P | Growing | none | −25 | 0.401 | −0.202 | 0.408 |
Monthly | none | −36 | 0.757 | −0.029 | 0.644 | |
Root Zone SM | Growing | none | −33 | 0.263 | −0.235 | 0.333 |
Monthly | decreasing | −470 | 0.000 | −0.199 | 0.002 | |
Runoff | Growing | none | −11 | 0.726 | −0.091 | 0.710 |
Monthly | none | −166 | 0.100 | −0.072 | 0.269 | |
Surface SM | Growing | none | −37 | 0.208 | −0.286 | 0.235 |
Monthly | decreasing | −336 | 0.001 | −0.136 | 0.037 | |
VHI | Growing | none | −19 | 0.529 | −0.144 | 0.557 |
Monthly | none | 521 | 0.649 | 0.035 | 0.596 | |
SPEI-12 | Growing | none | 9 | 0.780 | 0.063 | 0.797 |
Monthly | none | 999 | 0.419 | −0.053 | 0.438 |
(a) | ||||||||
r | LST | NDVI | ET | P | GW | SM | RZ | Q |
LST | 1 | |||||||
NDVI | −0.934 | 1 | ||||||
ET | −0.844 | 0.865 | 1 | |||||
P | −0.607 | 0.510 | 0.777 | 1 | ||||
GW | −0.729 | 0.705 | 0.525 | 0.475 | 1 | |||
SM | −0.824 | 0.812 | 0.744 | 0.708 | 0.914 | 1 | ||
RZ | −0.764 | 0.754 | 0.780 | 0.789 | 0.842 | 0.972 | 1 | |
Q | −0.671 | 0.684 | 0.800 | 0.769 | 0.629 | 0.845 | 0.913 | 1 |
(b) | ||||||||
p-value | LST | NDVI | ET | P | GW | SM | RZ | Q |
LST | 0 | |||||||
NDVI | 0 | 0 | ||||||
ET | 0 | 0 | 0 | |||||
P | 0.006 | 0.026 | 0 | 0 | ||||
GW | 0 | 0.001 | 0.021 | 0.040 | 0 | |||
SM | 0 | 0 | 0 | 0.001 | 0 | 0 | ||
RZ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Q | 0.002 | 0.001 | 0 | 0 | 0.004 | 0 | 0 | 0 |
r | VHI | SPEI-12 | GW | SM | RZ | NDVI | ET | P | Q |
---|---|---|---|---|---|---|---|---|---|
VHI | 1 | ||||||||
SPEI-12 | 0.711 | 1 | |||||||
GW | 0.690 | 0.764 | 1 | ||||||
SM | 0.774 | 0.620 | 0.753 | 1 | |||||
RZ | 0.757 | 0.589 | 0.770 | 0.964 | 1 | ||||
NDVI | 0.915 | 0.688 | 0.671 | 0.726 | 0.723 | 1 | |||
ET | 0.773 | 0.523 | 0.490 | 0.656 | 0.655 | 0.787 | 1 | ||
P | 0.307 | 0.134 | 0.064 | 0.509 | 0.455 | 0.264 | 0.317 | 1 | |
Q | 0.412 | 0.221 | 0.243 | 0.696 | 0.687 | 0.380 | 0.404 | 0.724 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.Y.; Scanlon, T.; Bakar, S.; Lakshmi, V. Decoupling of Ecological and Hydrological Drought Conditions in the Limpopo River Basin Inferred from Groundwater Storage and NDVI Anomalies. Hydrology 2023, 10, 170. https://doi.org/10.3390/hydrology10080170
Kim KY, Scanlon T, Bakar S, Lakshmi V. Decoupling of Ecological and Hydrological Drought Conditions in the Limpopo River Basin Inferred from Groundwater Storage and NDVI Anomalies. Hydrology. 2023; 10(8):170. https://doi.org/10.3390/hydrology10080170
Chicago/Turabian StyleKim, Kyung Y., Todd Scanlon, Sophia Bakar, and Venkataraman Lakshmi. 2023. "Decoupling of Ecological and Hydrological Drought Conditions in the Limpopo River Basin Inferred from Groundwater Storage and NDVI Anomalies" Hydrology 10, no. 8: 170. https://doi.org/10.3390/hydrology10080170
APA StyleKim, K. Y., Scanlon, T., Bakar, S., & Lakshmi, V. (2023). Decoupling of Ecological and Hydrological Drought Conditions in the Limpopo River Basin Inferred from Groundwater Storage and NDVI Anomalies. Hydrology, 10(8), 170. https://doi.org/10.3390/hydrology10080170