Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,232)

Search Parameters:
Keywords = vegetation health

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2278 KB  
Article
Germination as a Sustainable Green Pre-Treatment for the Recovery and Enhancement of High-Value Compounds in Broccoli and Kale
by Christine (Neagu) Dragomir, Corina Dana Misca, Sylvestre Dossa, Daniela Stoin, Ariana Velciov, Călin Jianu, Isidora Radulov, Mariana Suba, Catalin Ianasi and Ersilia Alexa
Molecules 2026, 31(2), 350; https://doi.org/10.3390/molecules31020350 - 19 Jan 2026
Abstract
Germination is widely recognized as an effective strategy to enhance the nutritional quality and reduce anti-nutritional factors in plant foods. This study evaluated the impact of germination on Cruciferous vegetables (family Cruciferae or Brassicaceae) broccoli and kale by assessing changes in proximate [...] Read more.
Germination is widely recognized as an effective strategy to enhance the nutritional quality and reduce anti-nutritional factors in plant foods. This study evaluated the impact of germination on Cruciferous vegetables (family Cruciferae or Brassicaceae) broccoli and kale by assessing changes in proximate composition, macro- and microelement profiles, total and individual polyphenols, phytic acid content, antimicrobial activity, and structural characteristics using Fourier Transform Infrared Spectroscopy (FTIR) and Small- and Wide-Angle X-ray Scattering (SAXS/WAXS) analyses. Germination significantly increased protein content (30.33% in broccoli sprouts and 30.21% in kale sprouts), total phenolic content (424.40 mg/100 g in broccoli sprouts and 497.94 mg/100 g in kale sprouts), and essential minerals, while reducing phytic acid levels in both species (up to 82.20%). Antimicrobial effects were matrix-dependent, being detected in broccoli and kale seed powders, while no inhibitory activity was observed for the corresponding sprout powders under the tested conditions. FTIR spectra indicated notable modifications in functional groups related to carbohydrates, proteins, and phenolic compounds, while SAXS analysis revealed structural reorganizations at the nanoscale. Overall, germination improved the nutritional and phytochemical quality of broccoli and kale while decreasing anti-nutritional compounds, highlighting its potential to enhance the health-promoting value of Brassica sprouts. Full article
Show Figures

Figure 1

34 pages, 1557 KB  
Review
Probiotic and Bioactive Compounds in Foods: From Antioxidant Properties to Gut Microbiota Modulation
by Berta Gonçalves, Alice Vilela, Alfredo Aires, Ivo Oliveira, Carla Gonçalves, Teresa Pinto and Fernanda Cosme
Molecules 2026, 31(2), 345; https://doi.org/10.3390/molecules31020345 - 19 Jan 2026
Abstract
Dietary bioactive compounds derived from plant-based and fermented foods act as plei-otropic modulators of human health, exerting antioxidant, anti-inflammatory, cardiopro-tective, neuroprotective, and metabolic effects beyond basic nutrition. Whole foods (fruits, vegetables, grains, nuts) provide synergistic mixtures of bioactives, whereas fermented foods generate a [...] Read more.
Dietary bioactive compounds derived from plant-based and fermented foods act as plei-otropic modulators of human health, exerting antioxidant, anti-inflammatory, cardiopro-tective, neuroprotective, and metabolic effects beyond basic nutrition. Whole foods (fruits, vegetables, grains, nuts) provide synergistic mixtures of bioactives, whereas fermented foods generate a wide range of microbial-derived metabolites (peptides, organic acids) as well as probiotics that enhance nutrient bioavailability and support gut health. The gut microbiota plays a central mediating role in the biological effects of dietary bioactives through a dynamic, bidirectional interaction: dietary compounds shape microbial composition by promoting beneficial taxa and suppressing pathogens, while microbial metabolism converts these compounds into bioactive metabolites, including short-chain fatty acids, that profoundly influence host health. Despite their demonstrated health potential, the clinical translation of many dietary bioactives is limited by low bioavailability, which is influenced by digestion processes, food matrix and processing conditions, host genetics, and individual microbiota profile. Overcoming these limitations requires a deeper understanding of the synergistic interactions among dietary bioactives, probiotics, microbial metabolites, and host signaling pathways. This review provides an integrated perspective of the sources, mechanisms of action, and health effects of food-derived bioactive compounds and probiotic mediated effects, while highlighting current translational challenges and future directions for the development of effective functional foods and personalized nutrition strategies. Full article
(This article belongs to the Special Issue Exploring Bioactive Compounds in Foods and Nutrients for Human Health)
Show Figures

Figure 1

41 pages, 6730 KB  
Article
Ethnobotany of Local Vegetables and Spices in Sakon Nakhon Province, Thailand
by Piyaporn Saensouk, Surapon Saensouk, Phiphat Sonthongphithak, Auemporn Junsongduang, Kamonwan Koompoot, Bin Huang, Wei Shen and Tammanoon Jitpromma
Diversity 2026, 18(1), 49; https://doi.org/10.3390/d18010049 - 17 Jan 2026
Viewed by 112
Abstract
Local vegetables and spices are essential components of traditional food and health systems in northeastern Thailand, yet quantitative ethnobotanical evidence remains limited. This study documents the diversity, utilization, and cultural significance of vegetables and spices used in Sang Kho Sub-district, Phu Phan District, [...] Read more.
Local vegetables and spices are essential components of traditional food and health systems in northeastern Thailand, yet quantitative ethnobotanical evidence remains limited. This study documents the diversity, utilization, and cultural significance of vegetables and spices used in Sang Kho Sub-district, Phu Phan District, Sakon Nakhon Province. Ethnobotanical data were collected in 2025 through field surveys, voucher-based plant identification, semi-structured interviews, and participant observation involving 92 informants across 23 villages. Cultural significance and medicinal knowledge were evaluated using the Cultural Importance Index (CI), Informant Consensus Factor (FIC), and Fidelity Level (FL). A total of 113 taxa belonging to 94 genera and 49 plant families were recorded. Poaceae and Zingiberaceae were the most species-rich families. Native species slightly predominated (51.33%), and herbaceous taxa were most common. Leaves were the most frequently used plant part. Most taxa were used as vegetables (92 species), followed by traditional medicines (20 species), spices or seasonings (18 species), and food ingredients or culinary additives (18 species). The highest CI values were recorded for Allium ascalonicum L. (1.152), Capsicum annuum L. (1.098), and Coriandrum sativum L. (1.043). FIC values ranged from 0.60 to 1.00, with complete consensus for circulatory and neurological disorders. Cymbopogon citratus showed the highest FL (75%) for gastrointestinal uses. These findings demonstrate the close integration of food and medicine in local plant-use systems and provide baseline data for food system resilience and cultural knowledge conservation. Full article
(This article belongs to the Special Issue Ethnobotany and Plant Diversity: Conservation and Sustainable Use)
Show Figures

Figure 1

26 pages, 3652 KB  
Article
Enhancing Resilience in Semi-Arid Smallholder Systems: Synergies Between Irrigation Practices and Organic Soil Amendments in Kenya
by Deborah M. Onyancha, Stephen M. Mureithi, Nancy Karanja, Richard N. Onwong’a and Frederick Baijukya
Sustainability 2026, 18(2), 955; https://doi.org/10.3390/su18020955 - 17 Jan 2026
Viewed by 264
Abstract
Smallholder farmers in semi-arid regions worldwide face persistent water scarcity, declining soil fertility, and increasing climate variability, which constrain food production. This study investigated soil and water management practices and their effects on soil health, crop productivity, and adoption among smallholder vegetable farmers [...] Read more.
Smallholder farmers in semi-arid regions worldwide face persistent water scarcity, declining soil fertility, and increasing climate variability, which constrain food production. This study investigated soil and water management practices and their effects on soil health, crop productivity, and adoption among smallholder vegetable farmers in a semi-arid area in Kenya. A mixed-methods approach was employed, combining survey data from 397 farmers with a randomized field experiment. Results showed that hand watering (88.7%) and manure application (95.5%) were prevalent, while only 5.7% of farmers used drip irrigation. Compost and mulch treatments significantly improved soil organic carbon (p = 0.03), available water capacity (p = 0.01), and gravimetric moisture content (p = 0.02), with soil moisture conservation practices strongly correlated with higher yields in leafy green vegetables (R = 0.62). Despite these benefits, adoption was hindered by high water costs (42.6%) and unreliable sources (25.7%). Encouragingly, 96.2% of respondents expressed willingness to pay for improved water systems if affordable and dependable. The findings stress the need for integrated water–soil strategies supported by inclusive policy, infrastructure investment, and gender-responsive training to enhance resilience and productivity in smallholder farming under water-scarce conditions across sub-Saharan Africa and other regions globally, contributing to global sustainability targets such as SDG 6, 12 and 15. Full article
(This article belongs to the Section Development Goals towards Sustainability)
Show Figures

Figure 1

18 pages, 950 KB  
Article
Selected Essential Oils Act as Repellents Against the House Cricket, Acheta domesticus
by Torben K. Heinbockel, Rasha O. Alzyoud, Shazia Raheel and Vonnie D. C. Shields
Insects 2026, 17(1), 106; https://doi.org/10.3390/insects17010106 - 16 Jan 2026
Viewed by 161
Abstract
The house cricket, Acheta domesticus, is found globally. It is an agricultural pest causing economic damage to a wide variety of crops including cereal seedlings, vegetable crops, fruit plants, and stored grains. Additionally, crickets act as mechanical vectors of pathogens by harboring [...] Read more.
The house cricket, Acheta domesticus, is found globally. It is an agricultural pest causing economic damage to a wide variety of crops including cereal seedlings, vegetable crops, fruit plants, and stored grains. Additionally, crickets act as mechanical vectors of pathogens by harboring bacteria, fungi, viruses, and toxins, causing foodborne illnesses. They can contaminate stored grains, packaged foods, or animal feed due to deposition of their feces, lowering the quality of the food and creating food safety risks. Synthetic insect repellents, such as pyrethroids and carbamates, have been used previously in integrated pest management practices to control crickets. Though successful as repellents, they have been associated with health and environmental risks and concerns. The use of organic green repellents, such as plant essential oils, may be a viable alternative in pest management practices. In this study, we tested the effects of 27 plant-based essential oils on the behavior of A. domesticus. A. domesticus were introduced into an open arena to allow them unrestricted movement. A transparent plastic bottle containing an essential oil treatment was placed in the arena to allow voluntary entry by the crickets. Following a predetermined observation period, the number of crickets that entered the bottle was recorded, and percent entry was calculated as the proportion of individuals inside the bottle relative to the total number in the arena. Analysis of the percentage entry into the bottles allowed for a comparative assessment of repellency of the selected essential oils examined in this study. Essential oils that elicited high levels of entry into the bottle were categorized as having weak or no repellency, while those that demonstrated reduced entry were classified as moderate or strong repellents. Our results indicated that A. domesticus responded with strong repellent behavior to nearly half of the essential oils tested, while four essential oils and two synthetic repellents evoked no significant repellent responses. Four strong repellent essential oils, namely peppermint, rosemary, cinnamon, and lemongrass, were tested at different concentrations and showed a clear dose-dependent repellent effect. The results suggest that selected essential oils can be useful in the development of more natural “green” insect repellents. Full article
Show Figures

Figure 1

20 pages, 1399 KB  
Review
Nature-Based Solutions for Resilience: A Global Review of Ecosystem Services from Urban Forests and Cover Crops
by Anastasia Ivanova, Reena Randhir and Timothy O. Randhir
Diversity 2026, 18(1), 47; https://doi.org/10.3390/d18010047 - 15 Jan 2026
Viewed by 153
Abstract
Climate change and land-use intensification are speeding up the loss of ecosystem services that support human health, food security, and environmental stability. Vegetative interventions—such as urban forests in cities and cover crops in farming systems—are increasingly seen as nature-based solutions for climate adaptation. [...] Read more.
Climate change and land-use intensification are speeding up the loss of ecosystem services that support human health, food security, and environmental stability. Vegetative interventions—such as urban forests in cities and cover crops in farming systems—are increasingly seen as nature-based solutions for climate adaptation. However, their benefits are often viewed separately. This review combines 20 years of research to explore how these strategies, together, improve provisioning, regulating, supporting, and cultural ecosystem services across various landscapes. Urban forests help reduce urban heat islands, improve air quality, manage stormwater, and offer cultural and health benefits. Cover crops increase soil fertility, regulate water, support nutrient cycling, and enhance crop yields, with potential for carbon sequestration and biofuel production. We identify opportunities and challenges, highlight barriers to adopting these strategies, and suggest integrated frameworks—including spatial decision-support tools, incentive programs, and education—to encourage broader use. By connecting urban and rural systems, this review underscores vegetation as a versatile tool for resilience, essential for reaching global sustainability goals. Full article
(This article belongs to the Special Issue 2026 Feature Papers by Diversity's Editorial Board Members)
Show Figures

Graphical abstract

21 pages, 785 KB  
Article
Carbon Farming in Türkiye: Challenges, Opportunities and Implementation Mechanism
by Abdüssamet Aydın, Fatma Köroğlu, Evan Alexander Thomas, Carlo Salvinelli, Elif Pınar Polat and Kasırga Yıldırak
Sustainability 2026, 18(2), 891; https://doi.org/10.3390/su18020891 - 15 Jan 2026
Viewed by 247
Abstract
Carbon farming represents a strategic approach to enhancing agricultural sustainability while reducing greenhouse gas (GHG) emissions. In Türkiye, agriculture accounted for approximately 14.9% of national GHG emissions in 2023, dominated by methane (CH4) and nitrous oxide (N2O). By increasing [...] Read more.
Carbon farming represents a strategic approach to enhancing agricultural sustainability while reducing greenhouse gas (GHG) emissions. In Türkiye, agriculture accounted for approximately 14.9% of national GHG emissions in 2023, dominated by methane (CH4) and nitrous oxide (N2O). By increasing carbon storage in soils and vegetation, carbon farming can improve soil health, water retention, and climate resilience, thereby contributing to mitigation efforts and sustainable rural development. This study reviews and synthesizes international and national evidence on carbon farming mechanisms, practices, payment models, and adoption enablers and barriers, situating these insights within Türkiye’s agroecological and institutional context. The analysis draws on a systematic review of peer-reviewed literature, institutional reports, and policy documents published between 2015 and 2025. The findings indicate substantial mitigation potential from soil-based practices and livestock- and manure-related measures, yet limited uptake due to low awareness, capacity constraints, financial and administrative barriers, and regulatory gaps, highlighting the need for region-specific approaches. To support implementation and scaling, the study proposes a policy-oriented, regionally differentiated and digitally enabled MRV framework and an associated implementation pathway designed to reduce transaction costs, enhance farmer participation, and enable integration with emerging carbon market mechanisms. Full article
Show Figures

Figure 1

33 pages, 6779 KB  
Article
Effects of Elevated CO2 on Yield and Nutritional Quality of Kale and Spinach: A Meta-Analysis
by Jiata U. Ekele, Joseph O. Obaje, Susanne R. K. Zajitschek, Richard J. Webster, Fatima Perez de Heredia, Katie E. Lane, Abdulmannan Fadel and Rachael C. Symonds
Biology 2026, 15(2), 152; https://doi.org/10.3390/biology15020152 - 15 Jan 2026
Viewed by 187
Abstract
Elevated atmospheric CO2 is known to alter plant physiology, yet its specific effects on nutrient-rich leafy vegetables remain insufficiently quantified. This study aimed to examine how eCO2 influences yield and nutritional quality in kale (Brassica oleracea) and spinach ( [...] Read more.
Elevated atmospheric CO2 is known to alter plant physiology, yet its specific effects on nutrient-rich leafy vegetables remain insufficiently quantified. This study aimed to examine how eCO2 influences yield and nutritional quality in kale (Brassica oleracea) and spinach (Spinacia oleracea) through the first meta-analysis focused exclusively on these crops. Following the Collaboration for Environmental Evidence (CEE) guidelines, we systematically reviewed eligible studies and conducted a random-effects meta-analysis to evaluate overall and subgroup responses based on CO2 concentration, crop type and exposure duration. Effect sizes were calculated using Hedges’ g with 95% confidence intervals. The analysis showed that eCO2 significantly increased biomass in spinach (g = 1.21) and kale (g = 0.97). However, protein content declined in both crops (spinach: g = −0.76; kale: g = −0.61), and mineral concentrations, particularly calcium and magnesium, were reduced, with spinach exhibiting stronger nutrient losses overall. The variability in response across different CO2 concentrations and exposure times further underscores the complexity of eCO2 effects. These results highlight a trade-off between productivity and nutritional quality under future CO2 conditions. Addressing this challenge will require strategies such as targeted breeding programmes, biofortification, precision agriculture and improved sustainable agricultural practices to maintain nutrient density. This research provides critical evidence for policymakers and scientists to design sustainable food systems that safeguard public health in a changing climate. Full article
Show Figures

Figure 1

17 pages, 1112 KB  
Article
Small but Mighty: Low Bio-Accessibility Preserves Polyphenols from Mini Purple Carrots for Direct Action Against Colon Cancer Cells
by Amel Hamdi, Emel Hasan Yusuf, Rocío Rodríguez-Arcos, Ana Jiménez-Araujo, Paulina Nowicka, Rafael Guillén-Bejarano and Sara Jaramillo-Carmona
Antioxidants 2026, 15(1), 113; https://doi.org/10.3390/antiox15010113 - 15 Jan 2026
Viewed by 260
Abstract
Carrots are exceptional sources of bioactive compounds with potential health benefits. This study investigated the relationship between the biodiversity of carrot cultivars (colour and size) and their potential chemopreventive properties. Four distinct carrot cultivars (orange, white, yellow, and purple) of normal and miniature [...] Read more.
Carrots are exceptional sources of bioactive compounds with potential health benefits. This study investigated the relationship between the biodiversity of carrot cultivars (colour and size) and their potential chemopreventive properties. Four distinct carrot cultivars (orange, white, yellow, and purple) of normal and miniature sizes were comprehensively analysed for polyphenolic composition, bio-accessibility through in vitro simulated digestion, and in vitro antiproliferative activity against the HCT-116 colon cancer cell line. Our findings revealed that vegetable size influenced phytochemical composition more than vegetable colour, with mini purple carrots exhibiting exceptionally high polyphenolic concentrations and superior antiproliferative activity compared to orange, yellow, or white varieties. Notably, the bioaccessibility of bioactive compounds remained remarkably low across all samples, suggesting that these phytochemicals reach the colon in intact form, potentially enabling direct interaction with cancer cells. Interestingly, we found no direct correlation between total phenolic content and antiproliferative activity. In vitro cell cycle analysis revealed that mini purple carrot extracts induced S-phase arrest similar to the chemotherapeutic agent 5-FU, whereas other extracts caused G0/G1-phase arrest. The specific polyphenolic composition appears to be fundamentally important for bioactivity, with chlorogenic acid and diferulic acid-derivative isomer 2 potentially acting synergistically. These findings highlight the importance of carrot biodiversity in delivering functional foods with enhanced health-promoting properties, particularly for colorectal cancer prevention. Full article
Show Figures

Graphical abstract

33 pages, 11044 KB  
Article
Monitoring the Sustained Environmental Performances of Nature-Based Solutions in Urban Environments: The Case Study of the UPPER Project (Latina, Italy)
by Riccardo Gasbarrone, Giuseppe Bonifazi and Silvia Serranti
Sustainability 2026, 18(2), 864; https://doi.org/10.3390/su18020864 - 14 Jan 2026
Viewed by 132
Abstract
This follow-up study investigates the long-term environmental sustainability and remediation outcomes of the UPPER (‘Urban Productive Parks for Sustainable Urban Regeneration’-UIA04-252) project in Latina, Italy, focusing on Nature-Based Solutions (NbS) applied to urban green infrastructure. By integrating proximal and satellite-based remote sensing methodologies, [...] Read more.
This follow-up study investigates the long-term environmental sustainability and remediation outcomes of the UPPER (‘Urban Productive Parks for Sustainable Urban Regeneration’-UIA04-252) project in Latina, Italy, focusing on Nature-Based Solutions (NbS) applied to urban green infrastructure. By integrating proximal and satellite-based remote sensing methodologies, the research evaluates persistent improvements in vegetation health, soil moisture dynamics, and overall environmental quality over multiple years. Building upon the initial monitoring framework, this case study incorporates updated data and refined techniques to quantify temporal changes and assess the ecological performance of NbS interventions. In more detail, ground-based data from meteo-climatic, air quality stations and remote satellite data from the Sentinel-2 mission are adopted. Ground-based measurements such as temperature, humidity, radiation, rainfall intensity, PM10 and PM2.5 are carried out to monitor the overall environmental quality. Updated satellite imagery from Sentinel-2 is analyzed using advanced band ratio indices, including the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI) and the Normalized Difference Moisture Index (NDMI). Comparative temporal analysis revealed consistent enhancements in vegetation health, with NDVI values significantly exceeding baseline levels (NDVI 2022–2024: +0.096, p = 0.024), demonstrating successful vegetation establishment with larger gains in green areas (+27.0%) than parking retrofits (+11.4%, p = 0.041). However, concurrent NDWI decline (−0.066, p = 0.063) indicates increased vegetation water stress despite irrigation infrastructure. NDMI improvements (+0.098, p = 0.016) suggest physiological adaptation through stomatal regulation. Principal Component Analysis (PCA) of meteo-climatic variables reveals temperature as the dominant environmental driver (PC2 loadings > 0.8), with municipality-wide NDVI-temperature correlations of r = −0.87. These multi-scale findings validate sustained NbS effectiveness in enhancing vegetation density and ecosystem services, yet simultaneously expose critical water-limitation trade-offs in Mediterranean semi-arid contexts, necessitating adaptive irrigation management and continued monitoring for long-term urban climate resilience. The integrated monitoring approach underscores the critical role of continuous, multi-scale assessment in ensuring long-term success and adaptive management of NbS-based interventions. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies for Environmental Sustainability)
Show Figures

Figure 1

13 pages, 1183 KB  
Article
Valorization of Lettuce (Lactuca sativa L.) as an Unexploited Source of Natural Insoluble Dietary Fiber Through Integrated Cultivation Conditions and Freeze-Drying Optimization
by Augustina Sandina Tronac, Simona Marcu Spinu, Mihaela Dragoi Cudalbeanu, Carmen Laura Cimpeanu and Alina Ortan
Fibers 2026, 14(1), 10; https://doi.org/10.3390/fib14010010 - 12 Jan 2026
Viewed by 131
Abstract
Human health is profoundly influenced by external factors, with stress being a primary contributor. In this context, the digestive system is particularly susceptible. The prevalence of diseases affecting the small intestine and colon is increasing. Consequently, insoluble plant fibers, such as cellulose and [...] Read more.
Human health is profoundly influenced by external factors, with stress being a primary contributor. In this context, the digestive system is particularly susceptible. The prevalence of diseases affecting the small intestine and colon is increasing. Consequently, insoluble plant fibers, such as cellulose and hemicellulose, play a crucial role in promoting intestinal transit and maintaining colon health. Lettuce is a widely consumed leafy vegetable with high nutritional value and has been intensively studied through hydroponic cultivation. This study aims to optimize the cultivation conditions and freeze-drying process of Lugano and Carmesi lettuce varieties (Lactuca sativa L.) by identifying the optimal growth conditions, freeze-drying duration, and sample surface area in order to achieve an optimal percentage of insoluble fibers. Carmesi and Lugano varieties were selected based on their contrasting growth characteristics and leaf morphology, allowing to assess whether treatments and processing conditions have consistent effects on different types of lettuce. The optimal freeze-drying parameters were determined to include a 48 h freeze-drying period, a maximum sample surface area of 144 cm2, and growth under combined conditions of supplementary oxygenation and LED light exposure. The optimal fiber composition, cellulose (21.61%), hemicellulose (11.84%) and lignin (1.36%), was found for the Lugano variety, which exhibited lower lignin and higher cellulose contents than the Carmesi variety. The quantification of hemicellulose, cellulose and lignin was performed using the well-known NDF, ADF and ADL methods. Therefore, optimized freeze-dried lettuce powder, particularly from the Lugano variety, presents a high-value functional ingredient for enriching foods and developing nutritional supplements aimed at digestive health. Full article
Show Figures

Figure 1

20 pages, 524 KB  
Article
Evaluating a Community-Based Intervention to Advance Food Equity and Climate Resilience in the South Bronx: Findings from the LEAF Program
by Natalie Greaves-Peters, Pamela A. Koch, Carolina Saavedra, Erik Mencos Contreras, Cynthia Rosenzweig, Wei Yin, Jack Algiere, Jason Grauer, Daniel Bartush, Grace Jorgensen, Natalia Mendez, Liza Austria and Karina Ciprian
Sustainability 2026, 18(2), 750; https://doi.org/10.3390/su18020750 - 12 Jan 2026
Viewed by 232
Abstract
Access to ecologically grown, nutritious food remains limited in low-income U.S. communities due to cost, structural inequities, and the dominance of industrial food systems. Stone Barns Center’s Leading an Ecological and Accessible Food System (LEAF) program—developed through a community-based participatory partnership in the [...] Read more.
Access to ecologically grown, nutritious food remains limited in low-income U.S. communities due to cost, structural inequities, and the dominance of industrial food systems. Stone Barns Center’s Leading an Ecological and Accessible Food System (LEAF) program—developed through a community-based participatory partnership in the South Bronx—aims to address these challenges through biweekly distributions of regeneratively grown produce, seasonal gardening kits, and culturally responsive nutrition education. This study presents findings from the first two years (2023 and 2024) of a multi-timepoint repeated cross-sectional evaluation using six household-level surveys (n = 79–80 families per round). The surveys captured changes in fruit and vegetable consumption, gardening comfort, emotional well-being, participation in SNAP and WIC programs, food purchasing behaviors, and unmet needs. Statistically significant (p < 0.05) improvements were observed across key outcomes: mean fruit and vegetable intake increased from 3.8 to 4.5 (1–5 scale), comfort with growing food increased from 3.1 to 4.6, emotional response to gardening from 4.1 to 4.6. SNAP participation increased from 15% (12 of 79 households) to 33% (26 of 79 households), and purchasing shifted toward local access points. Notably, 99% (79 of 80 households) of Year 1 families returned for Year 2, reflecting strong engagement and trust. These results highlight the potential of integrated, community-partnered, and climate-aligned interventions to advance health equity, ecological literacy, and food justice. The LEAF program offers a replicable model that may support pathways towards more sustainable and community-aligned food systems in other under-resourced settings. Full article
(This article belongs to the Section Health, Well-Being and Sustainability)
Show Figures

Figure 1

19 pages, 963 KB  
Review
Print, Eat, Heal: Unravelling the Potential of Bioactives in 3D Food Technology
by Monize Bürck, Monica Masako Nakamoto, Sergiana dos Passos Ramos, Marcelo Assis and Anna Rafaela Cavalcante Braga
Foods 2026, 15(2), 260; https://doi.org/10.3390/foods15020260 - 11 Jan 2026
Viewed by 170
Abstract
3D-printed food (3DPF) is on the rise, enabling the development of new food products. Current applications in this domain led to the replication of meat analogs, protein-enriched products, and dietary solutions tailored to address nuanced health necessities. Central to the functional versatility of [...] Read more.
3D-printed food (3DPF) is on the rise, enabling the development of new food products. Current applications in this domain led to the replication of meat analogs, protein-enriched products, and dietary solutions tailored to address nuanced health necessities. Central to the functional versatility of 3DPF is its capacity for post-printing textural manipulation, which facilitates diverse food applications. Integrating bioactive compounds sourced from biodiversity, vegetables, algae, and agricultural residues is not merely an exercise in culinary refinement but an outstanding contribution to the circular economy. Strategic incorporation of these bioactive compounds into foodinks enhances the antioxidant potential of consumables and contributes to physiological benefits for human health, as evidenced by extant literature, which underscores their antioxidative and anti-inflammatory properties. Nevertheless, critical gaps emerge upon a meticulous examination of the recent literature, notably regarding the viability of bioactive compounds within foodink matrices for 3DPF and their bioaccessibility after simulated digestion. Thus, the objective of this review is to evaluate the current state of the art in 3DPF, with a focus on biodiversity as a source of innovative ingredients and matrices and on the bioaccessibility of associated bioactive compounds, while outlining future research directions in this field. Full article
Show Figures

Figure 1

19 pages, 931 KB  
Review
Plant-Forward Dietary Approaches to Reduce the Risk of Cardiometabolic Disease Among Hispanic/Latinx Adults Living in the United States: A Narrative Review
by Franze De La Calle, Joanna Bagienska and Jeannette M. Beasley
Nutrients 2026, 18(2), 220; https://doi.org/10.3390/nu18020220 - 10 Jan 2026
Viewed by 223
Abstract
Background: Cardiometabolic risk (CMR), including obesity, dyslipidemia, hypertension, and impaired glucose regulation, disproportionately affects Hispanic/Latinx adults in the United States (U.S.). Although plant-forward dietary patterns are established as cardioprotective, less is known about how dietary patterns within Hispanic/Latinx subgroups relate to CMR. [...] Read more.
Background: Cardiometabolic risk (CMR), including obesity, dyslipidemia, hypertension, and impaired glucose regulation, disproportionately affects Hispanic/Latinx adults in the United States (U.S.). Although plant-forward dietary patterns are established as cardioprotective, less is known about how dietary patterns within Hispanic/Latinx subgroups relate to CMR. Methods: A narrative review was conducted of observational studies among U.S. Hispanic/Latinx adults (≥18 years) examining defined dietary patterns (a priori, a posteriori, or hybrid) in relation to CMR outcomes (e.g., BMI, waist circumference, blood pressure, glucose, lipids). Risk of bias was assessed using an adapted version of the Newcastle–Ottawa Scale. Results: Ten studies met the inclusion criteria, including Seventh-day Adventist Latinx, Puerto Rican adults, Mexican American adults, Hispanic women, and a national Hispanic cohort. Plant-forward dietary patterns were associated with lower BMI and waist circumference, lower triglycerides and fasting glucose, and higher HDL-C. In contrast, energy-dense patterns characterized by refined grains, added sugars, processed meats, fried foods, solid fats, and sugar-sweetened beverages were associated with greater adiposity, poorer lipid profiles, and higher blood pressure. Traditional rice-and-beans–based patterns observed in Puerto Rican and Mexican American groups were associated with central adiposity and higher metabolic syndrome prevalence, despite modestly higher intakes of fruits, vegetables, and fiber. Study quality ranged from good (n = 4) to very good (n = 6). Conclusions: Across Hispanic/Latinx subgroups, plant-forward dietary patterns were associated with favorable cardiometabolic profiles, whereas refined and animal-based patterns aligned with higher CMR. Given the predominance of cross-sectional evidence, these findings should be interpreted as associative rather than causal. Culturally grounded dietary counseling, along with additional longitudinal and intervention studies, is needed to support cardiometabolic health in these populations. Full article
Show Figures

Figure 1

14 pages, 1920 KB  
Article
Intestinal Microbiota of Older Japanese Females Adhering to a Traditional Japanese Brown Rice-Based Diet Pattern
by Kouta Hatayama, Aya Ebara, Chihiro Hirano, Kanako Kono, Hiroaki Masuyama and Iyoko Ashikari
Nutrients 2026, 18(2), 219; https://doi.org/10.3390/nu18020219 - 9 Jan 2026
Viewed by 337
Abstract
Background/Objectives: Some Japanese people still adhere to a systematic traditional Japanese diet pattern (the Shokuyo diet) consisting mainly of brown rice, vegetables, legumes, and small amounts of fish. We investigated the impact of this dietary pattern on the intestinal microbiota of its [...] Read more.
Background/Objectives: Some Japanese people still adhere to a systematic traditional Japanese diet pattern (the Shokuyo diet) consisting mainly of brown rice, vegetables, legumes, and small amounts of fish. We investigated the impact of this dietary pattern on the intestinal microbiota of its female consumers. Methods: The intestinal microbiota of 19 Japanese females in their 60s and 70s consuming the Shokuyo diet (Shokuyo diet group) and 50 females of the same age consuming a normal Japanese diet (NJ diet group) were compared. The NJ diet group was further subdivided into a healthy NJ diet H subgroup, comprising females (n = 19) without any diseases, and an unhealthy NJ diet UH subgroup (n = 31) consisting of females with certain diseases, and a subgroup analysis was performed. Intestinal microbiota analysis was performed using 16S rRNA gene amplicon sequencing. Results: The β-diversity of the intestinal microbiota significantly differed between the Shokuyo diet and NJ diet groups. Similarly, in the subgroup analysis, β-diversity also significantly differed between the NJ diet UH subgroup and the Shokuyo diet group. However, no significant difference was observed between the NJ diet H and Shokuyo diet groups. These results indicate that the intestinal microbial composition of the Shokuyo diet group resembled that of the healthy participants, and that differences in intestinal microbial composition between the Shokuyo and NJ diet groups were strongly influenced by the presence of participants with diseases in the NJ diet group. That is, differences in β-diversity may have been strongly mediated by the health status of the participants. Conclusions: Consumption of the Shokuyo diet may be associated with a healthy intestinal microbial composition in older Japanese female, suggesting its potential as a viable dietary intervention option. Full article
(This article belongs to the Section Nutrition in Women)
Show Figures

Graphical abstract

Back to TopTop