The Dilemma of Reconstructive Material Choice for Orbital Floor Fracture: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information Sources
2.2. Search Strategy
2.3. Inclusion Criteria
2.4. Exclusion Criteria
2.5. Data Collection and Analysis
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Characteristics of Materials
3.4. Autologous Materials
3.4.1. Autologous Bone
3.4.2. Autologous Cartilage
3.5. Allogenic Materials
3.6. Alloplastic Materials
3.7. Permanent Alloplastic Materials
3.7.1. Titanium
3.7.2. Porous Polyethylene
3.7.3. Bioactive Glass
3.7.4. Silicone
3.8. Resorbable Alloplastic Materials
3.8.1. Polyglycolic Acid (PGA)
3.8.2. Polyglactin
3.8.3. Polydioxanone
3.8.4. Poly-L/D-Lactic Acid
3.9. Complications
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ng, P.; Chu, C.; Young, N.; Soo, M. Imaging of orbital floor fractures. Australas. Radiol. 1996, 40, 264–268. [Google Scholar] [CrossRef]
- Smith, B.; William, F.; Regan, J. Blowout fracture of the orbit: Mechanism and correction of internal orbital fracture. Am. J. Ophthalmol. 1957, 44, 197–205. [Google Scholar]
- Gossman, M.D.; Pollock, R.A. Acute Orbital Trauma: Diagnosis and Treatment. In Oculoplastic Surgery; McCord, C.D., Tanenbaum, M., Nunery, W., Eds.; Raven Press: New York, NY, USA, 1995; pp. 515–551. [Google Scholar]
- Le Fort, R. Étude expérimentale sur les fractures de la machoire supérieure. Rev. Chir. Paris 1901, 23, 208–227. [Google Scholar]
- Brucoli, M.; Arcuri, F.; Cavenaghi, R.; Benech, A. Analysis of complications after surgical repair of orbital fractures. J. Craniofac. Surg. 2011, 22, 1387–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirby, E.J.; Turner, J.B.; Davenport, D.L.; Vasconez, H.C. Orbital floor fractures: Outcomes of reconstruction. Ann. Plast. Surg. 2011, 66, 508–512. [Google Scholar] [CrossRef]
- Patel, B.C.; Hoffmann, J. Management of complex orbital fractures. Facial Plast. Surg. 1998, 14, 83–104. [Google Scholar] [CrossRef]
- McCoy, F. Management of the orbit in facial fractures. Plast. Reconstr. Surg. 1957, 19, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Patterson, R.W., Jr.; McCoy, W.J., 3rd; Benedict, W. The Use of Processed Bovine Bone in Orbital Floor Fractures. Arch. Ophthalmol. 1967, 78, 360–364. [Google Scholar] [CrossRef]
- Cutright, D.E.; Hunsuck, E.E. The repair of fractures of the orbital floor using biodegradable polylactic acid. Oral Surg. Oral Med. Oral Pathol. 1972, 33, 28–34. [Google Scholar] [CrossRef]
- Runci, M.; De Ponte, F.S.; Falzea, R.; Bramanti, E.; Lauritano, F.; Cervino, G.; Famà, F.; Calvo, A.; Crimi, S.; Rapisarda, S.; et al. Facial and Orbital Fractures: A Fifteen Years Retrospective Evaluation of North East Sicily Treated Patients. Open Dent. J. 2017, 11, 546–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnstine, M.A. Clinical recommendations for repair of orbital facial fractures. Curr. Opin. Ophthalmol. 2003, 14, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Levin, L.M.; Kademani, D. Clinical considerations in the management of orbital blow-out fractures. Compend. Contin. Educ. Dent. 1997, 18, 593–602. [Google Scholar]
- Dutton, J.J. Management of blow-out fractures of the orbital floor. Surv. Ophthalmol. 1991, 35, 279–280. [Google Scholar] [PubMed]
- Scawn, R.L.; Lim, L.H.; Whipple, K.M.; Dolmetsch, A.; Priel, A.; Korn, B.; Kikkawa, D.O. Outcomes of Orbital Blow-Out Fracture Repair Performed Beyond 6 Weeks After Injury. Ophthal. Plast. Reconstr. Surg. 2016, 32, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Kang, Y.S.; Yang, J.Y.; Lee, D.Y.; Chung, Y.Y.; Rohrich, R.J. Endoscopic transnasal approach for the treatment of medial orbital blow-out fracture: A technique for controlling the fractured wall with a balloon catheter and Merocel. Plast. Reconstr. Surg. 2002, 110, 417–426. [Google Scholar] [CrossRef]
- Holtmann, H.; Eren, H.; Sander, K.; Kübler, N.R.; Handschel, J. Orbital floor fractures—Short- and intermediate-term complications depending on treatment procedures. Head Face Med. 2016, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Cole, P.; Boyd, V.; Banerji, S.; Hollier, L.H., Jr. Comprehensive management of orbital fractures. Plast. Reconstr. Surg. 2007, 120, 57s–63s. [Google Scholar] [CrossRef]
- Aitasalo, K.; Kinnunen, I.; Palmgren, J.; Varpula, M. Repair of orbital floor fractures with bioactive glass implants. J. Oral Maxillofac. Surg. 2001, 59, 1390–1396. [Google Scholar] [CrossRef]
- Al-Sukhun, J.; Lindqvist, C. A comparative study of 2 implants used to repair inferior orbital wall bony defects: Autogenous bone graft versus bioresorbable poly-L/DL-Lactide [P(L/DL)LA 70/30] plate. J. Oral Maxillofac. Surg. 2006, 64, 1038–1048. [Google Scholar] [CrossRef] [PubMed]
- Al-Sukhun, J.; Törnwall, J.; Lindqvist, C.; Kontio, R. Bioresorbable poly-L/DL-lactide (P[L/DL]LA 70/30) plates are reliable for repairing large inferior orbital wall bony defects: A pilot study. J. Oral Maxillofac. Surg. 2006, 64, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Aronowitz, J.A.; Freeman, B.S.; Spira, M. Long-term stability of Teflon orbital implants. Plast. Reconstr. Surg. 1986, 78, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Asamura, S.; Ikada, Y.; Matsunaga, K.; Wada, M.; Isogai, N. Treatment of orbital floor fracture using a periosteum-polymer complex. J. Craniomaxillofac. Surg. 2010, 38, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Balogh, C.; Lucas, R.; Kraft, T.; Breton, P.; Freidel, M. Interest of lactic acid polymer implants in the repair of traumatic loss of substance from the orbit floor. Rev. Stomatol. Chir. Maxillofac. 2001, 102, 109–114. (In French) [Google Scholar]
- Baumann, A.; Burggasser, G.; Gauss, N.; Ewers, R. Orbital floor reconstruction with an alloplastic resorbable polydioxanone sheet. Int. J. Oral Maxillofac. Surg. 2002, 31, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Constantian, M.B. Use of auricular cartilage in orbital floor reconstruction. Plast. Reconstr. Surg. 1982, 69, 951–955. [Google Scholar] [CrossRef]
- Cordewener, F.W.; Bos, R.R.; Rozema, F.R.; Houtman, W.A. Poly(L-lactide) implants for repair of human orbital floor defects: Clinical and magnetic resonance imaging evaluation of long-term results. J. Oral Maxillofac. Surg. 1996, 54, 9–13; discussion 13–14. [Google Scholar] [CrossRef]
- Düzgün, S.; Kayahan Sirkeci, B. Comparison of post-operative outcomes of graft materials used in reconstruction of blow-out fractures. Turk. J. Trauma Emerg. Surg. 2020, 26, 538–544. [Google Scholar]
- Ellis, E., 3rd; Tan, Y. Assessment of internal orbital reconstructions for pure blowout fractures: Cranial bone grafts versus titanium mesh. J. Oral Maxillofac. Surg. 2003, 61, 442–453. [Google Scholar] [CrossRef]
- Guerra, M.F.; Pérez, J.S.; Rodriguez-Campo, F.J.; Gías, L.N. Reconstruction of orbital fractures with dehydrated human dura mater. J. Oral Maxillofac. Surg. 2000, 58, 1366–1367. [Google Scholar]
- Guo, L.; Tian, W.; Feng, F.; Long, J.; Li, P.; Tang, W. Reconstruction of orbital floor fractures: Comparison of individual prefabricated titanium implants and calvarial bone grafts. Ann. Plast. Surg. 2009, 63, 624–631. [Google Scholar] [CrossRef]
- Hollier, L.H.; Rogers, N.; Berzin, E.; Stal, S. Resorbable mesh in the treatment of orbital floor fractures. J. Craniofac. Surg. 2001, 12, 242–246. [Google Scholar] [CrossRef]
- Hwang, K.; Kita, Y. Alloplastic template fixation of blow-out fracture. J. Craniofac. Surg. 2002, 13, 510–512. [Google Scholar] [CrossRef]
- Iizuka, T.; Mikkonen, P.; Paukku, P.; Lindqvist, C. Reconstruction of orbital floor with polydioxanone plate. Int. J. Oral Maxillofac. Surg. 1991, 20, 83–87. [Google Scholar] [PubMed]
- Kinnunen, I.; Aitasalo, K.; Pöllönen, M.; Varpula, M. Reconstruction of orbital floor fractures using bioactive glass. J. Oral Maxillofac. Surg. 2000, 28, 229–234. [Google Scholar] [CrossRef]
- Klisovic, D.D.; Katz, S.E.; Lubow, M. The wayward implant: Orbital silicone plate extrusion associated with squamous epithelial downgrowth and infection. Orbit 2002, 21, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Kontio, R.; Suuronen, R.; Salonen, O.; Paukku, P.; Konttinen, Y.T.; Lindqvist, C. Effectiveness of operative treatment of internal orbital wall fracture with polydioxanone implant. Int. J. Oral Maxillofac. Surg. 2001, 30, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Kontio, R.K.; Laine, P.; Salo, A.; Paukku, P.; Lindqvist, C.; Suuronen, R. Reconstruction of internal orbital wall fracture with iliac crest free bone graft: Clinical, computed tomography, and magnetic resonance imaging follow-up study. Plast. Reconstr. Surg. 2006, 118, 1365–1374. [Google Scholar] [CrossRef]
- Kraus, M.; Gatot, A.; Fliss, D.M. Repair of traumatic inferior orbital wall defects with nasoseptal cartilage. J. Oral Maxillofac. Surg. 2001, 59, 1397–1401. [Google Scholar] [CrossRef]
- Lai, A.; Gliklich, R.E.; Rubin, P.A. Repair of orbital blow-out fractures with nasoseptal cartilage. Laryngoscope 1998, 108, 645–650. [Google Scholar] [CrossRef]
- Lee, H.B.; Nunery, W.R. Orbital adherence syndrome secondary to titanium implant material. Ophthal. Plast. Reconstr. Surg. 2009, 25, 33–36. [Google Scholar] [CrossRef]
- Lieger, O.; Schaller, B.; Zix, J.; Kellner, F.; Iizuka, T. Repair of orbital floor fractures using bioresorbable poly-L/DL-lactide plates. Arch. Facial Plast. Surg. 2010, 12, 399–404. [Google Scholar] [CrossRef]
- Lipshutz, H.; Ardizone, R.A. Further observations on the use of silicones in the management of orbital fractures. J. Trauma 1965, 5, 617–623. [Google Scholar]
- Lupi, E.; Messi, M.; Ascani, G.; Balercia, P. Orbital floor repair using Medpor porous polyethylene implants. Investig. Ophthalmol. Vis. Sci. 2004, 45, 4700. [Google Scholar]
- Mauriello, J.A., Jr.; Wasserman, B.; Kraut, R. Use of Vicryl (polyglactin-910) mesh implant for repair of orbital floor fracture causing diplopia: A study of 28 patients over 5 years. Ophthal. Plast. Reconstr. Surg. 1993, 9, 191–195. [Google Scholar] [CrossRef]
- Polley, J.W.; Ringler, S.L. The use of Teflon in orbital floor reconstruction following blunt facial trauma: A 20-year experience. Plast. Reconstr. Surg. 1987, 79, 39–43. [Google Scholar]
- Romano, J.J.; Iliff, N.T.; Manson, P.N. Use of Medpor porous polyethylene implants in 140 patients with facial fractures. J. Craniofac. Surg. 1993, 4, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Rubin, J.P.; Yaremchuk, M.J. Complications and toxicities of implantable biomaterials used in facial reconstructive and aesthetic surgery: A comprehensive review of the literature. Plast. Reconstr. Surg. 1997, 100, 1336–1353. [Google Scholar]
- Sewall, S.R.; Pernoud, F.G.; Pernoud, M.J. Late reaction to silicone following reconstruction of an orbital floor fracture. J. Oral Maxillofac. Surg. 1986, 44, 821–825. [Google Scholar] [PubMed]
- Sugar, A.W.; Kuriakose, M.; Walshaw, N.D. Titanium mesh in orbital wall reconstruction. Int. J. Oral Maxillofac. Surg. 1992, 21, 140–144. [Google Scholar]
- Waite, P.D.; Clanton, J.T. Orbital floor reconstruction with lyophilized dura. J. Oral Maxillofac. Surg. 1988, 46, 727–730. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, J.; Liu, L.; Lin, Y.; Li, X.; Tang, W.; Wang, H.; Long, J.; Zheng, X.; Tian, W. Orbital floor reconstruction: A retrospective study of 21 cases. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2008, 106, 324–330. [Google Scholar] [CrossRef]
- Young, S.M.; Sundar, G.; Lim, T.C.; Lang, S.S.; Thomas, G.; Amrith, S. Use of bioresorbable implants for orbital fracture reconstruction. Br. J. Ophthalmol. 2017, 101, 1080–1085. [Google Scholar] [CrossRef]
- Zunz, E.; Blanc, O.; Leibovitch, I. Traumatic orbital floor fractures: Repair with autogenous bone grafts in a tertiary trauma center. J. Oral Maxillofac. Surg. 2012, 70, 584–592. [Google Scholar] [CrossRef]
- Potter, J.K.; Ellis, E. Biomaterials for reconstruction of the internal orbit. J. Oral Maxillofac. Surg. 2004, 62, 1280–1297. [Google Scholar] [CrossRef]
- Mok, D.; Lessard, L.; Cordoba, C.; Harris, P.G.; Nikolis, A. A Review of Materials Currently Used in Orbital Floor Reconstruction. Can. J. Plast. Surg. 2004, 12, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Rowning, C.W.; Walker, R.V. The use of alloplastics in 45 cases of orbital floor reconstruction. Am. J. Ophthalmol. 1965, 60, 684–699. [Google Scholar]
- Coleman, D.L.; King, R.N.; Andrade, J.D. The foreign body reaction: A chronic inflammatory response. J. Biomed. Mater. Res. 1974, 8, 199–211. [Google Scholar] [CrossRef]
- Davila, J.C.; Lautsch, E.V.; Palmer, T.E. Some physical factors affecting the acceptance of synthetic materials as tissue implants. Ann. N. Y. Acad. Sci. 1968, 146, 138–147. [Google Scholar] [CrossRef]
- Davila, J.C. Prostheses and living tissues. Ann. Thorac. Surg. 1966, 2, 126. [Google Scholar] [CrossRef]
- Brown, J.B.; Fryer, M.P. Study and use of synthetic materials such as silicone and Teflon as subcutaneous prostheses. Plast. Reconstr. Surg. 1960, 26, 264. [Google Scholar] [CrossRef]
- Calnan, J. The use of inert plastic material in reconstructive surgery. I. A biological test for tissue acceptance. II. Tissue reactions to commonly used materials. Br. J. Plast. Surg. 1963, 16, 1–22. [Google Scholar] [CrossRef]
- Vuyk, H.D.; Adamson, P.A. Biomaterials in rhinoplasty. Clin. Otolaryngol. Allied Sci. 1998, 23, 209–217. [Google Scholar] [CrossRef]
- Converse, J.M.; Smith, B.; Obear, M.F.; Wood-Smith, D. Orbital blowout fractures: A ten-year survey. Plast. Reconstr. Surg. 1967, 39, 20–36. [Google Scholar] [CrossRef]
- Chowdhury, K.; Krause, G.E. Selection of materials for orbital floor reconstruction. Arch. Otolaryngol. Head Neck Surg. 1998, 124, 1398–1401. [Google Scholar] [CrossRef]
- Johnson, P.E.; Raftopoulos, I. In situ splitting of a rib graft for reconstruction of the orbital floor. Plast. Reconstr. Surg. 1999, 103, 1709–1711. [Google Scholar] [CrossRef]
- Kakibuchi, M.; Fukuda, K.; Yamada, N.; Matsuda, K.; Kawai, K.; Kubo, T.; Sakagami, M. A simple method of harvesting a thin iliac bone graft for reconstruction of the orbital wall. Plast. Reconstr. Surg. 2003, 111, 961–962. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, W.; Buchman, S.R. Volume maintenance of onlay bone grafts in the craniofacial skeleton: Micro-architecture versus embryologic origin. Plast. Reconstr. Surg. 1998, 102, 291–299. [Google Scholar] [CrossRef]
- Glassman, R.D.; Manson, P.N.; Vanderkolk, C.A.; Iliff, N.T.; Yaremchuk, M.J.; Petty, P.; Defresne, C.R.; Markowitz, B.L. Rigid fixation of internal orbital fractures. Plast. Reconstr. Surg. 1990, 86, 1103–1109; discussion 1110–1111. [Google Scholar] [CrossRef]
- Sullivan, P.K.; Rosenstein, D.A.; Holmes, R.E.; Craig, D.; Manson, P.N. Bone-graft reconstruction of the monkey orbital floor with iliac grafts and titanium mesh plates: A histometric study. Plast. Reconstr. Surg. 1993, 91, 776–777. [Google Scholar] [CrossRef]
- Gunarajah, D.R.; Samman, N. Biomaterials for repair of orbital floor blowout fractures: A systematic review. J. Oral Maxillofac. Surg. 2013, 71, 550–570. [Google Scholar] [CrossRef]
- Lin, K.Y.; Bartlett, S.P.; Yaremchuk, M.J.; Fallon, M.; Grossman, R.F.; Whitaker, L.A. The effect of rigid fixation on the survival of onlay bone grafts: An experimental study. Plast. Reconstr. Surg. 1990, 86, 449–456. [Google Scholar] [CrossRef]
- Phillips, J.H.; Rahn, B.A. Fixation effects on membranous and endochondral onlay bone graft revascularization and bone deposition. Plast. Reconstr. Surg. 1990, 85, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Young, V.L.; Schuster, R.H.; Harris, L.W. Intracerebral hematoma complicating split calvarial bone-graft harvesting. Plast. Reconstr. Surg. 1990, 86, 763–765. [Google Scholar] [CrossRef]
- Ronĉević, R.; Malinger, B. Experience with various procedures in the treatment of orbital floor fractures. J. Oral Maxillofac. Surg. 1981, 9, 81–84. [Google Scholar] [CrossRef]
- Goldberg, R.A.; Garbutt, M.; Shorr, N. Oculoplastic uses of cranial bone grafts. Ophthalmic Surg. 1993, 24, 190–196. [Google Scholar] [CrossRef]
- Werther, J.R. Not seeing eye-to-eye about septal grafts for orbital fractures. J. Oral Maxillofac. Surg. 1998, 56, 906–907. [Google Scholar] [CrossRef]
- Motoki, D.S.; Mulliken, J.B. The healing of bone and cartilage. Clin. Plast. Surg. 1990, 17, 527–544. [Google Scholar] [CrossRef]
- Morax, S.; Hurbli, T.; Smida, R. Bovine heterologous bone graft in orbital surgery. Ann. Chir. Plast. Esthétique 1993, 38, 445–450. [Google Scholar]
- Neigel, J.M.; Ruzicka, P.O. Use of demineralized bone implants in orbital and craniofacial reconstruction and a review of the literature. Ophthal. Plast. Reconstr. Surg. 1996, 12, 108–120. [Google Scholar] [CrossRef]
- Campbell, D.G.; Li, P. Sterilization of HIV with irradiation: Relevance to infected bone allografts. ANZ J. Surg. 1999, 69, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Aho, A.J.; Hirn, M.; Aro, H.T.; Heikkilä, J.T.; Meurman, O. Bone bank service in Finland. Experience of bacteriologic, serologic and clinical results of the Turku Bone Bank 1972–1995. Acta Orthop. Scand. 1998, 69, 559–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, Y.; Aso, E.; Yanagawa, H. Relative risk of Creutzfeldt-Jakob disease with cadaveric dura transplantation in Japan. Neurology 1999, 53, 218–220. [Google Scholar] [CrossRef]
- Guerra, M.F.M. Human dura mater and Creutzfeldt-Jakob disease. J. Oral Maxillofac. Surg. 2001, 59, 595. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, D.J.; Arora, B.; Hansen, J. Orbital floor repair with titanium mesh screen. J. Craniomaxillofac. Trauma 1999, 5, 9–18. [Google Scholar]
- Schubert, W.; Gear, A.J.; Lee, C.; Hilger, P.A.; Haus, E.; Migliori, M.R.; Mann, D.A.; Benjamin, C.I. Incorporation of titanium mesh in orbital and midface reconstruction. Plast. Reconstr. Surg. 2002, 110, 1022–1032. [Google Scholar] [PubMed]
- Sargent, L.A.; Fulks, K.D. Reconstruction of internal orbital fractures with Vitallium mesh. Plast. Reconstr. Surg. 1991, 88, 31–38. [Google Scholar] [CrossRef]
- Zide, M.F. Late posttraumatic enophthalmos corrected by dense hydroxylapatite blocks. J. Oral Maxillofac. Surg. 1986, 44, 804–806. [Google Scholar] [CrossRef]
- Marks, M.W.; Yeatts, R.P. Hemorrhagic cyst of the orbit as a long-term complication of prosthetic orbital floor implant. Plast. Reconstr. Surg. 1994, 93, 856–859. [Google Scholar] [CrossRef]
- Jordan, D.R.; St Onge, P.; Anderson, R.L.; Patrinely, J.R.; Nerad, J.A. Complications associated with alloplastic implants used in orbital fracture repair. Ophthalmology 1992, 99, 1600–1608. [Google Scholar] [CrossRef]
- Laxenaire, A.; Lévy, J.; Blanchard, P.; Lerondeau, J.C.; Tesnier, F.; Scheffer, P. Complications of silastic implants used in orbital repair. Rev. Stomatol. Chir. Maxillofac. 1997, 98, 96–99. (In French) [Google Scholar]
- Hatton, P.V.; Walsh, J.; Brook, I.M. The response of cultured bone cells to resorbable polyglycolic acid and silicone membranes for use in orbital floor fracture repair. Clin. Mater. 1994, 17, 71–80. [Google Scholar] [CrossRef]
- de Roche, R.; Adolphs, N.; Kuhn, A.; Gogolewski, S.; Hammer, B.; Rahn, B. Rekonstruktion der Orbita mit Polylaktat-Implantaten: Tierexperimentelle Ergebnisse nach 12 Monaten und klinischer Ausblick. Mund Kiefer Gesichtschir. 2001, 5, 49–56. (In German) [Google Scholar] [CrossRef] [PubMed]
Level of Evidence | Qualifying Studies |
---|---|
I | High-quality, multi-centered or single-centered, randomized controlled trial with adequate power; or systematic review of these studies |
II | Lesser-quality, randomized controlled trial; prospective cohort or comparative study; or systematic review of these studies |
III | Retrospective cohort or comparative study; case-control study; or systematic review of these studies |
IV | Case series with pre/post test; or only post test |
V | Expert opinion developed via consensus process; case report or clinical example; or evidence based on physiology, bench research or “first principles” |
Author | Level of Study | Type of Study | Implant Materials | Follow-Up Period |
---|---|---|---|---|
Aitasalo et al. [19] | III | Retrospective review | Bioactive glass | 1 to 12 months |
Al-Sukhun and Lindqvist [20] | III | Comparative study | Autogenous bone grafts, poly-L/DL-Lactide [P(L/DL)LA 70/30] | 2–36 weeks |
Al-Sukhun et al. [21] | III | Retrospective cohort study | Poly-L/DL-Lactide [P(L/DL)LA 70/30] | - |
Aronowitz et al. [22] | III | Retrospective study | Teflon (PTFE) | Mean, 16 years |
Asamura et al. [23] | III | Retrospective cohort study | Ilium and periosteum polymer complex | 2–22 months |
Balogh et al. [24] | III | Retrospective cohort study | Polyglycolic acid (PGA) | 24 to 43 months |
Baumann et al. [25] | III | Follow-up study | Polydioxanone | 6 months |
Brucoli et al. [5] | III | Retrospective cohort study | Autologous calvarial bone, titanium mesh, tutopatch sheet | Mean, 39 months |
Constantian [26] | IV | Case series | Autogenous tissues | 7 months to 3.5 years |
Cordewener et al. [27] | III | Retrospective cohort study | Poly-D-Lactic Acid | - |
Düzgün and Sirkeci [28] | III | Comparative study | Cartilage, bone grafts, titanium mesh, porous polyethylene implant | Mean, 14 months |
Ellis and Tan [29] | III | Retrospective review | Cranial bone grafts, titanium mesh | - |
Guerra et al. [30] | III | Retrospective study | Allogenic lyophilized dura | 3 months to 1 year |
Guo et al. [31] | III | Comparative study | Calvaria bone graft, titanium mesh | >2 weeks |
Hollier et al. [32] | III | Retrospective cohort study | Polyglycolic Acid (PGA) | Upto 12 months |
Holtmann et al. [17] | III | Retrospective study | Titanium mesh | - |
Hwang and Kita [33] | III | Prospective study | Titanium mesh | - |
Iizuka et al. [34] | III | Prospective study | Polydioxanone | 9 to 45 months |
Kinnunen et al. [35] | III | Comparative study | Autogenous ear cartilage, bioactive glass | 2 to 5 years |
Kirby et al. [6] | III | Retrospective cohort study | Autologous bone, Titanium, porous polyethylene | Mean, 38.8 weeks |
Klisovic et al. [36] | IV | Case report | Silicone | 18 months |
Kontio et al. [37] | III | Prospective study | Polydioxanone | Mean, 29 weeks |
Kontio et al. [38] | III | Prospective study | Iliac bone graft | Mean, 7.8 months |
Kraus et al. [39] | III | Prospective study | Autogenous septal cartilage | 1 week to 6 months |
Lai, A. [40] | III | Prospective study | Nasal septal cartilage | 3 months to 4 years |
Lee and Nunery [41] | III | Retrospective review | Titanium mesh and titanium plate | 5 to 18 months |
Lieger et al. [42] | III | Retrospective study | Poly-L/DL-Lactide [P(L/DL)LA 70/30] | 3 to 12 months |
Lipshutz and Ardizone [43] | IV | Case series | Silicone | - |
Lupi et al. [44] | III | Retrospective study | Porous polyethylene | - |
Mauriello et al. [45] | III | Case series | Polyglactin | 1 to 24 months |
Polley and Ringler [46] | III | Retrospective study | Teflon (PTFE) | 3 months to 15 years |
Romano et al. [47] | III | Prospective study | Porous polyethylene | - |
Rubin and Yaremchuk [48] | III | Comprehensive review | Porous polyethylene, dense polyethylene, silicone, tefflon (PTFE) | - |
Sewall et al. [49] | IV | Case report | Silicone | - |
Sugar et al. [50] | III | Prospective study | Titanium mesh | Mean, 24 months |
Waite and Clanton [51] | III | Prospective study | Lyophilized dura | 12 months |
Wang et al. [52] | III | Retrospective study | Autogenous bone, titanium mesh, Medpor | 1 to 6 months |
Young et al. [53] | III | Retrospective review | Poly-L/DL-lactide (P[L/DL]LA) 85/15, (P[L/DL]LA) 70/30, Polycaprolactone | 15 to 24 months |
Zunz et al. [54] | IV | Case series | Calvarial, iliac autogenous bone grafts | Mean, 12.5 months |
Implant Material | Author | Patients | Complications | Total Complications |
---|---|---|---|---|
Autologous Calvarial Bone | Brucoli et al. [5] Guo et al. [31] Ellis and Tan [29] Zunz et al. [54] | 87 | Diplopia (7) Enophthalmos (10) | 17 |
Autologous Iliac Bone | Düzgün and Sirkeci [28] Zunz et al. [54] Asamura et al. [23] Al-Sukhun and Lindqvist [20] Kontio et al. [38] | 72 | Diplopia (15) Haematoma donor site (2) Enophthalmos (4) Infraorbital nerve paraesthesia (2) Orbital dystopia (7) | 30 |
Autologous Bone (unspecified donor site) | Kirby et al. [6] | 71 | Re-operation (17) Removal (4) Diplopia (10) Enophthalmos (16) Restricted EOM (2) Infection (4) Proptosis (4) | 57 |
Autologous Conchal Ear Cartilage | Constantian [26] Kinnunen et al. [35] Düzgün and Sirkeci [28] | 33 | Diplopia (8) Enophthalmos (2) Infraorbital nerve paraesthesia (2) | 12 |
Autologous Nasal Septal Cartilage | Kraus et al. [39] Lai et al. [40] | 33 | Enophthalmos (1) Infraorbital nerve paraesthesia (2) Lower lid oedema (1) | 4 |
Allogenic Lyophilized Dura | Waite and Clanton [51] Guerra et al. [30] | 70 | Enophthalmos (3) Infraorbital paraesthesia (4) Cicatricial problems (2) | 9 |
Titanium | Brucoli et al. [5] Kirby et al. [6] Holtman et al. [17] Sugar et al. [50] Hwang and Kita [33] Ellis and Tan [29] Lee and Nunery [41] Düzgün and Sirkeci [28] | 741 | Re-operation (16) Removal (10) Diplopia (14) Enophthalmos (12) Restricted EOM (15) Infection (8) Proptosis (5) | 80 |
Porous Polyethylene | Kirby et al. [6] Rubin and Yaremchuk [48] Romano et al. [47] Hwang and Kita [33] Düzgün and Sirkeci [28] Lupi et al. [44] | 326 | Re-operation (23) Removal (7) Diplopia (9) Enophthalmos (13) Restricted EOM (2) Infection (7) Proptosis (8) Overcorrection (1) Undercorrection (1) Implant extrusion (2) | 73 |
Dense Polyethylene | Rubin and Yaremchuk [48] | 78 | Removal (1) Infection (2) Oedema (3) | 6 |
Bioactive Glass | Kinnunen et al. [35] Aitasalo et al. [19] | 50 | Diplopia (5) Infraorbital nerve dysfunction (6) Entropion (1) Removal (1) | 13 |
Silicone | Rubin and Yaremchuk [48] Sewall et al. [49] Hwang and Kita [33] Lipshutz and Ardizone [43] Klisovic et al. [36] | 530 | Infection (25) Exposure/extrusion (16) Persistent oedema (2) Prominence (2) Pain (6) Removal (42) | 93 |
Teflon (PTFE) | Rubin and Yaremchuk [48] Polley and Ringler [46] Aronowitz et al. [22] | 702 | Diplopia (11) Enophthalmos (15) Infection (3) Exposure/extrusion (4) Removal (9) Fistula (1) | 43 |
Polyglycolic Acid (PGA) | Balogh et al. [24] Hollier et al. [32] | 78 | Enophthalmos (2) Inflammatory reaction (1) Inflammation (1) | 4 |
Polyglactin | Mauriello et al. [45] | 28 | Inflammation (4) | 4 |
Polydioxanone | Holtman et al. [17] Kontio et al. [37] Iizuka et al. [34] Baumann et al. [25] | 774 | Diplopia (38) Exophthalmos (10) Enophthalmos (29) Prolonged oedema (1) | 78 |
Poly-D-Lactic Acid | Cordewener et al. [27] Al-Sukhun et al. [21] Al-Sukhun and Lindqvist [20] Leiger et al. [42] Young et al. [53] | 176 | Diplopia (1) Exophthalmos (5) | 6 |
Unspecified Implants | Wang et al. [52] | 21 | Diplopia (1) Enophthalmos (2) Infraorbital numbness (2) | 5 |
Implant Material | Total Number of Patients | Complications Rates (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Exposure/Extrusion | Fistula | Infection | Inflammation | Pain | Persistent/Prolonged Oedema | Prominence | Removal of Implant | Overall | ||
Autologous Calvarial Bone | 87 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Autologous Iliac Bone | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Autologous Bone (unspecified donor site) | 71 | 0 | 0 | 5.6 | 0 | 0 | 0 | 0 | 5.6 | 11.3 |
Autologous Conchal Ear Cartilage | 33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Autologous Nasal Septal Cartilage | 33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Allogenic Lyophilized Dura | 70 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Titanium | 741 | 0 | 0 | 1.1 | 0 | 0 | 0 | 0 | 1.3 | 2.4 |
Porous Polyethylene | 326 | 0.7 | 0 | 2.3 | 0 | 0 | 0 | 0 | 2.3 | 5.4 |
Dense Polyethylene | 78 | 0 | 0 | 2.6 | 0 | 0 | 3.8 | 0 | 1.3 | 7.7 |
Bioactive Glass | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.0 | 2.0 |
Silicone | 530 | 3.0 | 0 | 4.7 | 0 | 1.1 | 0.4 | 0.4 | 7.9 | 17.5 |
Teflon (PTFE) | 702 | 0.6 | 0.1 | 0.4 | 0 | 0 | 0 | 0 | 1.3 | 2.4 |
Polyglycolic Acid (PGA) | 78 | 0 | 0 | 0 | 1.3 | 0 | 0 | 0 | 0 | 1.3 |
Polyglactin | 28 | 0 | 0 | 0 | 14.3 | 0 | 0 | 0 | 0 | 14.3 |
Polydioxanone | 774 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0 | 0 | 0.1 |
Poly-D-Lactic Acid | 176 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Unspecified Implants | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivam, A.; Enninghorst, N. The Dilemma of Reconstructive Material Choice for Orbital Floor Fracture: A Narrative Review. Medicines 2022, 9, 6. https://doi.org/10.3390/medicines9010006
Sivam A, Enninghorst N. The Dilemma of Reconstructive Material Choice for Orbital Floor Fracture: A Narrative Review. Medicines. 2022; 9(1):6. https://doi.org/10.3390/medicines9010006
Chicago/Turabian StyleSivam, Akash, and Natalie Enninghorst. 2022. "The Dilemma of Reconstructive Material Choice for Orbital Floor Fracture: A Narrative Review" Medicines 9, no. 1: 6. https://doi.org/10.3390/medicines9010006
APA StyleSivam, A., & Enninghorst, N. (2022). The Dilemma of Reconstructive Material Choice for Orbital Floor Fracture: A Narrative Review. Medicines, 9(1), 6. https://doi.org/10.3390/medicines9010006