Life Cycle Emissions and Driving Forces of Air Pollutants and CO2 from Refractory Manufacturing Industry in China Based on LMDI Model
Abstract
1. Introduction
2. Data and Methods
2.1. Data Sources
2.2. Methods
2.2.1. Process-Based Life Cycle Assessment
2.2.2. System Boundary
2.2.3. Calculation Method
2.3. Driving Factor Analysis
2.4. Emission Reduction Scenario
3. Results and Discussion
3.1. Pollution Characteristics of Refractory Furnaces
3.2. Temporal Emissions from Refractory Industry
3.3. Spatial Distribution Characteristics
3.4. Uncertainty Analysis
3.5. LMDI Model-Based Driving Force Analysis
3.6. Emission Reduction Projections
4. Conclusions and Policy Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, W.; Ma, B.; Wang, L.; Zhao, Q.; Zuo, Y.a.; Chen, Y.; Wang, C. Corrosion behavior of silica-alumina refractories for scrap brass smelter linings. J. Clean. Prod. 2022, 370, 133600. [Google Scholar] [CrossRef]
- Seifert, S.; Dittrich, S.; Bach, J. Recovery of Raw Materials from Ceramic Waste Materials for the Refractory Industry. Processes 2021, 9, 228. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhou, W.; Guo, L.; Ma, J.; Jia, Q.; Zhai, P.; Li, J.; Chen, L. Effect of magnesium aluminum hydrotalcite on the properties of CAC-bonded castables. Ceram. Int. 2023, 49, 5382–5390. [Google Scholar] [CrossRef]
- Zeng, D. Development Trend of China’s Refractory Industry in the New Era. China’s Refract. 2020, 29, 7. [Google Scholar] [CrossRef]
- Caridi, F.; Testagrossa, B.; Acri, G. Elemental composition and natural radioactivity of refractory materials. Environ. Earth Sci. 2021, 80, 170. [Google Scholar] [CrossRef]
- Zhao, L.; Feng, J.; Dong, H. Analysis of carbon footprint and reduction approach of magnesia production in China. J. Clean. Prod. 2022, 334, 130194. [Google Scholar] [CrossRef]
- He, F.; Li, Y. Current status of refractory pollution and control measures and suggestions. Refract. Lime 2023, 48, 4–7. [Google Scholar] [CrossRef]
- An, J.; Li, Y.; Middleton, R.S. Reducing energy consumption and carbon emissions of magnesia refractory products: A life-cycle perspective. J. Clean. Prod. 2018, 182, 363–371. [Google Scholar] [CrossRef]
- Xu, D. Thoughts for development of China’s refractories industry—Reviewing “the 12(th) Five-Year-Plan” and prospecting “the 13(th) Five-Year-Plan”. Refractories 2016, 6, 401–406. [Google Scholar] [CrossRef]
- Tang, Y.; Shi, Y.; Li, Y.; Yuan, X.; Mu, R.; Wang, Q.; Ma, Q.; Hong, J.; Cao, S.; Zuo, J.; et al. Environmental and economic impact assessment of the alumina–carbon refractory production in China. Clean Technol. Environ. Policy 2019, 21, 1723–1737. [Google Scholar] [CrossRef]
- Liu, J. Analysis on “Emission standard of air pollutants for magnesia refractory industry” in Liaoning province. Refract. Lime 2019, 5, 1–5. [Google Scholar] [CrossRef]
- Meng, F.; Liu, D.; Bu, T.; Zhang, M.; Peng, J.; Ma, J. Assessment of pollution and health risks from exposure to heavy metals in soil, wheat grains, drinking water, and atmospheric particulate matter. J. Environ. Manag. 2025, 376, 124448. [Google Scholar] [CrossRef]
- Dai, X.-B.; Lian, L.; Jia, X.-W.; Qin, J.-H.; Qian, J.-S. Preparation and properties of magnesium phosphate cement with recycled magnesia from waste magnesia refractory bricks. J. Build. Eng. 2023, 63, 105491. [Google Scholar] [CrossRef]
- Seco, A.; del Castillo, J.M.; Perlot, C.; Marcelino, S.; Espuelas, S. Recycled granulates manufacturing from spent refractory wastes and magnesium based binder. Constr. Build. Mater. 2023, 365, 130087. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y.; Dong, X. Effects of smart city construction on energy saving and CO2 emission reduction: Evidence from China. Appl. Energy 2022, 313, 118879. [Google Scholar] [CrossRef]
- Xiao, M.; Peng, X. Decomposition of carbon emission influencing factors and research on emission reduction performance of energy consumption in China. Front. Environ. Sci. 2023, 10, 1096650. [Google Scholar] [CrossRef]
- Davidson, M.G.; Furlong, R.A.; McManus, M.C. Developments in the life cycle assessment of chemical recycling of plastic waste—A review. J. Clean. Prod. 2021, 293, 126163. [Google Scholar] [CrossRef]
- Terlouw, T.; Bauer, C.; Rosa, L.; Mazzotti, M. Life cycle assessment of carbon dioxide removal technologies: A critical review. Energy Environ. Sci. 2021, 14, 1701–1721. [Google Scholar] [CrossRef]
- Bishop, G.; Styles, D.; Lens, P.N.L. Environmental performance comparison of bioplastics and petrochemical plastics: A review of life cycle assessment (LCA) methodological decisions. Resour. Conserv. Recycl. 2021, 168, 105451. [Google Scholar] [CrossRef]
- Boulay, A.-M.; Verones, F.; Vázquez-Rowe, I. Marine plastics in LCA: Current status and MarILCA’s contributions. Int. J. Life Cycle Assess. 2021, 26, 2105–2108. [Google Scholar] [CrossRef]
- Phungrassami, H.; Usubharatana, P. Environmental Problem Shifting Analysis of Pollution Control Units in a Coal-Fired Powerplant Based on Multiple Regression and LCA Methodology. Sustainability 2021, 13, 5142. [Google Scholar] [CrossRef]
- Smit, R.; Kennedy, D.W. Greenhouse Gas Emissions Performance of Electric and Fossil-Fueled Passenger Vehicles with Uncertainty Estimates Using a Probabilistic Life-Cycle Assessment. Sustainability 2022, 14, 3444. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, Q.; Pang, C.H.; Chao, W.; Tong, S.; Kow, K.W.; Lester, E.; Wu, T.; Shang, L.; Song, X.; et al. Life cycle assessment of bio-fermentation ethanol production and its influence in China’s steeling industry. J. Clean. Prod. 2023, 397, 136492. [Google Scholar] [CrossRef]
- Boenzi, F. Possible ecological advantages from use of carbonless magnesia refractory bricks in secondary steelmaking: A framework LCA perspective. Int. J. Environ. Sci. Technol. 2021, 19, 5877–5896. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, H.; Zhao, P.; Zhang, H.; Yu, J. Utilization of recycled corundum as a refractory raw material: Characteristics and performance evaluation. Ceram. Int. 2022, 48, 37142–37149. [Google Scholar] [CrossRef]
- Wang, C.; Xu, C.; Li, W.; Xiao, H.; Qin, S.; Zhang, G. Preparation and properties of novel multi-component refractory cementitious materials. Constr. Build. Mater. 2023, 393, 132033. [Google Scholar] [CrossRef]
- Zharmenov, A.; Yefremova, S.; Satbaev, B.; Shalabaev, N.; Satbaev, S.; Yermishin, S.; Kablanbekov, A. Production of Refractory Materials Using a Renewable Source of Silicon Dioxide. Minerals 2022, 12, 1010. [Google Scholar] [CrossRef]
- Ren, W.; Xue, B.; Lu, C.; Zhang, Z.; Zhang, Y.; Jiang, L. Evaluation of GHG emissions from the production of magnesia refractory raw materials in Dashiqiao, China. J. Clean. Prod. 2016, 135, 214–222. [Google Scholar] [CrossRef]
- Teoh, S.K.; Li, L.Y. Feasibility of alternative sewage sludge treatment methods from a lifecycle assessment (LCA) perspective. J. Clean. Prod. 2020, 247, 119495. [Google Scholar] [CrossRef]
- Omrany, H.; Soebarto, V.; Zuo, J.; Chang, R. Sources of Air Pollutants: Impacts and Solutions; Springer Nature: Cham, Switzerland, 2021; Volume 11, p. 230. [Google Scholar]
- Li, F.; Zhang, L.; Wei, H.; Bu, J.; Zhang, G. Research progress on LCA and LCCA evaluation of refractories. Refract 2024, 58, 448–453. [Google Scholar] [CrossRef]
- Bian, R.; Zhang, T.; Zhao, F.; Chen, J.; Liang, C.; Li, W.; Sun, Y.; Chai, X.; Fang, X.; Yuan, L. Greenhouse gas emissions from waste sectors in China during 2006–2019: Implications for carbon mitigation. Process Saf. Environ. Prot. 2022, 161, 488–497. [Google Scholar] [CrossRef]
- JOÃO, V.M.C.; Eric, P.; Thomas, D. Overview LCA: Challenges and Opportunities for the Refractory Ory Industry; UNITECR: Frankfurt, Germany, 2023; pp. 1–4. [Google Scholar]
- Ma, S.; Wang, X.; Han, B.; Zhao, J.; Guan, Z.; Wang, J.; Zhang, Y.; Liu, B.; Yu, J.; Feng, Y.; et al. Exploring emission spatiotemporal pattern and potential reduction capacity in China’s aviation sector: Flight trajectory optimization perspective. Sci. Total Environ. 2024, 951, 175558. [Google Scholar] [CrossRef]
- Khazini, L.; Kalajahi, M.J.; Rashidi, Y.; Ghomi, S.M.M.M. Real-world and bottom-up methodology for emission inventory development and scenario design in medium-sized cities. J. Environ. Sci. 2023, 127, 114–132. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, H. Combined top-down and bottom-up approach for CO2 emissions estimation in building sector of beijing: Taking new energy vehicles into consideration. Energy 2024, 290, 130302. [Google Scholar] [CrossRef]
- Luo, X.; Liu, C.; Zhao, H. Driving factors and emission reduction scenarios analysis of CO2 emissions in Guangdong-Hong Kong-Macao Greater Bay Area and surrounding cities based on LMDI and system dynamics. Sci. Total Environ. 2023, 870, 161966. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, T.; Liu, J. Decoupling economic growth from construction waste generation: Comparative analysis between the EU and China. J. Environ. Manag. 2024, 353, 120144. [Google Scholar] [CrossRef]
- Liu, X.; Yang, L.; Du, J.; Zhang, H.; Hu, J.; Chen, A.; Lv, W. Carbon and air pollutant emissions forecast of China’s cement industry from 2021 to 2035. Resour. Conserv. Recycl. 2024, 204, 107498. [Google Scholar] [CrossRef]
- Liu, X.; Xu, L.; Wu, X.; Wen, H. Can China’s vehicular emissions regulation reduce air pollution?—A quasi-natural experiment based on the latest National Vehicular Emissions Standard (stage-VI). Environ. Sci. Pollut. Res. 2023, 30, 112474–112489. [Google Scholar] [CrossRef]
- DB41/1066–2020; Emission Standard of Air Pollutants for Industrial Kiln and Furnace. Henan, China, 2020. Available online: https://www.antpedia.com/standard/1584296154.html (accessed on 15 March 2025).
- Wang, Y.; Duan, X.; Liang, T.; Wang, L.; Wang, L. Analysis of spatio-temporal distribution characteristics and socioeconomic drivers of urban air quality in China. Chemosphere 2022, 291, 132799. [Google Scholar] [CrossRef]
- Zhou, M.; Jiang, W.; Gao, W.; Zhou, B.; Liao, X. A high spatiotemporal resolution anthropogenic VOC emission inventory for Qingdao City in 2016 and its ozone formation potential analysis. Process Saf. Environ. Prot. 2020, 139, 147–160. [Google Scholar] [CrossRef]
- Xu, W.; Fu, F.; Lü, J. VOCs Emission Inventory and Uncertainty Analysis of Industry in Qingdao Based on Latin Hypercube Sampling and Monte Carlo Method. Environ. Sci 2021, 42, 5180–5192. [Google Scholar] [CrossRef]
- Wei, W.; Wang, C.; Jiming, H. Uncertainty Analysis of Emission Inventory for Volatile Organic Compounds from Anthropogenic Sources in China. Environ. Sci. 2011, 32, 305–312. [Google Scholar] [CrossRef]
- Odubo, T.C.; Kosoe, E.A. Sources of Air Pollutants: Impacts and Solutions. In Air Pollutants in the Context of One Health: Fundamentals, Sources, and Impacts; Izah, S.C., Ogwu, M.C., Shahsavani, A., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 75–121. [Google Scholar]
- Ministry of industry and Information Technology of the People’s Republic of China (MIIT). Several Opinions on Promoting the Healthy and Sustainable Development of Refractory Industry; Ministry of industry and Information Technology of the People’s Republic of China: Beijing, China, 2013. [Google Scholar]
- Ministry of Industry and Information Technology of the People’s Republic of China (MIIT). Refractory Industry Specification Conditions; Ministry of Industry and Information Technology of the People’s Republic of China: Beijing, China, 2014. [Google Scholar]
- DB21/3011—2018; Emission Standard of Air Pollutants for Magnesia Refractory Industry. Liaoning, China, 2018. Available online: https://max.book118.com/html/2025/0228/5233040020012110.shtm (accessed on 15 March 2025).
- DB37/2373—2018; Emission Standard of Air Pollutants for Building Materials Industry. Shandong, China, 2018. Available online: http://jnepb.jinan.gov.cn/art/2018/7/16/art_10463_2128891.html (accessed on 15 March 2025).
- DB41/2166—2021; Emission Standard of Air Pollutants for Refractory Industry. Henan, China, 2021. Available online: https://max.book118.com/html/2025/0325/5111304241012122.shtm (accessed on 15 March 2025).
- Ministry of Ecology and Environment of the People’s Republic of China (MEE). Technical Guidelines for Designated Emergency Emission Reduction Measures for Key Industries in Heavy Pollution Weather; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2020. [Google Scholar]
- Wang, Y.; Cheng, K.; Wu, W.; Tian, H.; Yi, P.; Zhi, G.; Fan, J.; Liu, S. Atmospheric emissions of typical toxic heavy metals from open burning of municipal solid waste in China. Atmos. Environ. 2017, 152, 6–15. [Google Scholar] [CrossRef]
- Xue, Y.; Nie, L.; Zhou, Z.; Tian, H.; Yan, J.; Wu, X.; Cheng, L. Historical and future emission of hazardous air pollutants (HAPs) from gas-fired combustion in Beijing, China. Environ. Sci. Pollut. Res. 2017, 24, 16946–16957. [Google Scholar] [CrossRef]
- Gao, J.; Wang, K.; Tong, Y.; Yue, T.; Wang, C.; Zuo, P.; Liu, J. Refined spatio-temporal emission assessment of Hg, As, Cd, Cr and Pb from Chinese coal-fired industrial boilers. Sci. Total Environ. 2021, 757, 143733. [Google Scholar] [CrossRef]
- Tong, Y.; Gao, J.; Wang, K.; Jing, H.; Wang, C.; Zhang, X.; Liu, J.; Yue, T.; Wang, X.; Xing, Y. Highly-resolved spatial-temporal variations of air pollutants from Chinese industrial boilers. Environ. Pollut. 2021, 289, 117931. [Google Scholar] [CrossRef]
- Wang, K.; Tong, Y.; Yue, T.; Gao, J.; Wang, C.; Zuo, P.; Liu, J. Measure-specific environmental benefits of air pollution control for coal-fired industrial boilers in China from 2015 to 2017. Environ. Pollut. 2021, 273, 116470. [Google Scholar] [CrossRef]
Items | Calculated Values in the List (t) | Average (t) | 95% Confidence Interval (t) | Uncertainty |
---|---|---|---|---|
PM | 19,819.46 | 17,763.30 | 8976.60–27,472.72 | −49.5–54.7% |
SO2 | 9642.09 | 9635.61 | 5642.75–13,947.66 | −41.4–44.8% |
NOx | 8234.61 | 9276.64 | 5858.37–12,992.63 | −36.9–40.1% |
CO2 | 13.07 × 106 | 13.29 × 106 | 8.22 × 106–18.76 × 106 | −38.2–41.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Shangguan, Y.; Wang, C.; Zhou, X.; Liu, H.; Cao, Y.; Liu, X.; Guo, Y.; Yan, G.; Kang, P.; et al. Life Cycle Emissions and Driving Forces of Air Pollutants and CO2 from Refractory Manufacturing Industry in China Based on LMDI Model. Toxics 2025, 13, 533. https://doi.org/10.3390/toxics13070533
Wang Y, Shangguan Y, Wang C, Zhou X, Liu H, Cao Y, Liu X, Guo Y, Yan G, Kang P, et al. Life Cycle Emissions and Driving Forces of Air Pollutants and CO2 from Refractory Manufacturing Industry in China Based on LMDI Model. Toxics. 2025; 13(7):533. https://doi.org/10.3390/toxics13070533
Chicago/Turabian StyleWang, Yan, Yu Shangguan, Cheng Wang, Xinyue Zhou, Huanjia Liu, Yi Cao, Xiayu Liu, Yan Guo, Guangxuan Yan, Panru Kang, and et al. 2025. "Life Cycle Emissions and Driving Forces of Air Pollutants and CO2 from Refractory Manufacturing Industry in China Based on LMDI Model" Toxics 13, no. 7: 533. https://doi.org/10.3390/toxics13070533
APA StyleWang, Y., Shangguan, Y., Wang, C., Zhou, X., Liu, H., Cao, Y., Liu, X., Guo, Y., Yan, G., Kang, P., & Cheng, K. (2025). Life Cycle Emissions and Driving Forces of Air Pollutants and CO2 from Refractory Manufacturing Industry in China Based on LMDI Model. Toxics, 13(7), 533. https://doi.org/10.3390/toxics13070533