Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,096)

Search Parameters:
Keywords = emission inventory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2327 KiB  
Article
From Climate Liability to Market Opportunity: Valuing Carbon Sequestration and Storage Services in the Forest-Based Sector
by Attila Borovics, Éva Király, Péter Kottek, Gábor Illés and Endre Schiberna
Forests 2025, 16(8), 1251; https://doi.org/10.3390/f16081251 - 1 Aug 2025
Viewed by 261
Abstract
Ecosystem services—the benefits humans derive from nature—are foundational to environmental sustainability and economic well-being, with carbon sequestration and storage standing out as critical regulating services in the fight against climate change. This study presents a comprehensive financial valuation of the carbon sequestration, storage [...] Read more.
Ecosystem services—the benefits humans derive from nature—are foundational to environmental sustainability and economic well-being, with carbon sequestration and storage standing out as critical regulating services in the fight against climate change. This study presents a comprehensive financial valuation of the carbon sequestration, storage and product substitution ecosystem services provided by the Hungarian forest-based sector. Using a multi-scenario framework, four complementary valuation concepts are assessed: total carbon storage (biomass, soil, and harvested wood products), annual net sequestration, emissions avoided through material and energy substitution, and marketable carbon value under voluntary carbon market (VCM) and EU Carbon Removal Certification Framework (CRCF) mechanisms. Data sources include the National Forestry Database, the Hungarian Greenhouse Gas Inventory, and national estimates on substitution effects and soil carbon stocks. The total carbon stock of Hungarian forests is estimated at 1289 million tons of CO2 eq, corresponding to a theoretical climate liability value of over EUR 64 billion. Annual sequestration is valued at approximately 380 million EUR/year, while avoided emissions contribute an additional 453 million EUR/year in mitigation benefits. A comparative analysis of two mutually exclusive crediting strategies—improved forest management projects (IFMs) avoiding final harvesting versus long-term carbon storage through the use of harvested wood products—reveals that intensified harvesting for durable wood use offers higher revenue potential (up to 90 million EUR/year) than non-harvesting IFM scenarios. These findings highlight the dual role of forests as both carbon sinks and sources of climate-smart materials and call for policy frameworks that integrate substitution benefits and long-term storage opportunities in support of effective climate and bioeconomy strategies. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Graphical abstract

18 pages, 4939 KiB  
Article
Decarbonizing Agricultural Buildings: A Life-Cycle Carbon Emissions Assessment of Dairy Barns
by Hui Liu, Zhen Wang, Xinyi Du, Fei Qi, Chaoyuan Wang and Zhengxiang Shi
Agriculture 2025, 15(15), 1645; https://doi.org/10.3390/agriculture15151645 - 30 Jul 2025
Viewed by 174
Abstract
The life-cycle carbon emissions (LCCE) assessment of dairy barns is crucial for identifying low-carbon transition pathways and promoting the sustainable development of the dairy industry. We applied a life cycle assessment approach integrated with building information modeling and EnergyPlus to establish a full [...] Read more.
The life-cycle carbon emissions (LCCE) assessment of dairy barns is crucial for identifying low-carbon transition pathways and promoting the sustainable development of the dairy industry. We applied a life cycle assessment approach integrated with building information modeling and EnergyPlus to establish a full life cycle inventory of the material quantities and energy consumption for dairy barns. The LCCE was quantified from the production to end-of-life stages using the carbon equivalent of dairy barns (CEDB) as the functional unit, expressed in kg CO2e head−1 year−1. A carbon emission assessment model was developed based on the “building–process–energy” framework. The LCCE of the open barn and the lower profile cross-ventilated (LPCV) barn were 152 kg CO2e head−1 year−1 and 229 kg CO2e head−1 year−1, respectively. Operational carbon emissions (OCE) accounted for the largest share of LCCE, contributing 57% and 74%, respectively. For embodied carbon emissions (ECE), the production of building materials dominated, representing 91% and 87% of the ECE, respectively. Regarding carbon mitigation strategies, the use of extruded polystyrene boards reduced carbon emissions by 45.67% compared with stone wool boards and by 36% compared with polyurethane boards. Employing a manure pit emptying system reduced carbon emissions by 76% and 74% compared to manure scraping systems. Additionally, the adoption of clean electricity resulted in a 33% reduction in OCE, leading to an overall LCCE reduction of 22% for the open barn and 26% for the LPCV barn. This study introduces the CEDB to evaluate low-carbon design strategies for dairy barns, integrating building layout, ventilation systems, and energy sources in a unified assessment approach, providing valuable insights for the low-carbon transition of agricultural buildings. Full article
Show Figures

Figure 1

25 pages, 1103 KiB  
Article
The Low-Carbon Development Strategy of Russia Until 2050 and the Role of Forests in Its Implementation
by Evgeny A. Shvarts, Andrey V. Ptichnikov, Anna A. Romanovskaya, Vladimir N. Korotkov and Anastasia S. Baybar
Sustainability 2025, 17(15), 6917; https://doi.org/10.3390/su17156917 - 30 Jul 2025
Viewed by 207
Abstract
This article examines the role of managed ecosystems, and particularly forests, in achieving carbon neutrality in Russia. The range of estimates of Russia’s forests’ net carbon balance in different studies varies by up to 7 times. The. A comparison of Russia’s National GHG [...] Read more.
This article examines the role of managed ecosystems, and particularly forests, in achieving carbon neutrality in Russia. The range of estimates of Russia’s forests’ net carbon balance in different studies varies by up to 7 times. The. A comparison of Russia’s National GHG inventory data for 2023 and 2024 (with the latter showing 37% higher forest sequestration) is presented and explained. The possible changes in the Long-Term Low-Emission Development Strategy of Russia (LT LEDS) carbon neutrality scenario due to new land use, land use change and forestry (LULUCF) data in National GHG Inventory Document (NID) 2024 are discussed. It is demonstrated that the refined net carbon balance should not impact the mitigation ambition in the Russian forestry sector. An assessment of changes in the drafts of the Operational plan of the LT LEDS is presented and it is concluded that its structure and content have significantly improved; however, a delay in operationalization nullifies efforts. The article highlights the problem of GHG emissions increases in forest fires and compares the gap between official “ground-based” and Remote Sensing approaches in calculations of such emissions. Considering the intention to increase net absorption by implementing forest carbon projects, the latest changes in the regulations of such projects are discussed. The limitations of reforestation carbon projects in Russia are provided. Proposals are presented for the development of the national forest policy towards increasing the net forest carbon absorption, including considering the projected decrease in annual net absorption by Russian forests by 2050. The role of government and private investment in improving the forest management of structural measures to adapt forestry to modern climate change and the place of forest climate projects need to be clearly defined in the LT LEDS. Full article
(This article belongs to the Section Sustainable Forestry)
Show Figures

Figure 1

16 pages, 4347 KiB  
Technical Note
Combining TanDEM-X Interferometry and GEDI Space LiDAR for Estimation of Forest Biomass Change in Tanzania
by Svein Solberg, Belachew Gizachew, Laura Innice Duncanson and Paromita Basak
Remote Sens. 2025, 17(15), 2623; https://doi.org/10.3390/rs17152623 - 28 Jul 2025
Viewed by 598
Abstract
The background for this study is the limitations of the conventional approach of using deforestation area multiplied by biomass densities or emission factors. We demonstrated how TanDEM-X and GEDI data can be combined to estimate forest Above Ground Biomass (AGB) change at the [...] Read more.
The background for this study is the limitations of the conventional approach of using deforestation area multiplied by biomass densities or emission factors. We demonstrated how TanDEM-X and GEDI data can be combined to estimate forest Above Ground Biomass (AGB) change at the national scale for Tanzania. The results can be further recalculated to estimate CO2 emissions and removals from the forest. We used repeated short wavelength, InSAR DEMs from TanDEM-X to derive changes in forest canopy height and combined this with GEDI data to convert such height changes to AGB changes. We estimated AGB change during 2012–2019 to be −2.96 ± 2.44 MT per year. This result cannot be validated, because the true value is unknown. However, we corroborated the results by comparing with other approaches, other datasets, and the results of other studies. In conclusion, TanDEM-X and GEDI can be combined to derive reliable temporal change in AGB at large scales such as a country. An important advantage of the method is that it is not required to have a representative field inventory plot network nor a full coverage DTM. A limitation for applying this method now is the lack of frequent and systematic InSAR elevation data. Full article
(This article belongs to the Section Biogeosciences Remote Sensing)
Show Figures

Figure 1

18 pages, 2980 KiB  
Article
Temporal Variations in Particulate Matter Emissions from Soil Wind Erosion in Bayingolin Mongol Autonomous Prefecture, Xinjiang, China (2001–2022)
by Shuang Zhu, Fang Li, Yue Yang, Tong Ma and Jianhua Chen
Atmosphere 2025, 16(8), 911; https://doi.org/10.3390/atmos16080911 - 28 Jul 2025
Viewed by 163
Abstract
Soil fugitive dust (SFD) emissions pose a significant threat to both human health and the environment, highlighting the need for accurate and reliable estimation and assessment in the desert regions of northwest China. This study used climate, soil, and vegetation data from Bayingolin [...] Read more.
Soil fugitive dust (SFD) emissions pose a significant threat to both human health and the environment, highlighting the need for accurate and reliable estimation and assessment in the desert regions of northwest China. This study used climate, soil, and vegetation data from Bayingolin Prefecture (2001–2022) and applied the WEQ model to analyze temporal and spatial variations in total suspended particulate (TSP), PM10, and PM2.5 emissions and their driving factors. The region exhibited high emission factors for TSP, PM10, and PM2.5, averaging 55.46 t km−2 a−1, 27.73 t km−2 a−1, and 4.14 t km−2 a−1, respectively, with pronounced spatial heterogeneity and the highest values observed in Yuli, Qiemo, and Ruoqiang. The annual average emissions of TSP, PM10, and PM2.5 were 3.23 × 107 t, 1.61 × 107 t, and 2.41 × 106 t, respectively. Bare land was the dominant source, contributing 72.55% of TSP emissions. Both total emissions and emission factors showed an overall upward trend, reaching their lowest point around 2012, followed by significant increases in most counties during 2012–2022. Annual precipitation, wind speed, and temperature were identified as the primary climatic drivers of soil dust emissions across all counties, and their influences exhibited pronounced spatial heterogeneity in Bazhou. In Ruoqiang, Bohu, Korla, and Qiemo, dust emissions are mainly limited by precipitation, although dry conditions and sparse vegetation can amplify the role of wind. In Heshuo, Hejing, and Yanqi, stable vegetation helps to lessen wind’s impact. In Yuli, wind speed and temperature are the main drivers, whereas in Luntai, precipitation and temperature are both important constraints. These findings highlight the need to consider emission intensity, land use, or surface condition changes, and the potential benefits of increasing vegetation cover in severely desertified areas when formulating regional dust mitigation strategies. Full article
Show Figures

Figure 1

22 pages, 2003 KiB  
Article
Assessment of Different Methods to Determine NH3 Emissions from Small Field Plots After Fertilization
by Hannah Götze, Julian Brokötter, Jonas Frößl, Alexander Kelsch, Sina Kukowski and Andreas Siegfried Pacholski
Environments 2025, 12(8), 255; https://doi.org/10.3390/environments12080255 - 28 Jul 2025
Viewed by 361
Abstract
Ammonia (NH3) emissions affect the environment, climate and human health and originate mainly from agricultural sources like synthetic nitrogen fertilizers. Accurate and replicable measurements of NH3 emissions are crucial for research, inventories and evaluation of mitigation measures. There exist specific [...] Read more.
Ammonia (NH3) emissions affect the environment, climate and human health and originate mainly from agricultural sources like synthetic nitrogen fertilizers. Accurate and replicable measurements of NH3 emissions are crucial for research, inventories and evaluation of mitigation measures. There exist specific application limitations of NH3 emission measurement techniques and a high variability in method performance between studies, in particular from small plots. Therefore, the aim of this study was the assessment of measurement methods for ammonia emissions from replicated small plots. Methods were evaluated in 18 trials on six sites in Germany (2021–2022). Urea was applied to winter wheat as an emission source. Two small-plot methods were employed: inverse dispersion modelling (IDM) with atmospheric concentrations obtained from Alpha samplers and the dynamic chamber Dräger tube method (DTM). Cumulative NH3 losses assessed by each method were compared to the results of the integrated horizontal flux (IHF) method using Alpha samplers (Alpha IHF) as a micrometeorological reference method applied in parallel large-plot trials. For validation, Alpha IHF was also compared to IHF/ZINST with Leuning passive samplers. Cumulative NH3 emissions assessed using Alpha IHF and DTM showed good agreement, with a relative root mean square error (rRMSE) of 11%. Cumulative emissions assessed by Leuning IHF/ZINST deviated from Alpha IHF, with an rRMSE of 21%. For low-wind-speed and high-temperature conditions, NH3 losses detected with Alpha IDM had to be corrected to give acceptable agreement (rRMSE 20%, MBE +2 kg N ha−1). The study shows that quantification of NH3 emissions from small plots is feasible. Since DTM is constrained to specific conditions, we recommend Alpha IDM, but the approach needs further development. Full article
Show Figures

Figure 1

19 pages, 6001 KiB  
Article
Distinct Regional and Seasonal Patterns of Atmospheric NH3 Observed from Satellite over East Asia
by Haklim Choi, Mi Eun Park and Jeong-Ho Bae
Remote Sens. 2025, 17(15), 2587; https://doi.org/10.3390/rs17152587 - 24 Jul 2025
Viewed by 208
Abstract
Ammonia (NH3), as a vital component of the nitrogen cycle, exerts significant influence on the biosphere, air quality, and climate by contributing to secondary aerosol formation through its reactions with sulfur dioxide (SO2) and nitrogen oxides (NOx). [...] Read more.
Ammonia (NH3), as a vital component of the nitrogen cycle, exerts significant influence on the biosphere, air quality, and climate by contributing to secondary aerosol formation through its reactions with sulfur dioxide (SO2) and nitrogen oxides (NOx). Despite its critical environmental role, NH3’s transient atmospheric lifetime and the variability in spatial and temporal distributions pose challenges for effective global monitoring and comprehensive impact assessment. Recognizing the inadequacies in current in situ measurement capabilities, this study embarked on an extensive analysis of NH3’s temporal and spatial characteristics over East Asia, using the Infrared Atmospheric Sounding Interferometer (IASI) onboard the MetOp-B satellite from 2013 to 2024. The atmospheric NH3 concentrations exhibit clear seasonality, beginning to rise in spring, peaking in summer, and then decreasing in winter. Overall, atmospheric NH3 shows an annual increasing trend, with significant increases particularly evident in Eastern China, especially in June. The regional NH3 trends within China have varied, with steady increases across most regions, while the Northeastern China Plain remained stable until a recent rapid rise. South Korea continues to show consistent and accelerating growth. East Asia demonstrates similar NH3 emission characteristics, driven by farmland and livestock. The spatial and temporal inconsistencies between satellite data and global chemical transport models underscore the importance of establishing accurate NH3 emission inventories in East Asia. Full article
Show Figures

Graphical abstract

16 pages, 1810 KiB  
Article
Tinnitus in Normal-Hearing Individuals: Is Outer Hair Cell Dysfunction the Mechanism?
by Theognosia Chimona, Maria Vrentzou, Emmanouel Erotokritakis, Eleni Tsakiraki, Panagiota Asimakopoulou and Chariton Papadakis
J. Clin. Med. 2025, 14(15), 5232; https://doi.org/10.3390/jcm14155232 - 24 Jul 2025
Viewed by 343
Abstract
Background/Objectives: Cochlear “injury” is thought to be a significant cause of tinnitus in patients with hearing loss. Interestingly, individuals with normal hearing may also experience tinnitus. This study evaluates otoacoustic distortion product emissions (DPOAEs) in individuals with normal hearing who experience tinnitus perception. [...] Read more.
Background/Objectives: Cochlear “injury” is thought to be a significant cause of tinnitus in patients with hearing loss. Interestingly, individuals with normal hearing may also experience tinnitus. This study evaluates otoacoustic distortion product emissions (DPOAEs) in individuals with normal hearing who experience tinnitus perception. Methods: In this prospective study, the tinnitus group (TG) consisted of 34 subjects with tinnitus (four unilaterally) and normal hearing (threshold ≤ 25 dBHL at 0.25–8 kHz). The control group (CG) comprised 10 healthy volunteers (20 ears) without tinnitus and normal hearing. Medical history was recorded, and all participants underwent a complete otolaryngological examination, pure tone audiometry, and DPOAE recording (DP-gram, L1 = 55 dB, L2 = 65 dB, for F2: 619–10,000 Hz). Moreover, participants in the TG completed a detailed tinnitus history (with self-rated loudness scoring) and the Tinnitus Handicap Inventory (Greek-version THI-G) and underwent tinnitus analysis. Results: The recorded mean DPOAE values during the DP-gram of the CG were significantly larger in amplitude at low (t-test, Bonferroni-corrected p < 0.09) and high frequencies (t-test, Bonferroni-corrected p < 0.02) compared with the TG. Tinnitus assessment showed tinnitus pitch matching at the frequency area in the DP-gram, where the acceptance recording criteria were not met. There were no statistically significant differences in tinnitus onset, self-rated loudness scores of >70, and severe disability (THI-G > 58) for TG subjects in whom DPOAEs were not recorded at frequencies of ≤1000 Hz. Participants with abnormal DPOAEs at around 4000 Hz had tinnitus of sudden onset and severe disability (THI-G > 58). Finally, those with pathological recordings of DPOAEs at ≥6000 Hz had gradual onset tinnitus (Pearson Chi-square test, p < 0.05). Conclusions: DPOAEs in normal hearing individuals with tinnitus show lower amplitudes in low and high frequencies compared with normal hearing individuals without tinnitus. The tinnitus matched-frequency coincided with the frequency area where DPOAEs were abnormal. Full article
(This article belongs to the Section Otolaryngology)
Show Figures

Figure 1

18 pages, 3178 KiB  
Article
Biomass Estimation of Apple and Citrus Trees Using Terrestrial Laser Scanning and Drone-Mounted RGB Sensor
by Min-Ki Lee, Yong-Ju Lee, Dong-Yong Lee, Jee-Su Park and Chang-Bae Lee
Remote Sens. 2025, 17(15), 2554; https://doi.org/10.3390/rs17152554 - 23 Jul 2025
Viewed by 312
Abstract
Developing accurate activity data on tree biomass using remote sensing tools such as LiDAR and drone-mounted sensors is essential for improving carbon accounting in the agricultural sector. However, direct biomass measurements of perennial fruit trees remain limited, especially for validating remote sensing estimates. [...] Read more.
Developing accurate activity data on tree biomass using remote sensing tools such as LiDAR and drone-mounted sensors is essential for improving carbon accounting in the agricultural sector. However, direct biomass measurements of perennial fruit trees remain limited, especially for validating remote sensing estimates. This study evaluates the potential of terrestrial laser scanning (TLS) and drone-mounted RGB sensors (Drone_RGB) for estimating biomass in two major perennial crops in South Korea: apple (‘Fuji’/M.9) and citrus (‘Miyagawa-wase’). Trees of different ages were destructively sampled for biomass measurement, while volume, height, and crown area data were collected via TLS and Drone_RGB. Regression analyses were performed, and the model accuracy was assessed using R2, RMSE, and bias. The TLS-derived volume showed strong predictive power for biomass (R2 = 0.704 for apple, 0.865 for citrus), while the crown area obtained using both sensors showed poor fit (R2 ≤ 0.7). Aboveground biomass was reasonably estimated (R2 = 0.725–0.865), but belowground biomass showed very low predictability (R2 < 0.02). Although limited in scale, this study provides empirical evidence to support the development of remote sensing-based biomass estimation methods and may contribute to improving national greenhouse gas inventories by refining emission/removal factors for perennial fruit crops. Full article
(This article belongs to the Special Issue Biomass Remote Sensing in Forest Landscapes II)
Show Figures

Graphical abstract

36 pages, 8968 KiB  
Article
Stabilization of High-Volume Circulating Fluidized Bed Fly Ash Composite Gravels via Gypsum-Enhanced Pressurized Flue Gas Heat Curing
by Nuo Xu, Rentuoya Sa, Yuqing He, Jun Guo, Yiheng Chen, Nana Wang, Yuchuan Feng and Suxia Ma
Materials 2025, 18(15), 3436; https://doi.org/10.3390/ma18153436 - 22 Jul 2025
Viewed by 197
Abstract
Circulating fluidized bed fly ash (CFBFA) stockpiles release alkaline dust, high-pH leachate, and secondary CO2/SO2—an environmental burden that exceeds 240 Mt yr−1 in China alone. Yet, barely 25% is recycled, because the high f-CaO/SO3 contents destabilize conventional [...] Read more.
Circulating fluidized bed fly ash (CFBFA) stockpiles release alkaline dust, high-pH leachate, and secondary CO2/SO2—an environmental burden that exceeds 240 Mt yr−1 in China alone. Yet, barely 25% is recycled, because the high f-CaO/SO3 contents destabilize conventional cementitious products. Here, we presents a pressurized flue gas heat curing (FHC) route to bridge this scientific deficit, converting up to 85 wt% CFBFA into structural lightweight gravel. The gypsum dosage was optimized, and a 1:16 (gypsum/CFBFA) ratio delivered the best compromise between early ettringite nucleation and CO2-uptake capacity, yielding the highest overall quality. The optimal mix reaches 9.13 MPa 28-day crushing strength, 4.27% in situ CO2 uptake, 1.75 g cm−3 bulk density, and 3.59% water absorption. Multi-technique analyses (SEM, XRD, FTIR, TG-DTG, and MIP) show that FHC rapidly consumes expansive phases, suppresses undesirable granular-ettringite formation, and produces a dense calcite/needle-AFt skeleton. The FHC-treated CFBFA composite gravel demonstrates 30.43% higher crushing strength than JTG/TF20-2015 standards, accompanied by a water absorption rate 28.2% lower than recent studies. Its superior strength and durability highlight its potential as a low-carbon lightweight aggregate for structural engineering. A life-cycle inventory gives a cradle-to-gate energy demand of 1128 MJ t−1 and a process GWP of 226 kg CO2-eq t−1. Consequently, higher point-source emissions paired with immediate mineral sequestration translate into a low overall climate footprint and eliminate the need for CFBFA landfilling. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

16 pages, 2720 KiB  
Communication
Wildland and Forest Fire Emissions on Federally Managed Land in the United States, 2001–2021
by Coeli M. Hoover and James E. Smith
Forests 2025, 16(8), 1205; https://doi.org/10.3390/f16081205 - 22 Jul 2025
Viewed by 269
Abstract
In the United States, ecosystems regularly experience wildfires and as fire seasons lengthen, fires are becoming a more important disturbance. While all types of disturbance have impacts on the carbon cycle, fires result in immediate emissions into the atmosphere. To assist managers in [...] Read more.
In the United States, ecosystems regularly experience wildfires and as fire seasons lengthen, fires are becoming a more important disturbance. While all types of disturbance have impacts on the carbon cycle, fires result in immediate emissions into the atmosphere. To assist managers in assessing wildland fire impacts, particularly on federally managed land, we developed estimates of area burned and related emissions for a 21-year period. These estimates are based on wildland fires defined by the interagency Monitoring Trends in Burn Severity database; emissions are simulated through the Wildland Fire Emissions Inventory System; and the classification of public land is performed according to the US Geological Survey’s Protected Areas Database of the United States. Wildland fires on federal land contributed 62 percent of all annual CO2 emissions from wildfires in the United States between 2001 and 2021. During this period, emissions from the forest fire subset of wildland fires ranged from 328 Tg CO2 in 2004 to 37 Tg CO2 in 2001. While forest fires averaged 38 percent of burned area, they represent the majority—59 to 89 percent of annual emissions—relative to fires in all ecosystems, including non-forest. Wildland fire emissions on land belonging to the federal government accounted for 44 to 77 percent of total annual fire emissions for the entire United States. Land managed by three federal agencies—the Forest Service, the Bureau of Land Management, and the Fish and Wildlife Service—accounted for 93 percent of fire emissions from federal land over the course of the study period, but year-to-year contributions varied. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

21 pages, 1475 KiB  
Article
An Analysis of the Compatibility Between Popular Carbon Footprint Calculators and the Canadian National Inventory Report
by Elizabeth Arif, Anupama A. Sharan and Warren Mabee
Sustainability 2025, 17(14), 6629; https://doi.org/10.3390/su17146629 - 21 Jul 2025
Viewed by 414
Abstract
Personal lifestyle choices contribute up to 75% of national emissions and yet the greenhouse gas (GHG) inventories included in the National Inventory Report (NIR) of Canada provide limited insight on these choices. Better insight can be found using carbon footprint calculators that estimate [...] Read more.
Personal lifestyle choices contribute up to 75% of national emissions and yet the greenhouse gas (GHG) inventories included in the National Inventory Report (NIR) of Canada provide limited insight on these choices. Better insight can be found using carbon footprint calculators that estimate individual emissions; however, they vary in regard to their input parameters, output data, and calculation methods. This study assessed five calculators, which are popular with the public, or compatibility with the Canadian NIR. A quantitative scoring matrix was developed to assess the output depth, academic proficiency, and effectiveness of the calculators to inform lifestyle changes, alongside NIR alignment. The results showed that the calculator with the overall highest cumulative score across all the comparative criteria was the one offered by Carbon Footprint Ltd. The other calculators that scored highly include CoolClimate Calculator and Carbon Independent. The potential of the calculators in regard to informing low-carbon lifestyles can be improved through the incorporation of more depth in terms of capturing the purchase information of goods and services and providing detailed secondary information to users, including mitigation strategies and carbon offset options. The main driver of incompatibility between the calculator tools and the NIR was the different approaches taken to the emissions inventory, with the NIR using a territorial framework and the calculators being consumption driven. The outcomes of this study demonstrate a global need for the evolution of NIR structuring to increase its relatability with citizens and for the improved standardization of publicly available tools. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

25 pages, 528 KiB  
Review
Life Cycle Assessment and Environmental Load Management in the Cement Industry
by Qiang Su, Ruslan Latypov, Shuyi Chen, Lei Zhu, Lixin Liu, Xiaolu Guo and Chunxiang Qian
Systems 2025, 13(7), 611; https://doi.org/10.3390/systems13070611 - 20 Jul 2025
Viewed by 505
Abstract
The cement industry is a significant contributor to global environmental impacts, and Life Cycle Assessment (LCA) has emerged as a critical tool for evaluating and managing these burdens. This review uniquely synthesizes recent advancements in the LCA methodology and provides a detailed comparison [...] Read more.
The cement industry is a significant contributor to global environmental impacts, and Life Cycle Assessment (LCA) has emerged as a critical tool for evaluating and managing these burdens. This review uniquely synthesizes recent advancements in the LCA methodology and provides a detailed comparison of cement production impacts across major producing regions, notably highlighting China’s role as the largest global emitter. It covers the core LCA phases, including goal and scope definition, inventory analysis, impact assessment, and interpretation, and emphasizes the role of LCA in quantifying cradle-to-gate impacts (typically around 0.9–1.0 t CO2 per ton of cement), evaluating the emissions reductions provided by alternative cement types (such as ~30–45% lower emissions using limestone calcined clay cements), informing policy frameworks like emissions trading schemes, and guiding sustainability certifications. Strategies for environmental load reduction in cement manufacturing are quantitatively examined, including technological innovations (e.g., carbon capture technologies potentially cutting plant emissions by up to ~90%) and material substitutions. Persistent methodological challenges—such as data quality issues, scope limitations, and the limited real-world integration of LCA findings—are critically discussed. Finally, specific future research priorities are identified, including developing country-specific LCI databases, integrating techno-economic assessment into LCA frameworks, and creating user-friendly digital tools to enhance the practical implementation of LCA-driven strategies in the cement industry. Full article
Show Figures

Figure 1

22 pages, 825 KiB  
Review
Research on the Emission of Biogenic Volatile Organic Compounds from Terrestrial Vegetation
by Dingyi Pei, Anzhi Wang, Lidu Shen and Jiabing Wu
Atmosphere 2025, 16(7), 885; https://doi.org/10.3390/atmos16070885 - 19 Jul 2025
Viewed by 486
Abstract
Biogenic volatile organic compounds (BVOCs) are low-boiling-point compounds commonly synthesized by secondary metabolic pathways in plants. As key precursors of ozone (O3) and secondary organic aerosols (SOA), BVOCs play a critical role in ecosystem-atmosphere interactions. However, their emission from both marine [...] Read more.
Biogenic volatile organic compounds (BVOCs) are low-boiling-point compounds commonly synthesized by secondary metabolic pathways in plants. As key precursors of ozone (O3) and secondary organic aerosols (SOA), BVOCs play a critical role in ecosystem-atmosphere interactions. However, their emission from both marine and terrestrial ecosystems, as well as their association with climate and the environment, remain poorly characterized. In light of recent advances in BVOC research, including the establishment of emission inventories, identification of driving factors, and evaluation of ecological and environmental impacts, this study reviews the latest advancements in the field. The findings underscore that the carbon losses via BVOC emission should not be overlooked when estimating the terrestrial carbon balance. Additionally, more work needs to be conducted to quantify the emission factors of specific tree species and to establish links between BVOC emission and climate or environment change. This study contributes to a deeper understanding of vegetation ecology and its environmental functions. Full article
(This article belongs to the Special Issue Atmospheric Particulate Matter: Origin, Sources, and Composition)
Show Figures

Figure 1

18 pages, 2344 KiB  
Article
Life Cycle Assessment of Key Mediterranean Agricultural Products at the Farm Level Using GHG Measurements
by Georgios Bartzas, Maria Doula and Konstantinos Komnitsas
Agriculture 2025, 15(14), 1494; https://doi.org/10.3390/agriculture15141494 - 11 Jul 2025
Viewed by 277
Abstract
Agricultural greenhouse gas (GHG) emissions contribute significantly to climate change and underline the importance of reliable measurements and mitigation strategies. This life cycle assessment (LCA)-based study evaluates the environmental impacts of four key Mediterranean agricultural products, namely olives, sweet potatoes, corn, and grapes [...] Read more.
Agricultural greenhouse gas (GHG) emissions contribute significantly to climate change and underline the importance of reliable measurements and mitigation strategies. This life cycle assessment (LCA)-based study evaluates the environmental impacts of four key Mediterranean agricultural products, namely olives, sweet potatoes, corn, and grapes using GHG measurements at four pilot fields located in different regions of Greece. With the use of a cradle-to-gate approach six environmental impact categories, more specifically acidification potential (AP), eutrophication potential (EP), global warming potential (GWP), ozone depletion potential (ODP), photochemical ozone creation potential (POCP), and cumulative energy demand (CED) as energy-based indicator are assessed. The functional unit used is 1 ha of cultivated land. Any potential carbon offsets from mitigation practices are assessed through an integrated low-carbon certification framework and the use of innovative, site-specific technologies. In this context, the present study evaluates three life cycle inventory (LCI)-based scenarios: Baseline (BS), which represents a 3-year crop production period; Field-based (FS), which includes on-site CO2 and CH4 measurements to assess the effects of mitigation practices; and Inventoried (IS), which relies on comprehensive datasets. The adoption of carbon mitigation practices under the FS scenario resulted in considerable reductions in environmental impacts for all pilot fields assessed, with average improvements of 8% for olive, 5.7% for sweet potato, 4.5% for corn, and 6.5% for grape production compared to the BS scenario. The uncertainty analysis indicates that among the LCI-based scenarios evaluated, the IS scenario exhibits the lowest variability, with coefficient of variation (CV) values ranging from 0.5% to 7.3%. In contrast, the FS scenario shows slightly higher uncertainty, with CVs reaching up to 15.7% for AP and 14.7% for EP impact categories in corn production. The incorporation of on-site GHG measurements improves the precision of environmental performance and supports the development of site-specific LCI data. This benchmark study has a noticeable transferability potential and contributes to the adoption of sustainable practices in other regions with similar characteristics. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Graphical abstract

Back to TopTop