Polycyclic Aromatic Hydrocarbons in Atmospheric PM2.5 and PM10 of Riyadh City, Saudi Arabia: Levels, Temporal Variation, and Health Impacts
Abstract
1. Introduction
2. Materials and Methods
2.1. Standards and Chemicals
2.2. Site Description and Sampling Procedure
2.3. Sample Preparation and Analysis
2.4. GC-MS Analysis
2.5. Quality Assurance and Quality Control
3. Results and Discussion
3.1. PM2.5 and PM10 Concentrations and Air Quality
3.2. PAH Concentrations
3.3. PAH Sources
3.4. PAH Health Risk Assessment
3.4.1. ILCR for PM2.5
3.4.2. ILCR for PM10
3.4.3. Total Cancer Risk (TCR)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Robock, A. Volcanic eruptions and climate. Rev. Geophys. 2000, 38, 191–219. [Google Scholar] [CrossRef]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T.E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 2002, 40, 2-1–2-31. [Google Scholar] [CrossRef]
- O’Dowd, C.D.; Facchini, M.C.; Cavalli, F.; Ceburnis, D.; Mircea, M.; Decesari, S.; Fuzzi, S.; Yoon, Y.J.; Putaud, J.P. Biogenically driven organic contribution to marine aerosol. Nature 2004, 431, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Reid, J.S.; Koppmann, R.; Eck, T.F.; Eleuterio, D.P. A review of biomass burning emissions part II: Intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 2005, 5, 799–825. [Google Scholar] [CrossRef]
- Pope, I.I.I.C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Aneja, V.P.; Schlesinger, W.H.; Erisman, J.W. Farming pollution. Nat. Geosci. 2008, 1, 409–411. [Google Scholar] [CrossRef]
- Ward, T.; Lange, T. The impact of wood smoke on ambient PM2.5 in northern Rocky Mountain valley communities. Environ. Pollut. 2010, 158, 723–729. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Rushdi, A.I.; El-Mubarak, A.H.; Lijotra, L.; Al-Otaibi, M.T.; Qurban, M.A.; Al-Mutlaq, K.F.; Simoneit, B.R. Characteristics of organic compounds in aerosol particulate matter from Dhahran city, Saudi Arabia. Arab. J. Chem. 2017, 10, S3532–S3547. [Google Scholar] [CrossRef]
- Park, S.S.; Kim, Y.J. Source contributions to fine particulate matter in an urban atmosphere. Chemosphere 2005, 59, 217–226. [Google Scholar] [CrossRef]
- Callén, M.S.; López, J.M.; Iturmendi, A.; Mastral, A.M. Nature and sources of particle associated polycyclic aromatic hydrocarbons (PAH) in the atmospheric environment of an urban area. Environ. Pollut. 2013, 183, 166–174. [Google Scholar] [CrossRef]
- El-Mubarak, A.H.; Rushdi, A.I.; Al-Mutlaq, K.F.; Bazeyad, A.Y.; Simonich, S.L.M.; Simoneit, B.R.T. Occurrence and Characteristics of Some Persistent Organic Pollutants (POPS) in Particulate Matter of the Ambient Air of Riyadh. Arab. J. Sci. Eng. 2015, 40, 81–92. [Google Scholar] [CrossRef]
- Siudek, P.; Frankowski, M. The role of sources and atmospheric conditions in the seasonal variability of particulate phase PAHs at the urban site in Central Poland. Aerosol Air Qual. Res. 2018, 18, 1405–1418. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, Y.; Zhang, N.; Wang, Y.; Ren, Y. Pollution levels, characteristics, and sources of polycyclic aromatic hydrocarbons in atmospheric particulate matter across the Hu line in China. A review. Environ. Chem. Lett. 2021, 19, 3821–3836. [Google Scholar] [CrossRef]
- Chimjarn, S.; Delhomme, O.; Millet, M. Temporal distribution and gas/particle partitioning of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere of Strasbourg, France. Atmosphere 2021, 12, 337. [Google Scholar] [CrossRef]
- Rushdi, A.I.; Simoneit, B.R.; Lijotra, L.; Bazeyad, A.Y.; Dumenden, R.; El-Mubarak, A.H.; Qurban, M.A.; Al-Mutlaq, K.F. Phthalates, non-phthalates, polychlorinated biphenyls, and phenyl phosphates in atmospheric suspended particulate matter of Dhahran City, Saudi Arabia: Levels and seasonal variation. Int. J. Environ. Sci. Technol. 2023, 20, 3561–3576. [Google Scholar] [CrossRef]
- Orif, M.I.; El-Shahawi, M.S.; Ismail, I.M.; Alshemmari, H.; Rushdi, A.; El-Sayed, M.A. Characteristics, source, and health risk assessment of aerosol polyaromatic hydrocarbons in the rural and urban regions of western Saudi Arabia. Open Chem. 2023, 21, 20230229. [Google Scholar] [CrossRef]
- Oros, D.R.; Simoneit, B.R. Identification of molecular tracers in organic aerosols from temperate climate vegetation subjected to biomass burning. Aerosol Sci. Technol. 1999, 31, 433–445. [Google Scholar] [CrossRef]
- Oros, D.R.; Simoneit, B.R. Identification and emission factors of molecular tracers in organic aerosols from biomass burning Part 1. Temperate climate conifers. Appl. Geochem. 2001, 16, 1513–1544. [Google Scholar] [CrossRef]
- Simoneit, B.R.; Elias, V.O. Detecting organic tracers from biomass burning in the atmosphere. Mar. Pollut. Bull. 2001, 42, 805–810. [Google Scholar] [CrossRef]
- Simoneit, B.R.; Bi, X.; Oros, D.R.; Medeiros, P.M.; Sheng, G.; Fu, J. Phenols and hydroxy-PAHs (arylphenols) as tracers for coal smoke particulate matter: Source tests and ambient aerosol assessments. Environ. Sci. Technol. 2007, 41, 7294–7302. [Google Scholar] [CrossRef]
- Simoneit, B.R. Triphenylbenzene in urban atmospheres, a new PAH source tracer. Polycycl. Aromat. Compd. 2015, 35, 3–15. [Google Scholar] [CrossRef]
- Simoneit, B.R. Biomass burning—A review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 2002, 17, 129–162. [Google Scholar] [CrossRef]
- Anyahara, J.N. Effects of Polycyclic Aromatic Hydrocarbons (PAHs) on the environment: A systematic review. Int. J. Adv. Acad. Res. 2021, 7, 12. [Google Scholar] [CrossRef]
- Ankit, Y.; Chirakkal, A.; Kataria, V.; Anoop, A.; Mishra, P.K. From biomass to fossil fuels: A contemporaneous transition to anthropogenic driven environmental changes recorded in a Central Himalayan Lake. J. Hazard. Mater. Adv. 2022, 8, 100186. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Wang, Y.; Bai, P.; Hayakawa, K.; Zhang, L.; Tang, N. Characteristics and influencing factors of polycyclic aromatic hydrocarbons emitted from open burning and stove burning of biomass: A brief review. Int. J. Environ. Res. Public Health 2022, 19, 3944. [Google Scholar] [CrossRef]
- Huang, T.; Luo, D.; Zhou, J.; Li, S.; Xue, J.; Yang, H.; Li, Y.; Wang, Z.; Huang, C. Higher allochthonous organic carbon increases polycyclic aromatic hydrocarbon concentration whereas fossil fuel combustion alters the composition: Evidence from a eutrophic plateau lake in southwest China. Sci. Total Environ. 2023, 893, 164753. [Google Scholar] [CrossRef] [PubMed]
- Salman, N.A.; Al-Mishrey, M.K.; Al-Saad, H.T.; Rushdi, A. Air Pollution in the Southern Part of Iraq and Its Health Risks. In Aerosol Optical Depth and Precipitation; Gautam, S., Kumar, R.P., Samuel, C., Eds.; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Wild, S.R.; Berrow, M.L.; Jones, K.C. The persistence of polynuclear aromatic hydrocarbons (PAHs) in sewage sludge amended agricultural soils. Environ. Pollut. 1991, 72, 141–157. [Google Scholar] [CrossRef]
- Ukalska-Jaruga, A.; Smreczak, B. The impact of organic matter on polycyclic aromatic hydrocarbon (PAH) availability and persistence in soils. Molecules 2020, 25, 2470. [Google Scholar] [CrossRef] [PubMed]
- Alegbeleye, O.O.; Opeolu, B.O.; Jackson, V.A. Polycyclic aromatic hydrocarbons: A critical review of environmental occurrence and bioremediation. Environ. Manag. 2017, 60, 758–783. [Google Scholar] [CrossRef]
- Barathi, S.; Gitanjali, J.; Rathinasamy, G.; Sabapathi, N.; Aruljothi, K.N.; Lee, J.; Kandasamy, S. Recent trends in polycyclic aromatic hydrocarbons pollution distribution and counteracting bio-remediation strategies. Chemosphere 2023, 337, 139396. [Google Scholar] [CrossRef]
- Kim, K.H.; Jahan, S.A.; Kabir, E.; Brown, R.J. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013, 60, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Xue, Z.; Zhu, X.; Jia, C. Long-term trends (1990–2014), health risks, and sources of atmospheric polycyclic aromatic hydrocarbons (PAHs) in the US. Environ. Pollut. 2017, 220, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, H.; Zhang, X.; Xing, W.; Wang, Y.; Bai, P.; Tang, N. Exposure to atmospheric particulate matter-bound polycyclic aromatic hydrocarbons and their health effects: A review. Int. J. Environ. Res. Public Health 2021, 18, 2177. [Google Scholar] [CrossRef]
- Arias, A.H.; Pozo, K.A.; Álvarez, M.B.; Pribylová, P.; Tombesi, N.B. Atmospheric PAHs in rural, urban, industrial and beach locations in Buenos Aires Province, Argentina: Sources and health risk assessment. Environ. Geochem. Health 2022, 44, 2419–2433. [Google Scholar] [CrossRef]
- Najurudeen, N.A.N.B.; Khan, M.F.; Suradi, H.; Mim, U.A.; Raim, I.N.J.; Rashid, S.B.; Latif, M.T.; Huda, M.N. The presence of polycyclic aromatic hydrocarbons (PAHs) in air particles and estimation of the respiratory deposition flux. Sci. Total Environ. 2023, 878, 163129. [Google Scholar] [CrossRef]
- Ravanbakhsh, M.; Yousefi, H.; Lak, E.; Ansari, M.J.; Suksatan, W.; Qasim, Q.A.; Asban, P.; Kianizadeh, M.; Mohammadi, M.J. Effect of polycyclic aromatic hydrocarbons (PAHs) on respiratory diseases and the risk factors related to cancer. Polycycl. Aromat. Compd. 2023, 43, 8371–8387. [Google Scholar] [CrossRef]
- Chrysochou, E.; Kanellopoulos, P.G.; Koukoulakis, K.G.; Sakellari, A.; Karavoltsos, S.; Minaidis, M.; Bakeas, E. Heart failure and PAHs, OHPAHs, and trace elements levels in human serum: Results from a preliminary pilot study in Greek population and the possible impact of air pollution. Molecules 2021, 26, 3207. [Google Scholar] [CrossRef]
- Rojas, G.A.; Saavedra, N.; Saavedra, K.; Hevia, M.; Morales, C.; Lanas, F.; Salazar, L.A. Polycyclic aromatic hydrocarbons (PAHs) exposure triggers inflammation and endothelial dysfunction in BALB/c mice: A pilot study. Toxics 2022, 10, 497. [Google Scholar] [CrossRef]
- Abolhasani, R.; Araghi, F.; Tabary, M.; Aryannejad, A.; Mashinchi, B.; Robati, R.M. The impact of air pollution on skin and related disorders: A comprehensive review. Dermatol. Ther. 2021, 34, e14840. [Google Scholar] [CrossRef]
- Roberts, W. Air pollution and skin disorders. Int. J. Women’s Dermatol. 2021, 7, 91–97. [Google Scholar] [CrossRef]
- Famiyeh, L.; Chen, K.; Xu, J.; Sun, Y.; Guo, Q.; Wang, C.; He, J. A review on analysis methods, source identification, and cancer risk evaluation of atmospheric polycyclic aromatic hydrocarbons. Sci. Total Environ. 2021, 789, 147741. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.K.; Sah, D.; Satish, R.; Rastogi, N.; Kumari, K.M.; Lakhani, A. Atmospheric chemistry and cancer risk assessment of Polycyclic Aromatic Hydrocarbons (PAHs) and Nitro-PAHs over a semi-arid site in the Indo-Gangetic plain. J. Environ. Manag. 2022, 317, 115456. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ding, X.; Turap, Y.; Tursun, Y.; Abulizi, A.; Wang, X.; Liu, H. Distribution, sources, risks, and vitro DNA oxidative damage of PM2.5-bound atmospheric polycyclic aromatic hydrocarbons in Urumqi, NW China. Sci. Total Environ. 2020, 739, 139518. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Cao, X.; Lintelmann, J.; Peters, A.; Koenig, W.; Zimmermann, R.; Linseisen, J. Assessment of the association of exposure to polycyclic aromatic hydrocarbons, oxidative stress, and inflammation: A cross-sectional study in Augsburg, Germany. Int. J. Hyg. Environ. Health 2022, 244, 113993. [Google Scholar] [CrossRef]
- Habeebullah, T.M. Risk assessment of poly cyclic aromatic hydrocarbons in the Holy City of Makkah, Saudi Arabia. Int. J. Environ. Sci. Dev. 2013, 4, 139. [Google Scholar] [CrossRef]
- El-Mubarak, A.H.; Rushdi, A.I.; Al-Mutlaq, K.F.; Bazeyad, A.Y.; Simonich, S.L.; Simoneit, B.R. Identification and source apportionment of polycyclic aromatic hydrocarbons in ambient air particulate matter of Riyadh, Saudi Arabia. Environ. Sci. Pollut. Res. 2014, 21, 558–567. [Google Scholar] [CrossRef]
- Bian, Q.; Alharbi, B.; Collett, J., Jr.; Kreidenweis, S.; Pasha, M.J. Measurements and source apportionment of particle-associated polycyclic aromatic hydrocarbons in ambient air in Riyadh, Saudi Arabia. Atmos. Environ. 2016, 137, 186–198. [Google Scholar] [CrossRef]
- Harrison, R.M.; Alam, M.S.; Dang, J.; Basahi, J.; Alghamdi, M.A.; Ismail, I.M.; Khoder, M.; Hassan, I.A. Influence of petrochemical installations upon PAH concentrations at sites in Western Saudi Arabia. Atmos. Pollut. Res. 2016, 7, 954–960. [Google Scholar] [CrossRef]
- Modaihsh, A.S.; Mahjoub, M.O.; Nadeem, M.E.; Ghoneim, A.M.; Al-Barakah, F.N. The air quality, characterization of polycyclic aromatic hydrocarbon, organic carbon, and diurnal variation of particulate matter over Riyadh City. J. Environ. Prot. 2016, 7, 1198–1209. [Google Scholar] [CrossRef]
- Orif, M.I.; El-Shahawi, M.S.; Ismail, I.M.; Rushdi, A.; Alshemmari, H.; El-Sayed, M.A. An extensive assessment on the distribution pattern of organic contaminants in the aerosols samples in the Middle East. Open Chem. 2022, 20, 1566–1574. [Google Scholar] [CrossRef]
- Alghamdi, M.A.; Hassan, S.K.; Shetaya, W.H.; Al Sharif, M.Y.; Nawab, J.; Khoder, M.I. Polycyclic aromatic hydrocarbons in indoor mosques dust in Saudi Arabia: Levels, source apportionment, human health and carcinogenic risk assessment for congregators. Sci. Total Environ. 2024, 946, 174331. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, S.; Balasubramanian, R.; See, S.W. Optimization and validation of a low temperature microwave-assisted extraction method for analysis of polycyclic aromatic hydrocarbons in airborne particulate matter. Talanta 2006, 69, 79–86. [Google Scholar] [CrossRef]
- Alharbi, H.A.; Rushdi, A.I.; Bazeyad, A.; Al-Mutlaq, K.F. Temporal Variations, Air Quality, Heavy Metal Concentrations, and Environmental and Health Impacts of Atmospheric PM2.5 and PM10 in Riyadh City, Saudi Arabia. Atmosphere 2024, 15, 1448. [Google Scholar] [CrossRef]
- Rushdi, A.I.; Oros, D.R.; Al-Mutlaq, K.F.; He, D.; Medeiros, P.M.; Simoneit, B.R. Lipid, sterol and saccharide sources and dynamics in surface soils during an annual cycle in a temperate climate region. Appl. Geochem. 2016, 66, 1–13. [Google Scholar] [CrossRef]
- Rushdi, A.I.; Al-Mutlaq, K.F.; El-Mubarak, A.H.; Al-Saleh, M.A.; El-Otaibi, M.T.; Ibrahim, S.M.; Simoneit, B.R. Occurrence and sources of natural and anthropogenic lipid tracers in surface soils from arid urban areas of Saudi Arabia. Environ. Pollut. 2016, 208, 696–703. [Google Scholar] [CrossRef]
- Tsapakis, M.; Stephanou, E.G. Occurrence of gaseous and particulate polycyclic aromatic hydrocarbons in the urban atmosphere: Study of sources and ambient temperature effect on the gas/particle concentration and distribution. Environ. Pollut. 2005, 133, 147–156. [Google Scholar] [CrossRef]
- Akyüz, M.; Çabuk, H. Meteorological variations of PM2.5/PM10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. J. Hazard. Mater. 2009, 170, 13–21. [Google Scholar] [CrossRef]
- Demuzere, M.; Trigo, R.M.; Vila-Guerau de Arellano, J.; Van Lipzig, N.P.M. The impact of weather and atmospheric circulation on O 3 and PM 10 levels at a rural mid-latitude site. Atmos. Chem. Phys. 2009, 9, 2695–2714. [Google Scholar] [CrossRef]
- Slezakova, K.; Pereira, M.C.; Reis, M.A.; Alvim-Ferraz, M.C. Influence of traffic emissions on the composition of atmospheric particles of different sizes–Part 1: Concentrations and elemental characterization. J. Atmos. Chem. 2007, 58, 55–68. [Google Scholar] [CrossRef]
- Fitz-Simons, T. Guideline for Reporting of Daily Air Quality: Air Quality Index (AQI); (No. PB-99-169237/XAB; EPA-454/R-99/010); Environmental Protection Agency, Office of Air Quality Planning and Standards: Research Triangle Park, NC, USA, 1999.
- Brook, R.D.; Rajagopalan, S.; Pope, I.I.I.C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Kaufman, J.D. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Health effects of airborne particles in relation to composition, size and source. In Airborne Particulate Matter Sources, Atmospheric Processes and Health; Harrison, R.M., Querol, X., Eds.; The Royal Society of Chemistry: London, UK, 2016; pp. 344–382. [Google Scholar]
- Pope, I.I.I.C.A.; Burnett, R.T.; Thurston, G.D.; Thun, M.J.; Calle, E.E.; Krewski, D.; Godleski, J.J. Cardiovascular mortality and long-term exposure to particulate air pollution: Epidemiological evidence of general pathophysiological pathways of disease. Circulation 2004, 109, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Thurston, G.; Lippmann, M. Ambient particulate matter air pollution and cardiopulmonary diseases. Semin. Respir. Crit. Care Med. 2015, 36, 422–432. [Google Scholar]
- Krittanawong, C.; Qadeer, Y.K.; Hayes, R.B.; Wang, Z.; Virani, S.; Thurston, G.D.; Lavie, C.J. PM2.5 and cardiovascular health risks. Curr. Probl. Cardiol. 2023, 48, 101670. [Google Scholar] [CrossRef]
- Ghio, A.J.; Huang, Y.C.T. Exposure to concentrated ambient particles (CAPs): A review. Inhal. Toxicol. 2004, 16, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Chen, R.; Norback, D.; Liu, C.; Kan, H.; Deng, Q.; Zhao, Z. The effects of PM2.5 on asthmatic and allergic diseases or symptoms in preschool children of six Chinese cities, based on China, Children, Homes and Health (CCHH) project. Environ. Pollut. 2018, 232, 329–337. [Google Scholar]
- Samet, J.M.; Graff, D.; Berntsen, J.; Ghio, A.J.; Huang, Y.C.T.; Devlin, R.B. A comparison of studies on the effects of controlled exposure to fine, coarse and ultrafine ambient particulate matter from a single location. Inhal. Toxicol. 2007, 19, 29–32. [Google Scholar] [CrossRef]
- Laden, F.; Neas, L.M.; Dockery, D.W.; Schwartz, J. Association of fine particulate matter from different sources with daily mortality in six US cities. Environ. Health Perspect. 2000, 108, 941–947. [Google Scholar] [CrossRef]
- Gent, J.F.; Koutrakis, P.; Belanger, K.; Triche, E.; Holford, T.R.; Bracken, M.B.; Leaderer, B.P. Symptoms and medication use in children with asthma and traffic-related sources of fine particle pollution. Environ. Health Perspect. 2009, 117, 1168–1174. [Google Scholar] [CrossRef]
- Pedersen, P.S.; Ingwersen, J.; Nielsen, T.; Larsen, E. Effects of fuel, lubricant, and engine operating parameters on the emission of polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 1980, 14, 71–79. [Google Scholar] [CrossRef]
- Zielińska, A.; Oleszczuk, P. Effect of pyrolysis temperatures on freely dissolved polycyclic aromatic hydrocarbon (PAH) concentrations in sewage sludge-derived biochars. Chemosphere 2016, 153, 68–74. [Google Scholar] [CrossRef]
- Su, H.; Cheng, Y.; Po’schl, U. New multiphase chemical processes influencing atmospheric aerosols, air quality, and climate in the anthropocene. Acc. Chem. Res. 2020, 53, 2034–2043. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, N.; Rafiei, M.; Donaldson, B. Effect of diesel and pentanol blends on PAH formation and regulated pollutants. Biofuels 2023, 14, 293–301. [Google Scholar] [CrossRef]
- Chen, Y.P.; Zeng, Y.; Guan, Y.F.; Huang, Y.Q.; Liu, Z.; Xiang, K.; Chen, S.J. Particle size-resolved emission characteristics of complex polycyclic aromatic hydrocarbon (PAH) mixtures from various combustion sources. Environ. Res. 2022, 214, 113840. [Google Scholar] [CrossRef]
- Skic, K.; Boguta, P.; Klimkowicz-Pawlas, A.; Ukalska-Jaruga, A.; Baran, A. Effect of sorption properties on the content, ecotoxicity, and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in bottom sediments. J. Hazard. Mater. 2023, 442, 130073. [Google Scholar] [CrossRef]
- Richter, H.; Howard, J.B. Formation of polycyclic aromatic hydrocarbons and their growth to soot—A review of chemical reaction pathways. Prog. Energy Combust. Sci. 2000, 26, 565–608. [Google Scholar] [CrossRef]
- Liao, K.; Yu, J.Z. Abundance and sources of benzo [a] pyrene and other PAHs in ambient air in Hong Kong: A review of 20-year measurements (1997–2016). Chemosphere 2020, 259, 127518. [Google Scholar] [CrossRef]
- Singh, B.P.; Kumar, K.; Jain, V.K. Distribution of ring PAHs in particulate/gaseous phase in the urban city of Delhi, India: Seasonal variation and cancer risk assessment. Urban Clim. 2021, 40, 101010. [Google Scholar] [CrossRef]
- Xu, J.; Hu, W.; Liang, D.; Gao, P. Photochemical impacts on the toxicity of PM2.5. Crit. Rev. Environ. Sci. Technol. 2022, 52, 130–156. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Zou, H.; Zhang, B.; Yang, D.; Wang, Q.; Shen, Z. Photochemical aging process on PM2.5 bound PAHs emission from solid fuel combustion in traditional and improved stoves. Atmos. Res. 2021, 263, 105807. [Google Scholar] [CrossRef]
- Morville, S.; Delhomme, O.; Millet, M. Seasonal and diurnal variations of atmospheric PAH concentrations between rural, suburban and urban areas. Atmos. Pollut. Res. 2011, 2, 366–373. [Google Scholar] [CrossRef]
- He, J.; Fan, S.; Meng, Q.; Sun, Y.; Zhang, J.; Zu, F. Polycyclic aromatic hydrocarbons (PAHs) associated with fine particulate matters in Nanjing, China: Distributions, sources and meteorological influences. Atmos. Environ. 2014, 89, 207–215. [Google Scholar] [CrossRef]
- Ma, L.; Li, B.; Liu, Y.; Sun, X.; Fu, D.; Sun, S.; Tian, C. Characterization, sources and risk assessment of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in Harbin, a cold city in Northern China. J. Clean. Prod. 2020, 264, 121673. [Google Scholar] [CrossRef]
- Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.; Cass, G.R.; Simoneit, B.R. Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ. Sci. Technol. 1993, 27, 636–651. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Yunker, M.B.; Perreault, A.; Lowe, C.J. Source apportionment of elevated PAH concentrations in sediments near deep marine outfalls in Esquimalt and Victoria, BC, Canada: Is coal from an 1891 shipwreck the source? Org. Geochem. 2012, 46, 12–37. [Google Scholar] [CrossRef]
- Tobiszewski, M.; Namieśnik, J. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 2012, 162, 110–119. [Google Scholar] [CrossRef]
- Amarillo, A.C.; Mateos, A.C.; Carreras, H. Source apportionment of PM 10-bound polycyclic aromatic hydrocarbons by positive matrix factorization in Cordoba city, Argentina. Arch. Environ. Contam. Toxicol. 2017, 72, 380–390. [Google Scholar] [CrossRef]
- Siudek, P. Polycyclic aromatic hydrocarbons in coarse particles (PM10) over the coastal urban region in Poland: Distribution, source analysis and human health risk implications. Chemosphere 2023, 311, 137130. [Google Scholar] [CrossRef]
- Guo, H.; Lee, S.C.; Ho, K.F.; Wang, X.M.; Zou, S.C. Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmos. Environ. 2003, 37, 5307–5317. [Google Scholar] [CrossRef]
- Jiang, Y.; Hu, X.; Yves, U.J.; Zhan, H.; Wu, Y. Status, source and health risk assessment of polycyclic aromatic hydrocarbons in street dust of an industrial city, NW China. Ecotoxicol. Environ. Saf. 2014, 106, 11–18. [Google Scholar] [CrossRef]
- Nadal, M.; Schuhmacher, M.; Domingo, J.L. Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environ. Pollut. 2004, 132, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tsai, P.J.; Shih, T.S.; Chen, H.L.; Lee, W.J.; Lai, C.H.; Liou, S.H. Assessing and predicting the exposures of polycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers. Atmos. Environ. 2004, 38, 333–343. [Google Scholar] [CrossRef]
- Nekhavhambe, T.J.; Van Ree, T.; Fatoki, O.S. Determination and distribution of polycyclic aromatic hydrocarbons in rivers, surface runoff, and sediments in and around Thohoyandou, Limpopo Province, South Africa. Water SA 2014, 40, 415–424. [Google Scholar] [CrossRef]
- U.S. EPA. Development of a Relative Potency Factor (Rpf) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures (External Review Draft, Suspended); EPA/635/R-08/012A; U.S. Environmental Protection Agency: Washington, DC, USA, 2010.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr. Eval. Carcinog. Risks Hum. 2010, 92, 1–853. [Google Scholar]
- Alshaheen, A.S.; Al-Naiema, I.M.; Tuama, D.M.; Al-Mosuwi, W.H. Characterization, risk assessment, and source estimation of PM10-bound polycyclic aromatic hydrocarbons during wintertime in the ambient air of Basrah City, Iraq. Chemosphere 2023, 326, 138444. [Google Scholar] [CrossRef]
- Xu, L.Y.; Yin, H.; Xie, X.D. Health risk assessment of inhalable particulate matter in Beijing based on the thermal environment. Int. J. Environ. Res. Public Health 2014, 11, 12368–12388. [Google Scholar] [CrossRef]
- Mallah, M.A.; Changxing, L.; Mallah, M.A.; Noreen, S.; Liu, Y.; Saeed, M.; Zhang, Q. Polycyclic aromatic hydrocarbon and its effects on human health: An overeview. Chemosphere 2022, 296, 133948. [Google Scholar] [CrossRef]
- Modaihsh, A.S.; Al-Barakah, F.N.; Nadeem, M.E.; Mahjoub, M.O. Spatial and temporal variations of the particulate matter in Riyadh City, Saudi Arabia. J. Environ. Prot. 2015, 6, 1293. [Google Scholar] [CrossRef]
Winter (T < 25 °C) | Spring/Autumn (25 °C–35 °C) | Summer (T > 35 °C) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | SD | Min | Max | Mean | SD | Min | Max | Mean | SD | |
Avg. Temperature (°C) | 18.50 | 22.50 | 20.48 | 1.97 | 27.50 | 34.40 | 31.25 | 2.77 | 35.40 | 38.90 | 37.33 | 1.08 |
PM2.5 | ||||||||||||
PM2.5 (mg/m3) | 22.56 | 41.31 | 31.85 | 7.66 | 29.69 | 56.19 | 37.02 | 9.78 | 24.59 | 57.17 | 36.27 | 11.24 |
AQI | 64.89 | 102.59 | 83.37 | 15.40 | 78.92 | 131.87 | 93.48 | 19.55 | 68.88 | 133.80 | 92.11 | 22.46 |
Compound (ng/g) | ||||||||||||
Naphthalene (Nap) | 21.28 | 57.24 | 34.32 | 15.85 | 5.64 | 43.24 | 18.36 | 16.07 | 1.15 | 21.41 | 8.53 | 7.15 |
Acenaphthylene (Acy) | 3.35 | 8.09 | 5.48 | 2.38 | 1.26 | 8.19 | 5.80 | 2.57 | 5.87 | 8.41 | 7.15 | 0.91 |
Acenaphthene (Ace) | 6.88 | 139.27 | 56.19 | 57.48 | 6.30 | 237.04 | 74.68 | 95.74 | 5.44 | 138.79 | 40.74 | 56.85 |
Fluorene (Flu) | 1.58 | 6.41 | 3.70 | 2.03 | 1.06 | 7.77 | 5.62 | 2.67 | 4.92 | 16.47 | 8.99 | 4.68 |
Phenanthrene (Phe) | 8.34 | 30.96 | 21.46 | 9.88 | 4.44 | 45.24 | 14.18 | 15.40 | 7.77 | 20.09 | 12.32 | 5.21 |
Anthracene (Ant) | 3.95 | 6.66 | 5.51 | 1.19 | 6.55 | 30.86 | 11.91 | 9.47 | 5.80 | 7.66 | 6.79 | 0.66 |
Fluoranthene (FR) | 12.73 | 43.95 | 25.05 | 13.53 | 6.38 | 62.83 | 19.17 | 21.91 | 6.81 | 20.89 | 13.37 | 5.35 |
Pyrene (Pyr) | 12.58 | 44.38 | 31.79 | 15.28 | 7.80 | 63.86 | 20.80 | 21.65 | 8.36 | 21.84 | 15.82 | 5.21 |
Benz[a]anthracene (BaA) | 5.58 | 21.14 | 13.82 | 7.09 | 5.44 | 24.21 | 9.75 | 7.28 | 4.83 | 9.71 | 7.38 | 1.64 |
Chrysene (Chr) | 16.86 | 57.17 | 34.67 | 18.19 | 9.35 | 70.91 | 24.23 | 23.76 | 7.25 | 24.93 | 16.03 | 5.70 |
Benz(a)pyrene (BaP) | 13.06 | 260.36 | 82.15 | 119.21 | −5.06 | 727.94 | 253.14 | 289.83 | 264.39 | 989.40 | 572.34 | 256.28 |
Benzo[k]fluoranthene (BkF) | 11.80 | 238.36 | 74.94 | 109.30 | 0.65 | 657.12 | 230.20 | 261.07 | 241.97 | 891.28 | 521.39 | 227.18 |
indeno(1,2,3-cd)pyrene (IDP) | 7.02 | 28.01 | 15.47 | 8.93 | 6.18 | 17.05 | 9.02 | 4.16 | 3.14 | 48.69 | 17.73 | 20.41 |
Dibenz(a,h)anthracene (DBahA) | 2.61 | 7.32 | 4.81 | 2.01 | 1.51 | 6.97 | 4.64 | 1.90 | 4.59 | 12.75 | 6.88 | 3.04 |
Benzo[g,h,i]perylene (BghiPyr) | 9.57 | 82.43 | 44.45 | 30.65 | 9.10 | 38.29 | 19.62 | 11.40 | 4.77 | 19.14 | 11.41 | 5.26 |
Total | 338.0 | 639.6 | 453.8 | 144.4 | 133.0 | 1716.5 | 721.1 | 593.6 | 590.6 | 2041.5 | 1266.9 | 536.0 |
Diagnostic ratios | ||||||||||||
LMW/HMW(PAH) | 0.12 | 1.25 | 0.56 | 0.48 | 0.11 | 0.52 | 0.29 | 0.15 | 0.03 | 0.12 | 0.07 | 0.03 |
Phe/Ant | 1.35 | 5.09 | 4.02 | 1.80 | 0.23 | 5.50 | 1.63 | 1.93 | 1.19 | 2.69 | 1.77 | 0.59 |
Flu/Pye | 0.57 | 1.01 | 0.82 | 0.22 | 0.77 | 0.98 | 0.87 | 0.08 | 0.67 | 1.00 | 0.84 | 0.15 |
Ant/(Ant + Phe) | 0.16 | 0.43 | 0.23 | 0.13 | 0.15 | 0.81 | 0.50 | 0.21 | 0.27 | 0.46 | 0.37 | 0.07 |
FR/(FR + Pye) | 0.36 | 0.50 | 0.44 | 0.07 | 0.44 | 0.50 | 0.46 | 0.02 | 0.40 | 0.50 | 0.45 | 0.05 |
BaA/(BaA + Chr) | 0.19 | 0.38 | 0.29 | 0.08 | 0.22 | 0.39 | 0.32 | 0.07 | 0.26 | 0.40 | 0.33 | 0.05 |
IDP/(IDP + BghiPyr) | 0.19 | 0.42 | 0.29 | 0.10 | 0.24 | 0.40 | 0.33 | 0.07 | 0.35 | 0.73 | 0.50 | 0.16 |
PM10 | ||||||||||||
Min | Max | Mean | SD | Min | Max | Mean | SD | Min | Max | Mean | SD | |
PM10 (mg/m3) | 131.31 | 216.32 | 170.07 | 35.55 | 162.13 | 410.36 | 231.72 | 90.39 | 190.58 | 315.10 | 246.07 | 40.65 |
AQI | 102.74 | 138.77 | 120.83 | 17.00 | 104.53 | 280.43 | 147.81 | 65.93 | 118.61 | 208.15 | 153.36 | 31.10 |
Compound (ng/g) | ||||||||||||
Naphthalene (Nap) | 26.87 | 47.69 | 37.25 | 9.43 | 5.07 | 39.68 | 21.72 | 15.32 | 2.07 | 24.04 | 9.31 | 7.88 |
Acenaphthylene (Acy) | 4.55 | 9.01 | 6.56 | 2.04 | 2.03 | 8.73 | 5.95 | 2.64 | 6.57 | 9.30 | 7.58 | 0.92 |
Acenaphthene (Ace) | 8.69 | 119.85 | 46.59 | 50.01 | 7.65 | 228.59 | 85.98 | 92.28 | 4.99 | 121.59 | 47.69 | 51.81 |
Fluorene (Flu) | 2.21 | 4.93 | 3.50 | 1.23 | 1.36 | 9.98 | 6.02 | 3.56 | 4.98 | 17.66 | 9.54 | 5.29 |
Phenanthrene (Phe) | 12.98 | 29.95 | 23.89 | 7.65 | 4.31 | 30.30 | 13.23 | 9.71 | 8.32 | 33.11 | 15.25 | 8.16 |
Anthracene (Ant) | 4.66 | 7.57 | 6.07 | 1.45 | 3.48 | 9.63 | 6.57 | 1.98 | 7.43 | 11.36 | 8.94 | 1.39 |
Fluoranthene (FR) | 22.22 | 67.61 | 35.76 | 21.34 | 6.42 | 28.95 | 16.35 | 9.90 | 11.49 | 40.15 | 18.25 | 9.82 |
Pyrene (Pyr) | 7.77 | 67.98 | 35.59 | 26.35 | 7.94 | 43.23 | 20.37 | 13.68 | 14.36 | 40.01 | 20.24 | 9.24 |
Benz[a]anthracene (BaA) | 10.06 | 51.08 | 24.27 | 18.27 | 5.28 | 15.21 | 9.47 | 4.60 | 7.50 | 19.64 | 10.49 | 4.23 |
Chrysene (Chr) | 31.95 | 66.31 | 45.30 | 14.76 | 8.56 | 46.07 | 24.21 | 15.50 | 17.02 | 57.66 | 24.79 | 14.69 |
Benz(a)pyrene (BaP) | 12.81 | 43.23 | 24.95 | 13.00 | 3.99 | 393.97 | 77.11 | 155.54 | 1.49 | 22.50 | 8.59 | 6.56 |
Benzo[k]fluoranthene (BkF) | 16.66 | 38.82 | 23.72 | 10.25 | 0.94 | 358.02 | 69.10 | 141.90 | 0.28 | 25.34 | 5.09 | 9.02 |
indeno(1,2,3-cd)pyrene (IDP) | 10.99 | 26.74 | 15.42 | 7.57 | 6.33 | 27.67 | 11.76 | 7.92 | 6.99 | 13.08 | 8.79 | 2.00 |
Dibenz(a,h)anthracene (DBahA) | 3.07 | 7.35 | 4.87 | 2.11 | 2.88 | 8.88 | 5.49 | 1.97 | 4.48 | 6.34 | 5.27 | 0.59 |
Benzo[g,h,i]perylene (BghiPyr) | 21.95 | 78.12 | 44.42 | 25.87 | 11.12 | 60.97 | 25.11 | 19.61 | 9.87 | 23.52 | 14.11 | 4.55 |
Total | 247.85 | 566.19 | 378.18 | 134.19 | 117.04 | 874.38 | 398.42 | 261.48 | 125.15 | 331.67 | 213.92 | 74.97 |
Diagnostic ratios | ||||||||||||
LMW/HMW(PAH) | 0.27 | 1.07 | 0.58 | 0.35 | 0.09 | 3.39 | 1.06 | 1.18 | 0.34 | 1.82 | 0.98 | 0.67 |
Phe/Ant | 1.71 | 5.65 | 4.21 | 1.76 | 0.67 | 5.03 | 2.28 | 1.92 | 1.12 | 2.91 | 1.65 | 0.60 |
Flu/Pye | 0.59 | 3.47 | 1.52 | 1.32 | 0.67 | 1.00 | 0.83 | 0.13 | 0.75 | 1.01 | 0.89 | 0.10 |
Ant/(Ant + Phe) | 0.15 | 0.37 | 0.22 | 0.10 | 0.17 | 0.60 | 0.39 | 0.18 | 0.26 | 0.47 | 0.39 | 0.07 |
FR/(FR + Pye) | 0.37 | 0.78 | 0.54 | 0.17 | 0.40 | 0.50 | 0.45 | 0.04 | 0.43 | 0.50 | 0.47 | 0.03 |
BaA/(BaA + Chr) | 0.20 | 0.44 | 0.32 | 0.10 | 0.21 | 0.38 | 0.31 | 0.06 | 0.25 | 0.37 | 0.31 | 0.03 |
IDP/(IDP + BghiPyr) | 0.19 | 0.35 | 0.27 | 0.07 | 0.24 | 0.41 | 0.34 | 0.06 | 0.36 | 0.41 | 0.39 | 0.02 |
PM2.5 | ||||||||||||
Winter (T < 25 °C) | Spring/Autumn (25 °C–35 °C) | Summer (T > 35 °C) | ||||||||||
Min | Max | Mean | SD | Min | Max | Mean | SD | Min | Max | Mean | SD | |
Children | ||||||||||||
BaPeq | 0.26 | 0.70 | 0.41 | 0.20 | 0.02 | 0.70 | 0.26 | 0.26 | 0.26 | 0.94 | 0.55 | 0.24 |
ILCR(Ing) | 1.24 × 10−6 | 3.34 × 10−6 | 1.98 × 10−6 | 9.79 × 10−7 | 1.05 × 10−7 | 3.34 × 10−6 | 1.25 × 10−6 | 1.26 × 10−6 | 1.24 × 10−6 | 4.47 × 10−6 | 2.65 × 10−6 | 1.14 × 10−6 |
ILCR(Inh) | 2.40 × 10−2 | 6.48 × 10−2 | 3.84 × 10−2 | 1.90 × 10−2 | 2.04 × 10−3 | 6.48 × 10−2 | 2.43 × 10−2 | 2.44 × 10−2 | 2.41 × 10−2 | 8.67 × 10−2 | 5.14 × 10−2 | 2.21 × 10−2 |
ILCR(Der) | 1.55 × 10−6 | 4.17 × 10−6 | 2.47 × 10−6 | 1.22 × 10−6 | 1.31 × 10−7 | 4.17 × 10−6 | 1.56 × 10−6 | 1.57 × 10−6 | 1.55 × 10−6 | 5.58 × 10−6 | 3.31 × 10−6 | 1.42 × 10−6 |
TCR | 2.40 × 10−2 | 6.48 × 10−2 | 3.84 × 10−2 | 1.90 × 10−2 | 2.04 × 10−2 | 6.48 × 10−2 | 2.43 × 10−2 | 2.44 × 10−2 | 2.41 × 10−2 | 8.67 × 10−2 | 5.14 × 10−2 | 2.21 × 10−2 |
Adults | ||||||||||||
ILCR(Ing) | 2.05 × 10−6 | 5.54 × 10−6 | 3.28 × 10−6 | 1.62 × 10−6 | 1.74 × 10−7 | 5.54 × 10−6 | 2.08 × 10−6 | 2.08 × 10−6 | 2.06 × 10−6 | 7.41 × 10−6 | 4.39 × 10−6 | 1.89 × 10−6 |
ILCR(Inh) | 3.98 × 10−2 | 1.07 × 10−1 | 6.37 × 10−2 | 3.15 × 10−2 | 3.38 × 10−3 | 1.07 × 10−1 | 4.03 × 10−2 | 4.04 × 10−2 | 4.00 × 10−2 | 1.44 × 10−2 | 8.52 × 10−2 | 3.67 × 10−2 |
ILCR(Der) | 1.82 × 10−6 | 4.92 × 10−6 | 2.92 × 10−6 | 1.44 × 10−6 | 1.55 × 10−6 | 4.92 × 10−6 | 1.84 × 10−6 | 1.85 × 10−6 | 1.83 × 10−6 | 6.58 × 10−6 | 3.90 × 10−6 | 1.68 × 10−6 |
TCR | 3.98 × 10−2 | 1.07 × 10−1 | 6.37 × 10−2 | 3.15 × 10−2 | 3.38 × 10−3 | 1.07 × 10−1 | 4.03 × 10−2 | 4.04 × 10−2 | 4.00 × 10−2 | 1.44 × 10−1 | 8.52 × 10−2 | 3.67 × 10−2 |
PM10 | ||||||||||||
Winter (T < 25 °C) | Spring/Autumn (25 °C–35 °C) | Summer (T > 35 °C) | ||||||||||
Min | Max | Mean | SD | Min | Max | Mean | SD | Min | Max | Mean | SD | |
Children | ||||||||||||
BaPeq | 0.02 | 0.06 | 0.04 | 0.02 | 0.01 | 0.44 | 0.09 | 0.17 | 0.01 | 0.04 | 0.02 | 0.01 |
ILCR(Ing) | 1.14 × 10−7 | 3.05 × 10−7 | 1.78 × 10−7 | 8.65 × 10−8 | 6.02 × 10−8 | 2.09 × 10−6 | 4.41 × 10−7 | 8.11 × 10−7 | 4.35 × 10−8 | 1.70 × 10−7 | 8.00 × 10−8 | 4.12 × 10−8 |
ILCR(Inh) | 2.21 × 10−3 | 5.92 × 10−3 | 3.44 × 10−3 | 1.68 × 10−3 | 1.17 × 10−3 | 4.05 × 10−3 | 8.55 × 10−3 | 1.57 × 10−2 | 8.44 × 10−4 | 3.30 × 10−3 | 1.55 × 10−3 | 7.99 × 10−4 |
ILCR(Der) | 1.42 × 10−7 | 3.81 × 10−7 | 2.21 × 10−7 | 1.08 × 10−7 | 7.51 × 10−8 | 2.61 × 10−6 | 5.49 × 10−7 | 1.01 × 10−6 | 5.42 × 10−8 | 2.12 × 10−7 | 9.97 × 10−8 | 5.14 × 10−8 |
TCR | 2.21 × 10−3 | 5.92 × 10−3 | 3.44 × 10−3 | 1.68 × 10−3 | 1.17 × 10−3 | 4.05 × 10−2 | 8.55 × 10−3 | 1.57 × 10−2 | 8.44 × 10−4 | 3.30 × 10−3 | 1.55 × 10−3 | 7.99 × 10−4 |
Adults | ||||||||||||
ILCR(Ing) | 1.89 × 10−7 | 5.06 × 10−7 | 2.94 × 10−7 | 1.43 × 10−7 | 9.98 × 10−8 | 3.46 × 10−6 | 7.30 × 10−7 | 1.34 × 10−6 | 7.21 × 10−8 | 2.82 × 10−7 | 1.33 × 10−7 | 6.83 × 10−8 |
ILCR(Inh) | 3.66 × 10−3 | 9.81 × 10−3 | 5.71 × 10−3 | 2.78 × 10−3 | 1.94 × 10−3 | 6.72 × 10−2 | 1.42 × 10−2 | 2.60 × 10−2 | 1.40 × 10−3 | 5.46 × 10−3 | 2.57 × 10−3 | 1.32 × 10−3 |
ILCR(Der) | 1.68 × 10−7 | 4.49 × 10−7 | 2.61 × 10−7 | 1.27 × 10−7 | 8.87 × 10−8 | 3.08 × 10−6 | 6.49 × 10−7 | 1.19 × 10−6 | 6.40 × 10−8 | 2.50 × 10−7 | 1.18 × 10−7 | 6.07 × 10−8 |
TCR | 3.66 × 10−3 | 9.81 × 10−3 | 5.71 × 10−3 | 2.78 × 10−3 | 1.94 × 10−3 | 6.72 × 10−2 | 1.42 × 10−2 | 2.61 × 10−2 | 1.40 × 10−3 | 5.46 × 10−3 | 2.57 × 10−3 | 1.32 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, H.A.; Rushdi, A.I.; Bazeyad, A.; Al-Mutlaq, K.F. Polycyclic Aromatic Hydrocarbons in Atmospheric PM2.5 and PM10 of Riyadh City, Saudi Arabia: Levels, Temporal Variation, and Health Impacts. Toxics 2025, 13, 424. https://doi.org/10.3390/toxics13060424
Alharbi HA, Rushdi AI, Bazeyad A, Al-Mutlaq KF. Polycyclic Aromatic Hydrocarbons in Atmospheric PM2.5 and PM10 of Riyadh City, Saudi Arabia: Levels, Temporal Variation, and Health Impacts. Toxics. 2025; 13(6):424. https://doi.org/10.3390/toxics13060424
Chicago/Turabian StyleAlharbi, Hattan A., Ahmed I. Rushdi, Abdulqader Bazeyad, and Khalid F. Al-Mutlaq. 2025. "Polycyclic Aromatic Hydrocarbons in Atmospheric PM2.5 and PM10 of Riyadh City, Saudi Arabia: Levels, Temporal Variation, and Health Impacts" Toxics 13, no. 6: 424. https://doi.org/10.3390/toxics13060424
APA StyleAlharbi, H. A., Rushdi, A. I., Bazeyad, A., & Al-Mutlaq, K. F. (2025). Polycyclic Aromatic Hydrocarbons in Atmospheric PM2.5 and PM10 of Riyadh City, Saudi Arabia: Levels, Temporal Variation, and Health Impacts. Toxics, 13(6), 424. https://doi.org/10.3390/toxics13060424