Environmental Contaminants Exposure and Children Health Risk Assessment

A special issue of Toxics (ISSN 2305-6304). This special issue belongs to the section "Exposome Analysis and Risk Assessment".

Deadline for manuscript submissions: closed (25 October 2024) | Viewed by 6069

Special Issue Editor


E-Mail Website
Guest Editor
Department of Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
Interests: exposure assessment; health risk assessment; cumulative risk; cancer risk; environmental contaminants

Special Issue Information

Dear Colleagues,

Children are sensitive to environmental pollutants exposure, due to their higher intake rate and low excretion rate of pollutants, as well as immature development. Also, due to their special behavior patterns, such as frequent hand-to-mouth behavior, children are easily exposed to environmental pollutants through various exposure pathways via multiple environmental media, consequently creating health risks for them. To protect the health of children, it is important to assess the exposure and health risk to children from environmental pollutants. However, characterizing environmental exposure and children’s health risks from environmental contaminants remains a challenging field in environmental health. Thus, new methodologies, models, and applications are needed to develop our understanding and management of environmental health risks. This Special Issue aims to provide a platform for researchers and practitioners to disseminate their new findings and understandings in relation to environmental contaminants exposure and children health risk assessments. The topics may include but are not limited to:

  1. Field investigation of contaminants in children’s living environmental surroundings;
  2. Case studies of risks from environmental contaminants in multiple environmental media, including air, water, food, soil dust, etc.;
  3. Precise assessment of exposure to environmental pollutants via specific environmental media;
  4. Exposure–response relationships from epidemiology studies;
  5. Dose–response relationships from toxicological studies;
  6. Applications of exposome in health risk assessments;
  7. Children’s health risk in relation to various risk factors via epidemiology studies;
  8. Methods to address uncertainties in risk assessment;
  9. Quantitative estimate of cumulative risks from chemical mixtures;
  10. Qualitative methods for assessment of exposure and health risk of environmental contaminants for children;
  11. Source apportionment and health risk identification of children’s environmental contaminants exposure.

Dr. Suzhen Cao
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • exposure assessment
  • health risk assessment
  • cumulative risk
  • cancer risk
  • environmental contaminants
  • environmental disparities
  • dose–response
  • source apportionment
  • risk factors identification
  • exposure–response

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 4871 KiB  
Article
TGF-β Regulates m6A RNA Methylation after PM2.5 Exposure
by Tingting Wu, Bingqian Liu, Yongjie Wei and Zhigang Li
Toxics 2023, 11(12), 1026; https://doi.org/10.3390/toxics11121026 - 16 Dec 2023
Cited by 1 | Viewed by 1707
Abstract
PM2.5 exposure leads to a variety of respiratory diseases, including pulmonary fibrosis, metastatic lung cancer, etc. Exposure to PM2.5 results in the alteration of epigenetic modification. M6A RNA methylation is an essential epigenetic modification that regulates gene expression at [...] Read more.
PM2.5 exposure leads to a variety of respiratory diseases, including pulmonary fibrosis, metastatic lung cancer, etc. Exposure to PM2.5 results in the alteration of epigenetic modification. M6A RNA methylation is an essential epigenetic modification that regulates gene expression at the post-transcriptional level. Our previous study found that PM2.5 exposure up-regulated m6A RNA methylation and TGF-β expression level in the lung, but the mechanisms and pathways of PM2.5 regulation of m6A RNA methylation are still unclear. Moreover, a previous study reported that the TGF-β signal pathway could regulate m6A RNA methylation. Based on this evidence, we investigate the role of the TGF-β signaling pathway in PM2.5-induced m6A RNA methylation with the A549 cell line. Our results showed that PM2.5 could induce upregulation of m6A RNA methylation, accompanied by increased expression of TGF-β, Smad3, methyltransferase-like 3 (METTL3), methyltransferase-like 14 (METTL14). Furthermore, these alterations induced by PM2.5 exposure could be reversed by treatment with TGF-β inhibitor. Therefore, we speculated that the TGF-β signal pathway plays an indispensable role in regulating m6A RNA methylation after PM2.5 exposure. Our study demonstrates that PM2.5 exposure influences m6A RNA methylation by inducing the alteration of the TGF-β signal pathway, which could be an essential mechanism for lung-related diseases induced by PM2.5 exposure. Full article
Show Figures

Figure 1

16 pages, 328 KiB  
Article
Asthma and Other Respiratory Diseases of Children in Relation to Personal Behavior, Household, Parental and Environmental Factors in West China
by Changan Cao, Yuna Wang, Li Peng, Weiqi Wu, Huimin Yang and Zhigang Li
Toxics 2023, 11(12), 964; https://doi.org/10.3390/toxics11120964 - 28 Nov 2023
Cited by 2 | Viewed by 1544
Abstract
Asthma and other respiratory diseases, which are of great concern in public health, are paid less attention in areas that are less economically developed. This research aimed to study the prevalence of critical respiratory diseases of children living in West China and figure [...] Read more.
Asthma and other respiratory diseases, which are of great concern in public health, are paid less attention in areas that are less economically developed. This research aimed to study the prevalence of critical respiratory diseases of children living in West China and figure out the potential influencing factors. A total of 575 children under the age of 14 were recruited from Xinjiang, China, to participate in the study in 2022. Information on activity patterns, socioeconomic and parental factors, and household and surrounding environment situations was obtained using a questionnaire survey. Logistic regression models were applied to estimate the odds ratios of respiratory disease prevalence in relation to behavior patterns, household, parental and environmental factors, respectively. The prevalence of ever doctor-diagnosed asthma, doctor-diagnosed bronchitis and current bronchitis were 4.7%, 19.0% and 14.4%, respectively. The prevalence of doctor-diagnosed pneumonia was 8.2%, which was two times higher in urban than rural areas. Longer annual heating duration was significantly associated with higher risks in children’s asthma and bronchitis, with an odds ratio (OR) and 95% confidence interval (95% CI) of 3.363 (95% CI: 1.215–9.298) and 1.267 (95% CI: 1.002–1.601), respectively. Opening the window longer in autumn would lead to higher risks of bronchitis, with ORs of 1.165 and 1.133, respectively, for doctor-diagnosed bronchitis and current bronchitis. Residential air pollution and having a residence close to waste incineration plant or garbage station were, respectively, significantly associated with higher risks of doctor-diagnosed bronchitis and asthma. Parental disease history was associated with a higher prevalence of children’s asthma and respiratory diseases, whereas breastfeeding and doing physical exercise were, respectively, significantly associated with a lower risk of asthma. A high prevalence of respiratory diseases in children in West China may be partly attributed to longer annual heating time, opening windows longer in autumn, surrounding environmental pollution, as well as parental disease history, whereas promoting physical activity and breastfeeding could be an effective measure to reduce the risk of childhood asthma in West China. Full article

Review

Jump to: Research

22 pages, 5645 KiB  
Review
Recent Progress on Physiologically Based Pharmacokinetic (PBPK) Model: A Review Based on Bibliometrics
by He Huang, Wenjing Zhao, Ning Qin and Xiaoli Duan
Toxics 2024, 12(6), 433; https://doi.org/10.3390/toxics12060433 - 14 Jun 2024
Viewed by 2313
Abstract
Physiologically based pharmacokinetic/toxicokinetic (PBPK/PBTK) models are designed to elucidate the mechanism of chemical compound action in organisms based on the physiological, biochemical, anatomical, and thermodynamic properties of organisms. After nearly a century of research and practice, good results have been achieved in the [...] Read more.
Physiologically based pharmacokinetic/toxicokinetic (PBPK/PBTK) models are designed to elucidate the mechanism of chemical compound action in organisms based on the physiological, biochemical, anatomical, and thermodynamic properties of organisms. After nearly a century of research and practice, good results have been achieved in the fields of medicine, environmental science, and ecology. However, there is currently a lack of a more systematic review of progress in the main research directions of PBPK models, especially a more comprehensive understanding of the application in aquatic environmental research. In this review, a total of 3974 articles related to PBPK models from 1996 to 24 March 2024 were collected. Then, the main research areas of the PBPK model were categorized based on the keyword co-occurrence maps and cluster maps obtained by CiteSpace. The results showed that research related to medicine is the main application area of PBPK. Four major research directions included in the medical field were “drug assessment”, “cross-species prediction”, “drug–drug interactions”, and “pediatrics and pregnancy drug development”, in which “drug assessment” accounted for 55% of the total publication volume. In addition, bibliometric analyses indicated a rapid growth trend in the application in the field of environmental research, especially in predicting the residual levels in organisms and revealing the relationship between internal and external exposure. Despite facing the limitation of insufficient species-specific parameters, the PBPK model is still an effective tool for improving the understanding of chemical–biological effectiveness and will provide a theoretical basis for accurately assessing potential risks to ecosystems and human health. The combination with the quantitative structure–activity relationship model, Bayesian method, and machine learning technology are potential solutions to the previous research gaps. Full article
Show Figures

Graphical abstract

Back to TopTop