Effect of Different Combinations of Freezing and Thawing Rates on the Shelf-Life and Oxidative Stability of Ostrich Moon Steaks (M. Femorotibialis medius) under Retail Display Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Overview and Sample Preparation
2.1.1. Experimental Layout
2.1.2. Freezing
2.1.3. Thawing
2.1.4. Shelf-Life
2.2. Physico-Chemical Parameters
2.2.1. Moisture Losses
2.2.2. pH
2.2.3. Surface Colour
CIE L*a*b* and Oxymyoglobin: Metmyoglobin ratio
2.2.4. Lipid Oxidation
2.2.5. Shear Force (Warner–Bratzler)
2.3. Statistical Analysis
3. Results and Discussion
3.1. Moisture Loss
3.2. pH
3.3. Surface Colour
3.4. Lipid Oxidation (2-Thiobarbituric Acid (TBARS))
3.5. Toughness (Shear Force)
3.6. Principle Component Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barends-Jones, V.; Pienaar, L. The South African Ostrich Industry Footprint; Western Cape Department of Agriculture (WCDoA): Elsenburg, South Africa, 2020. [Google Scholar]
- Department of Agriculture, Forestry & Fisheries (DAFF). A Profile of the South African Ostrich Market Value Chain; Directorate Marketing: Pretoria, South Africa, 2017; pp. 3–18. [Google Scholar]
- Leygonie, C.; Britz, T.J.; Hoffman, L.C. Meat quality comparison between fresh and frozen/thawed ostrich M. iliofibularis. Meat Sci. 2012, 91, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Leygonie, C.; Britz, T.J.; Hoffman, L.C. Impact of freezing and thawing on the quality of meat: Review. Meat Sci. 2012, 91, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Kim, Y.H.B. Effects of aging and freezing/thawing sequence on quality attributes of bovine Mm. gluteus medius and biceps femoris. Asian-Australas. J. Anim. Sci. 2017, 30, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Kim, J.H.; Seo, J.K.; Setyabrata, D.; Kim, Y.H.B. Effects of aging/freezing sequence and freezing rate on meat quality and oxidative stability of pork loins. Meat Sci. 2018, 139, 162–170. [Google Scholar] [CrossRef]
- Kim, Y.H.B.; Liesse, C.; Kemp, R.; Balan, P. Evaluation of combined effects of ageing period and freezing rate on quality attributes of beef loins. Meat Sci. 2015, 110, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Zhang, W.; Rajput, N.; Khan, M.A.; Li, C.B.; Zhou, G.H. Effect of multiple freeze–thaw cycles on the quality of chicken breast meat. Food Chem. 2015, 173, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Vieira, C.; Diaz, M.Y.; Martínez, B.; García-Cachán, M.D. Effect of frozen storage conditions (temperature and length of storage) on microbial and sensory quality of rustic crossbred beef at different stages of aging. Meat Sci. 2009, 83, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Kong, B.; Lui, Q.; Lui, J. Physiochemical change and protein oxidation in porcine longissimus dorsi as influenced by different freeze/thaw cycles. Meat Sci. 2009, 83, 239–245. [Google Scholar] [CrossRef]
- Muela, E.; Sañudo, C.; Campo, M.M.; Medel, I.; Beltrán, J.A. Effect of freezing method and frozen storage duration on instrumental quality of lamb throughout display. Meat Sci. 2020, 84, 662–669. [Google Scholar] [CrossRef]
- Soyer, A.; Özalp, B.; Dalmış, Ü.; Bilgin, V. Effects of freezing temperature and duration of frozen storage on lipid and protein oxidation in chicken meat. Food Chem. 2010, 120, 1025–1030. [Google Scholar] [CrossRef]
- Leygonie, C.; Britz, T.J.; Hoffman, L.C. Oxidative stability of previously frozen ostrich Muscularis iliofibularis packaged under different modified atmospheric conditions. Int. J. Food Sci. Technol. 2011, 46, 1171–1178. [Google Scholar] [CrossRef]
- Leygonie, C.; Britz, T.J.; Hoffman, L.C. Protein and lipid oxidative stability of fresh ostrich M. iliofibularis packaged under different modified atmospheric packaging conditions. Food Chem. 2011, 127, 1659–1667. [Google Scholar] [CrossRef]
- Ambrosiadis, I.; Theodorakakos, N.; Georgakis, S.; Lekas, S. Influence of thawing methods on the quality of frozen meat and drip loss. Fleishwirtschaft 1994, 74, 284–286. [Google Scholar]
- Hong, G.-P.; Park, S.-H.; Kim, J.-Y.; Lee, C.-H.; Lee, S.; Min, S.-G. The effect of thawing rate on the physiochemical properties of frozen ostrich meat. Food Sci. Biotechnol. 2005, 14, 676–680. [Google Scholar]
- Bevilacqua, A.; Zartzky, N.E.; Calvelo, A. Histological measurements of ice in frozen beef. J. Food Technol. 1979, 14, 237–251. [Google Scholar] [CrossRef]
- SAS. SAS/STAT Users Guide, 1st ed.; SAS Institute Inc.: Cary, NC, USA, 2000; Volume 2. [Google Scholar]
- Hofbauer, P.; Smulders, J.M. A summary of methods to assess major physical-chemical and sensory quality traits of fresh (whole tissue) meat. In Game Meat Hygiene in Focus; Wageningen Academic Publishers: Wageningen, The Netherlands, 2011; pp. 315–324. [Google Scholar]
- Gonzalez-Sanguinetti, S.; Aňon, M.C.; Calvelo, A. Effect of thawing rate on the exudate production of frozen beef. J. Food Sci. 1985, 50, 697–700. [Google Scholar] [CrossRef]
- Ngapo, T.M.; Babare, I.H.; Reynolds, J.; Mawson, R.F. Freezing and thawing rate effects on drip loss from samples of pork. Meat Sci. 1999, 53, 149–158. [Google Scholar] [CrossRef]
- Wagner, J.R.; Aňon, M.C. Effect of freezing rate on the denaturation of myofibrillar proteins. Food Sci. Technol. 1985, 20, 735–744. [Google Scholar] [CrossRef]
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of water-holding capacity of meat: The role of post mortem biochemical and structural changes. Meat Sci. 2005, 71, 194–204. [Google Scholar] [CrossRef]
- Doherty, A.M.; Sheridan, J.J.; Allen, P.; McDowell, D.A.; Blair, I.S. Physical characteristics of lamb primals packaged under vacuum or modified atmospheres. Meat Sci. 1996, 42, 315–324. [Google Scholar] [CrossRef]
- Otremba, M.M.; Dikeman, M.E.; Boyle, E.A.E. Refrigerated shelf-life of vacuum-packaged, previously frozen ostrich meat. Meat Sci. 1999, 52, 279–283. [Google Scholar] [CrossRef]
- Warriss, P.D. Meat hygiene, spoilage and preservation. In Meat Science: An Introductory Text, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010; p. 145. [Google Scholar]
- Hoffman, L.C.; Botha, S.S.C.; Britz, T.J. Muscle pH and temperature changes in hot- and cold-deboned ostrich (Struthio camelus var. domesticus) muscularis gastrocnemius, pars interna and muscularis iliofibularis during the first 23 h post mortem. Meat Sci. 2007, 75, 343–349. [Google Scholar] [CrossRef]
- Shange, N.; Gouws, P.A.; Hoffman, L.C. Changes in pH, colour and the microbiology of black wildebeest (Connochaetes gnou) longissimus thoracis et lumborum (LTL) muscle with normal and high (DFD) muscle pH. Meat Sci. 2019, 147, 13–19. [Google Scholar] [CrossRef]
- Neethling, N.E.; Suman, S.P.; Sigge, G.O.; Hoffman, L.C.; Hunt, M.C. Exogenous and endogenous factors influencing color of fresh meat from ungulates. Meat Muscle Biol. 2017, 1, 253–275. [Google Scholar] [CrossRef]
- Lanari, M.C.; Bevilacqua, A.E.; Zaritzky, N.E. Pigment modifications during freezing and frozen storage of packaged beef. J. Food Proc. Eng. 1989, 12, 49–66. [Google Scholar] [CrossRef]
- Farouke, M.M.; Wieliczko, K.J.; Merts, I. Ultra-fast freezing and low storage temperatures are not necessary to maintain the functional properties of manufacturing beef. Meat Sci. 2003, 66, 171–179. [Google Scholar] [CrossRef]
- Farouke, M.M.; Swan, J.E. Effect of muscle condition before freezing and simulated chemical changes during frozen storage on the pH and colour of beef. Meat Sci. 1998, 50, 245–256. [Google Scholar] [CrossRef]
- Tomás, M.C.; Anón, M.C. Study of the influence of freezing rate on lipid oxidation in fish (salmon) and chicken breast muscles. Int. J. Food Sci. Technol. 1990, 25, 718–721. [Google Scholar] [CrossRef]
- Hansen, E.; Juncher, D.; Henckel, P.; Karlsson, A.; Bertelsen, G.; Skibsted, L.H. Oxidative stability of chilled pork chops following long term frozen storage. Meat Sci. 2004, 68, 479–484. [Google Scholar] [CrossRef]
- Benjakul, S.; Bauer, F. Biochemical and physicochemical changes in catfish (Silurus glanis linne) muscle as influenced by different freeze/thaw cycles. Food Chem. 2001, 72, 207–217. [Google Scholar] [CrossRef]
- Shanks, B.C.; Wulf, D.M.; Maddock, R.J. Technical note: The effect of freezing on Warner-Bratzler shear force values of beef longissimus steaks across several post mortem aging periods. J. Anim. Sci. 2002, 80, 2122–2125. [Google Scholar]
- Petrović, L.; Grujić, R.; Petrović, M. Definition of the optimal freezing rate - 2. Investigation of the physico-chemical properties of beef M. longissimus dorsi frozen at different freezing rates. Meat Sci. 1993, 33, 319–331. [Google Scholar] [CrossRef]
Treatment | TR_1.5h * | TR_3h | TR_6.5h | TR_14h | TR_21h | Sample Number Per Treatment |
---|---|---|---|---|---|---|
FR_1h* | n = 5 birds | n = 5 birds | n = 5 birds | n = 5 birds | n = 5 birds | nFR_1h = 25 |
FR_2h | n = 5 birds | n = 5 birds | n = 5 birds | n = 5 birds | n = 5 birds | nFR_2h = 25 |
FR_4h | n = 5 birds | n = 5 birds | n = 5 birds | n = 5 birds | n = 5 birds | nFR_4h = 25 |
FR_8h | n = 5 birds | n = 5 birds | n = 5 birds | n = 5 birds | n = 5 birds | nFR_8h = 25 |
FR_24h | n = 5 birds | n = 5 birds | n = 5 birds | n = 5 birds | n = 5 birds | nFR_24h = 25 |
Sample number per treatment | nTR_1.5h = 25 | nTR_3h = 25 | nTR_6.5h = 25 | nTR_14h = 25 | nTR_24h = 25 | ntotal = 125 |
Freeze Treatment | Average Thaw Loss (%) ± SE |
---|---|
FR_1h | 2.57 d ± 0.35 |
FR_2h | 3.00 d ± 0.21 |
FR_4h | 3.93 c ± 0.35 |
FR_8h | 5.26 b ± 0.30 |
FR_24h | 6.24 a ± 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leygonie, C.; Hoffman, L.C. Effect of Different Combinations of Freezing and Thawing Rates on the Shelf-Life and Oxidative Stability of Ostrich Moon Steaks (M. Femorotibialis medius) under Retail Display Conditions. Foods 2020, 9, 1624. https://doi.org/10.3390/foods9111624
Leygonie C, Hoffman LC. Effect of Different Combinations of Freezing and Thawing Rates on the Shelf-Life and Oxidative Stability of Ostrich Moon Steaks (M. Femorotibialis medius) under Retail Display Conditions. Foods. 2020; 9(11):1624. https://doi.org/10.3390/foods9111624
Chicago/Turabian StyleLeygonie, Coleen, and Louwrens Christiaan Hoffman. 2020. "Effect of Different Combinations of Freezing and Thawing Rates on the Shelf-Life and Oxidative Stability of Ostrich Moon Steaks (M. Femorotibialis medius) under Retail Display Conditions" Foods 9, no. 11: 1624. https://doi.org/10.3390/foods9111624
APA StyleLeygonie, C., & Hoffman, L. C. (2020). Effect of Different Combinations of Freezing and Thawing Rates on the Shelf-Life and Oxidative Stability of Ostrich Moon Steaks (M. Femorotibialis medius) under Retail Display Conditions. Foods, 9(11), 1624. https://doi.org/10.3390/foods9111624