Chemometric Tools Associated with Quality Parameters for Evaluation of Mauritia flexuosa L.f. Oil in the State of Pará (Brazil)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining Samples
2.2. Acid Index
2.3. Peroxide Index
2.4. Saponification Index
2.5. Total Carotenoid Content
2.6. Total Phenolic Content
2.7. Total Flavonoid Content
2.8. Ascorbic Acid Content
2.9. Fatty Acid Profile
2.10. Statistical Analysis
3. Results and Discussion
3.1. Acid Index
3.2. Peroxide Index
3.3. Saponification Index
3.4. Total Carotenoid Content
3.5. Quantification of Phenolic Compounds, Flavonoids, and Vitamin C
3.6. Fatty Acid Composition and the Application of One-Way ANOVA
3.7. Principal Component Analysis and Quality Control
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, R.; Lu, M.; Zhang, T.; Zhang, Z.; Jin, Q.; Chang, M.; Wang, X. Evaluation of the Antioxidant Properties of Micronutrients in Different Vegetable Oils. Eur. J. Lipid Sci. Technol. 2020, 122, 1900079. [Google Scholar] [CrossRef]
- Resende, L.M.; Franca, A.S.; Oliveira, L.S. Buriti (Mauritia flexuosa L.f.) fruit by-products flours: Evaluation as source of dietary fibers and natural antioxidants. Food Chem. 2019, 270, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Hermosa Otero, A.; Cortés-Rodríguez, M.; Velásquez-Restrepo, J. Canangucha (Mauritia flexuosa L. f): A potential fruit in the colombian amazon. Rev. Fac. Nac. Agron. Medellín 2023, 76, 10177–10187. [Google Scholar] [CrossRef]
- Schiassi, M.C.E.V.; Souza VR de Lago, A.M.T.; Campos, L.G.; Queiroz, F. Fruits from the Brazilian Cerrado region: Physico-chemical characterization, bioactive compounds, antioxidant activities, and sensory evaluation. Food Chem. 2018, 245, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Souza, N.; Viana, D. Ecological aspects and economic potential of Buriti (Mauritia flexuosa). Agrar. Acad. 2018, 5, 535–549. [Google Scholar] [CrossRef]
- Pereira, E.; Ferreira, M.C.; Sampaio, K.A.; Grimaldi, R.; de Almeida Meirelles, A.J.; Maximo, G.J. Physical properties of Amazonian fats and oils and their blends. Food Chem. 2019, 278, 208–215. [Google Scholar] [CrossRef]
- Carvalho, C.O.D. Comparison between Mauritia flexuosa L.f. (Arecaceae-buriti) Oil Extraction Methods for Sustainable Use in the Tupé Development Reserve: Yield and Antimicrobial Activity. 2011. Available online: http://repositorioinstitucional.uea.edu.br//handle/riuea/2337 (accessed on 22 May 2024).
- Soares, J.F.; Borges, L.A.; Brandi, I.V.; Santos, S.H.S.; de Lima, J.P. Characterization of buriti oil produced in the North of Minas Gerais: Quality parameters, fatty acid profile and carotenoid content. Res. Soc. Dev. 2021, 10, e58010313734. [Google Scholar] [CrossRef]
- Anjos, H.A.; Castro, D.A.M.; dos Santos-Neto, A.G.; da Luz, J.R.D.; das Graças Almeida, M.; Leite Neta, M.T.S.; López, J.A. Gelatin-based films incorporated with buriti oil (Mauritia flexuosa L.) as active packaging for artisanal cheese conservation. Bioresour. Technol. Rep. 2023, 23, 101526. [Google Scholar] [CrossRef]
- Oliveira, R.M.M.; Pereira, F.T.; Pereira, E.C.; Mendonça, C.J.S. Buriti oil: Nutritional quality index and antioxidant and antidiabetic effect. Rev. Virtual Química 2020, 12, 2–12. [Google Scholar]
- Cruz, M.B.; da Silva Oliveira, W.; Araújo, R.L.; França, A.C.H.; Pertuzatti, P.B. Buriti (Mauritia flexuosa L.) pulp oil as an immunomodulator against enteropathogenic Escherichia coli. Ind. Crop. Prod. 2020, 149, 112330. [Google Scholar] [CrossRef]
- Muscolo, A.; Mariateresa, O.; Giulio, T.; Mariateresa, R. Oxidative Stress: The Role of Antioxidant Phytochemicals in the Prevention and Treatment of Diseases. Int. J. Mol. Sci. 2024, 25, 3264. [Google Scholar] [CrossRef] [PubMed]
- Jafri, S.A.A.; Khalid, Z.M.; Khan, M.R.; Ashraf, S.; Ahmad, N.; Karami, A.M.; Rafique, E.; Ouladsmane, M.; Suliman, N.M.S.A.; Aslam, S. Evaluation of some essential traditional medicinal plants for their potential free scavenging and antioxidant properties. J. King Saud Univ. Sci. 2023, 35, 102562. [Google Scholar] [CrossRef]
- Mondal, S.; Bhar, K.; Mondal, P.; Panigrahi, N.; Sahoo, S.K.; Swetha, P.; Parveen, N. In Quest of the Mysterious Holistic Vedic Herb Bacopa monnieri (L.) Pennell. Pharmacogn. Res. 2023, 15, 410–454. [Google Scholar] [CrossRef]
- BRAZIL. Technical Regulations for Vegetable Oils, Vegetable Fats and Vegetable Cream (Resolution RDC/ANVISA/MS nº 270, of 22 September 2005). Official Gazette of the Federative Republic of Brazil; 2005. Available online: https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2005/rdc0270_22_09_2005.html (accessed on 20 July 2023).
- CX-STAN 210-1999. Codex Standard for Named Vegetable Oils. 1999. Available online: https://img.21food.cn/img/biaozhun/20100729/180/11294206.pdf (accessed on 10 May 2023).
- Kharbach, M.; Alaoui Mansouri, M.; Taabouz, M.; Yu, H. Current Application of Advancing Spectroscopy Techniques in Food Analysis: Data Handling with Chemometric Approaches. Foods 2023, 12, 2753. [Google Scholar] [CrossRef]
- Nascimento-Silva, N.R.R.; Silva, F.A.; Silva, M.R. Physicochemical composition and antioxidants of buriti (Mauritia flexuosa Linn. F.)—Pulp and sweet. J. Bioenergy Food Sci. 2020, 7, 2792019. [Google Scholar] [CrossRef]
- Kaur, M.; Kumar, S.; Samota, M.K.; Lalremmawii. Ohmic heating technology systems, factors governing efficiency and its application to inactivation of pathogenic microbial, enzyme inactivation, and extraction of juice, oil, and bioactive com-pounds in the food sector. Food Bioprocess Technol. 2024, 17, 299–324. [Google Scholar] [CrossRef]
- Huo, X.; Chen, P.; Li, J.; Xu, Y.; Liu, D.; Chu, X. Comentário sobre os artigos de revisão de tecnologia de espectroscopia combinada com quimiometria nos últimos três anos. Appl. Spectrosc. Rev. 2024, 59, 423–482. [Google Scholar]
- Amirvaresi, A.; Nikzad, N.; Hashemi-Nasab, F.S.; Parastar, H. Multiway data analysis applied to miniaturized spectroscopy. In Data Handling in Science and Technology; Elsevier: Amsterdam, The Netherlands, 2024; Volume 33, pp. 409–445. [Google Scholar] [CrossRef]
- Mishra, S.P.; Sarkar, U.; Taraphder, S.; Datta, S.; Swain, D.; Saikhom, R.; Laishram, M. Análise estatística multivariada de dados—Análise de componentes principais (PCA). J. Int. Pesqui. Pecuária 2017, 7, 60–78. Available online: https://www.semanticscholar.org/paper/Multivariate-Statistical-Data-Analysis-Principal-Mishra-Sarkar/3ad314f33dbdf486999f521ed3ba061006a2d2b2 (accessed on 13 May 2023).
- Hosseini, H.; Minaei, S.; Beheshti, B. A dedicated electronic nose combined with chemometric methods for detection of adulteration in sesame oil. J. Food Sci. Technol. 2023, 60, 2681–2694. [Google Scholar] [CrossRef]
- Meng, X.; Yin, C.; Yuan, L.; Zhang, Y.; Ju, Y.; Xin, K.; Hu, L. Rapid detection of adulteration of olive oil with soybean oil combined with chemometrics by Fourier transform infrared, visible-near-infrared and excitation-emission matrix fluorescence spectroscopy: A comparative study. Food Chem. 2023, 405 Pt A, 134828. [Google Scholar] [CrossRef]
- Ceniti, C.; Spina, A.A.; Piras, C.; Oppedisano, F.; Tilocca, B.; Roncada, P.; Morittu, V.M. Recent Advances in the Determination of Milk Adulterants and Contaminants by Mid-Infrared Spectroscopy. Foods 2023, 12, 2917. [Google Scholar] [CrossRef] [PubMed]
- Vladić, J.; Kovačević, S.; Rebocho, S.; Paiva, A.; Jokić, S.; Duarte, A.R.; Jerković, I. A new green approach for Lavandula stoechas aroma recovery and stabilization coupling supercritical CO2 and natural deep eutectic solvents. Sci. Rep. 2023, 13, 12443. [Google Scholar] [CrossRef] [PubMed]
- De Melo Rodrigues, P.S.; Martins, H.C.; Falcão, M.S.; Trevisan, M.; Portaro FC, V.; da Silva, L.G.; Seibert, C.S. Effects of Mauritia flexuosa L. f. buriti oil on symptoms induced by Bothrops moojeni snake envenomation. J. Ethnopharmacol. 2023, 313, 116612. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Wang, J.; Chen, Z.; Deng, Z.; Lai, H.; Zhang, L.; Zhang, C. Application of stable isotope and mineral element fingerprint in identification of Hainan camellia oil producing area based on convolutional neural networks. Food Control 2023, 150, 109744. [Google Scholar] [CrossRef]
- Manai-Djebali, H.; Oueslati, I.; Hammami, M.; Nait-Mohamed, S.; Flamini, G.; Sánchez-Casas, J.; Youssef, N.B. Lipoxygenase pathways metabolites associated to antioxidant properties of tunisian monovarietal virgin olive oils. J. Food Meas. Charact. 2023, 17, 6003–6013. [Google Scholar] [CrossRef]
- Yao, W.; Sun, Z. The Impact of the Digital Economy on High-Quality Development of Agriculture: A China Case Study. Sustainability 2023, 15, 5745. [Google Scholar] [CrossRef]
- Rifna, E.J.; Pandiselvam, R.; Kothakota, A.; Subba Rao, K.V.; Dwivedi, M.; Kumar, M.; Ramesh, S.V. Advanced process analytical tools for identification of adulterants in edible oils—A review. Food Chem. 2022, 369, 130898. [Google Scholar] [CrossRef]
- Sumara, A.; Stachniuk, A.; Olech, M.; Nowak, R.; Montowska, M.; Fornal, E. Identification of sunflower, rapeseed, flaxseed and sesame seed oil metabolomic markers as a potential tool for oil authentication and detecting adulterations. PLoS ONE 2023, 18, e0284599. [Google Scholar] [CrossRef]
- Turek, K.; Khachatryan, G.; Khachatryan, K.; Krystyjan, M. An Innovative Method for the Production of Yoghurt Fortified with Walnut Oil Nanocapsules and Characteristics of Functional Properties in Relation to Conventional Yoghurts. Foods 2023, 12, 3842. [Google Scholar] [CrossRef]
- Tura, M.; Mandrioli, M.; Valli, E.; Gallina Toschi, T. Quality indexes and composition of 13 commercial hemp seed oils. J. Food Compos. Anal. 2023, 117, 105112. [Google Scholar] [CrossRef]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society Method Cd 3d-63 Acid Value of Fats and Oils, 7th ed.; AOCS: Urbana, IL, USA, 2017; Available online: https://www.aocs.org/attain-lab-services/methods/methods/search-results?method=111545 (accessed on 22 May 2024).
- AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society Method Cd 8b-90 Peroxide Value, Acetic Acid; AOCS: Urbana, IL, USA, 1998. [Google Scholar]
- AOCS. Isooctane Method, 7th ed.; AOCS: Urbana, IL, USA, 2017. [Google Scholar]
- Davies, B.H.; Taylor, R.F. Carotenoid biosynthesis—The early steps. In Carotenoids–4; Pergamon: Oxford, UK, 1976; pp. 211–221. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. Latin American food sources of carotenoids. Arch. Latinoam. Nutr. 1999, 49 (Suppl. S1), 74S–84S. [Google Scholar] [PubMed]
- Ramos-Escudero, F.; Gómez-Coca, R.B.; Muñoz, A.M.; Fuente-Carmelino, L.D.L.; Pérez-Camino, M.D.C. Oil from Three Aguaje Morphotypes (Mauritia flexuosa L.f.) Extracted by Supercritical Fluid with CO2: Chemical Composition and Chromatic Properties. Front. Sustain. Food Syst. 2022, 6, 843772. [Google Scholar] [CrossRef]
- Best, I.; Casimiro-Gonzales, S.; Portugal, A.; Olivera-Montenegro, L.; Aguilar, L.; Muñoz, A.M.; Ramos-Escudero, F. Phytochemical screening and DPPH radical scavenging activity of three morphotypes of Mauritia flexuosa L.f. from Peru, and thermal stability of a milk-based beverage enriched with carotenoids from these fruits. Heliyon 2020, 6, e05209. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, L.A. Laboratory Manual: Physical-Chemical Analyzes of Fruits and Cassava; Embrapa Cassava and Fruit Culture: Cruz das Almas, Brazil, 2010; 248p, Available online: https://livimagens.sct.embrapa.br/amostras/00061590.pdf (accessed on 14 May 2023).
- AOCS. AOCS Method 1A-13: Official Method for the Determination of Oil Stability Index; American Oil Chemists’ Society: Urbana, IL, USA, 2013; Available online: https://cir.nii.ac.jp/crid/1130282271515153920 (accessed on 22 May 2024).
- AOCS. AOCS Official Method Ce 2-66: Preparation of Methyl Esters of Fatty Acids. Official Methods and Recommended Practices of the American Oil Chemists’ Society; American Oil Chemists’ Society: Urbana, IL, USA, 1997; Available online: https://library.aocs.org/ (accessed on 22 May 2024).
- Yan, B.; Meng, L.; Huang, J.; Liu, R.; Zhang, N.; Jiao, X.; Fan, D. Changes in oxidative stability of rapeseed oils under microwave irradiation: The crucial role of polar bioactive components. Food Sci. Technol. 2023, 185, 115100. [Google Scholar] [CrossRef]
- Long, D.M.; Quoc, L.P.T.; Nhung, T.T.P.; Thy, V.B.; Nhu, N.L.Q. Chemical profiles and biological activities of essential oil of Citrus hystrix DC. peels. Korean J. Food Preserv. 2023, 30, 395–404. [Google Scholar] [CrossRef]
- Roncero Heras, J.M.; Alvarez-Ortí, M.; Pardo-Giménez, A.; Rabadán, A.; Pardo, J.E.; Roncero, A. A holistic approach to pressure almond oil production. Br. Food J. 2023, 125, 1148–1163. [Google Scholar] [CrossRef]
- Serra, J.L.; da Cruz Rodrigues, A.M.; de Freitas, R.A.; de Almeida Meirelles, A.J.; Darnet, S.H.; da Silva, L.H.M. Alternative sources of oils and fats from Amazonian plants: Fatty acids, methyl tocols, total carotenoids and chemical composition. Food Res. Int. 2019, 116, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Negi, A.; Nimbkar, S.; Thirukumaran, R.; Moses, J.A.; Sinija, V.R. Impact of thermal and nonthermal process intensification techniques on yield and quality of virgin coconut oil. Food Chem. 2024, 434, 137415. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gao, P.; Chen, Z.; Liu, H.; Zhong, W.; Hu, C.; Wang, X. Changes in the physicochemical properties and antioxidant capacity of Sichuan hotpot oil. J. Food Sci. Technol. 2023, 60, 562–571. [Google Scholar] [CrossRef] [PubMed]
- De Andrade Mesquita, J.; da Silva Oliveira, T.T.; da Silva Santos, J.G.; do Carmo, M.R.G.R.; de Almeida Vieira, V.; Rodrigues, E.C.; Nascimento, E.; Faria, P.B.; de Faria, R.A.P.G. Physicochemical characterization and lipid profile of premix with buriti oil for application in meat products. Res. Soc. Dev. 2022, 11, e8111628844. [Google Scholar] [CrossRef]
- Marcelino, G.; Hiane, P.A.; Pott, A.; Filiú, W.F.d.O.; Caires, A.R.L.; Michels, F.S.; Júnior, M.R.M.; Santos, N.M.S.; Nunes, A.; Oliveira, L.C.S.; et al. Characterization of Buriti (Mauritia flexuosa) Pulp Oil and the Effect of Its Supplementation in an In Vivo Experimental Model. Nutrients 2022, 14, 2547. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.J. Sustainable vegetable oils. In Functional Dietary Lipids; Woodhead Publishing: Sawston, UK, 2024; pp. 31–47. [Google Scholar]
- El Chami, A.; Conte PHassoun, G.; Piga, A. Effect of region of cultivation, tree age, and harvest time on the quality of Lebanese virgin olive oil. Ital. J. Food Sci. 2023, 35, 57–71. [Google Scholar] [CrossRef]
- Antonic, B.; Dordevic, D.; Jancikova, S.; Tremlova, B.; Nejezchlebova, M.; Goldová, K.; Treml, J. Reused Plant Fried Oil: A Case Study with Home-Made Soaps. Processes 2021, 9, 529. [Google Scholar] [CrossRef]
- Jadhav, P.S.; Inamdar, R.R.; Kamble, A.A.; Ghangaonkar, N.M. Recent Trends in Biotechnology: Nanotechnology. In Frontiers in Chemical, Biological and Pharmaceutical Sciences Volume III; Bhumi Publishing: Kolhapur, India, 2024; ISBN 978-93-95847-85-8. [Google Scholar]
- Morais, N.d.S.; Passos, T.S.; Ramos, G.R.; Ferreira, V.A.F.; Moreira, S.M.G.; Filho, G.P.C.; Barreto, A.P.G.; Leite, P.I.P.; de Almeida, R.S.; Paulo, C.L.R.; et al. Nano-encapsulation of buriti oil (Mauritia flexuosa L.f.) in porcine gelatin enhances the antioxidant potential and improves the effect on the antibiotic activity modulation. PLoS ONE 2022, 17, e0265649. [Google Scholar] [CrossRef] [PubMed]
- Speranza, P.; Falcão, A.O.; Macedo, J.A.; Silva, L.H.M.; Rodrigues, A.M.C.; Macedo, G.A. Amazonian Buriti oil: Chemical characterization and antioxidant potential. Grasas Aceites 2016, 67, e135. [Google Scholar] [CrossRef]
- Freitas, M.L.F.; Ribeiro, A.P.B.; Nicoletti, V.R. Utjecaj omjera izolata sojinog proteina i pektina s velikim udjelom metoksila, sastava ulja i pritiska tijekom homogenizacije na svojstva emulzije buriti ulja. Food Technol. Biotechnol. 2020, 58, 159. [Google Scholar] [CrossRef]
- Freire, R.V.M.; Hong, L.; Peterek, M.; Canarelli, S.; Rezzi, S.; Salentinig, S. Structure Formation in Tailor-Made Buriti Oil Emulsion During Simulated Digestion. Adv. Funct. Mater. 2023, 33, 2303854. [Google Scholar] [CrossRef]
- Islam, M.R.; Rauf, A.; Akash, S.; Trisha, S.I.; Nasim, A.H.; Akter, M.; Thiruvengadam, M. Targeted therapies of curcumin focus on its therapeutic benefits in cancers and human health: Molecular signaling pathway-based approaches and future per-spectives. Biomed. Pharmacother. 2024, 170, 116034. [Google Scholar] [CrossRef]
- Bourais, I.; Elmarrkechy, S.; Taha, D.; Mourabit, Y.; Bouyahya, A.; El Yadini, M.; Iba, N. A Review on Medicinal Uses, Nutritional Value, and Antimicrobial, Antioxidant, Anti-Inflammatory, Antidiabetic, and Anticancer Potential Related to Bioactive Compounds of J. regia. Food Rev. Int. 2023, 39, 6199–6249. [Google Scholar] [CrossRef]
- Chiaiese, P.; Corrado, G.; Minutolo, M.; Barone, A.; Errico, A. Transcriptional Regulation of Ascorbic Acid During Fruit Ripening in Pepper (Capsicum annuum) Varieties with Low and High Antioxidants Content. Plants 2019, 8, 206. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Simal-Gandara, J. Bioactive Compounds and Quality of Extra Virgin Olive Oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef] [PubMed]
- Pannico, A.; El-Nakhel, C.; Graziani, G.; Kyriacou, M.C.; Giordano, M.; Soteriou, G.A.; Zarrelli, A.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Selenium biofortification impacts the nutritive value, polyphenolic content, and bioactive constitution of variable microgreens genotypes. Antioxidants 2020, 9, 272. [Google Scholar] [CrossRef] [PubMed]
- Sappati, P.K.; Nayak, B.; VanWalsum, G.P.; Mulrey, O.T. Combined effects of seasonal variation and drying methods on the physicochemical properties and antioxidant activity of sugar kelp (Saccharina latissima). J. Appl. Phycol. 2019, 31, 1311–1332. [Google Scholar] [CrossRef]
- Leite, P.I.P.; Barreto, S.M.A.G.; Freitas, P.R.; de Araújo, A.C.J.; Paulo, C.L.R.; de Almeida, R.S.; de Sousa Junior, F.C. Extraction of bioactive compounds from buriti (Mauritia flexuosa L.) fruit by eco-friendly solvents: Chemical and functional characterization. Sustain. Chem. Pharm. 2021, 22, 100489. [Google Scholar] [CrossRef]
- Barboza, N.L.; Cruz, J.M.d.A.; Corrêa, R.F.; Lamarão, C.V.; Lima, A.R.; Inada, N.M.; Campelo, P.H. Buriti (Mauritia flexuosa L.f.): An Amazonian fruit with potential health benefits. Food Res. Int. 2022, 159, 111654. [Google Scholar] [CrossRef]
- Waheed, A.; Haxim, Y.; Islam, W.; Ahmad, M.; Muhammad, M.; Alqahtani, F.M.; Zhang, D. Climate change reshaping plant-fungal interaction. Environ. Res. 2023, 238, 117282. [Google Scholar] [CrossRef] [PubMed]
- Shan, Z.; Zhou, S.; Shah, A.; Arafat, Y.; Arif Hussain Rizvi, S.; Shao, H. Plant Allelopathy in Response to Biotic and Abiotic Factors. Agronomy 2023, 13, 2358. [Google Scholar] [CrossRef]
- Best, I.; Cartagena-Gonzales, Z.; Arana-Copa, O.; Olivera-Montenegro, L.; Zabot, G. Production of Oil and Phenolic-Rich Extracts from Mauritia flexuosa L.f. Using Sequential Supercritical and Conventional Solvent Extraction: Experimental and Eco-nomic Evaluation. Processes 2022, 10, 459. [Google Scholar] [CrossRef]
- Ferreira, M.O.G.; Ribeiro, A.B.; Rizzo, M.S.; de Jesus Oliveira, A.C.; Osajima, J.A.; Estevinho, L.M.; Silva-Filho, E.C. Potential Wound Healing Effect of Gel Based on Chicha Gum, Chitosan, and Mauritia flexuosa Oil. Biomedicines 2022, 10, 899. [Google Scholar] [CrossRef]
- Mahmud, A.R.; Ema, T.I.; Siddiquee Mohd, F.-R.; Shahriar, A.; Ahmed, H.; Mosfeq-Ul-Hasan, M.; Mizan, M.F.R. Natural flavonols: Actions, mechanisms, and potential therapeutic utility for various diseases. Beni-Suef Univ. J. Basic Appl. Sci. 2023, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.; Guo, Y.; Han, W.; Zhou, Y.; Netala, V.R.; Li, H.; Zhang, Z. Exploring the Biomedical Applications of Biosynthesized Silver Nanoparticles Using Perilla frutescens Flavonoid Extract: Antibacterial, Antioxidant, and Cell Toxicity Properties against Colon Cancer Cells. Molecules 2023, 28, 6431. [Google Scholar] [CrossRef]
- Mirmohammadmakki, F.; Gharachorloo, M.; Ghavami, M.; Abdossi, V.; Azizinezhad, R. Quantitative Changes in Ascorbic Acid and Chlorophyll Contents of Parsley (Petroselinum crispum) and Dill (Anethum graveolens) Harvested in Three Consecutive Months of Spring. J. Food Biosci. Technol. 2023, 13, 1–12. [Google Scholar] [CrossRef]
- Khalid, M.F.; Iqbal Khan, R.; Jawaid, M.Z.; Shafqat, W.; Hussain, S.; Ahmed, T.; Alina Marc, R. Nanoparticles: The Plant Saviour under Abiotic Stresses. Nanomaterials 2022, 12, 3915. [Google Scholar] [CrossRef]
- Cardoso, F.C.; Costa, A.P.D.S.; Crispino, A.C.S.; e Silva, A.P.R.; de Oliveira, J.A.R. Physicochemical characterization, bioactive compounds and antioxidant activity of pulp, peel, endocarp and food paste developed with buriti pulp and waste (Mauritia flexuosa L.). Sci. Plena 2020, 16, 1–12. [Google Scholar] [CrossRef]
- Abreu-Naranjo, R.; Paredes-Moreta, J.G.; Granda-Albuja, G.; Iturralde, G.; González-Paramás, A.M.; Alvarez-Suarez, J.M. Bioactive Compounds, Phenolic Profile, Antioxidant Capacity and Effectiveness against Lipid Peroxidation of Cell Membranes of Mauritia flexuosa L. Fruit Extracts from Three Biomes in the Ecuadorian Amazon. Heliyon 2020, 6, e05211. [Google Scholar] [CrossRef] [PubMed]
- Nonato, C.F.A.; Camilo, C.J.; Leite, D.O.D.; Neto, J.F.S.; Costa, L.R.; Rodrigues, F.F.G.; Costa, J.G.M. Proximate composition and antioxidant evaluation of the pulp of Mauritia flexuosa L.f. from Cariri ceará. Environ. Manag. Dev. 2021, 1, 9–18. [Google Scholar] [CrossRef]
- Morais, R.A.; Melo, K.K.d.S.; Oliveira, T.T.B.; Teles, J.S.; Peluzio, J.M.; Martins, G.A.d.S. Chemical, physical and technological characterization of fish meal from Buriti shell (Mauritia flexuosa L.f.). Braz. J. Dev. 2019, 5, 23307–23322. [Google Scholar] [CrossRef]
- Peñaloza, E.M.C.; Costa, S.S.; Herrera-Calderon, O. Medicinal plants in Peru as a source of immunomodulatory drugs potentially useful against COVID-19. Rev. Bras. Farmacogn. 2023, 33, 237–258. [Google Scholar] [CrossRef]
- Ustianowski, Ł.; Ustianowska, K.; Gurazda, K.; Rusiński, M.; Ostrowski, P.; Pawlik, A. The Role of Vitamin C and Vitamin D in the Pathogenesis and Therapy of Periodontitis-Narrative Review. Int. J. Mol. Sci. 2023, 24, 6774. [Google Scholar] [CrossRef]
- Raza, A. Eco-physiological and biochemical responses of rapeseed (Brassica napus L.) to abiotic stresses: Consequences and mitigation strategies. J. Plant Growth Regul. 2021, 40, 1368–1388. [Google Scholar] [CrossRef]
- Farag, M.; Gad, M. Omega-9 fatty acids: Potential roles in inflammation and cancer management. Genet. Eng. Biotechnol. 2022, 20, 48. [Google Scholar] [CrossRef] [PubMed]
- Poddar, K.H.; Sikand, G.; Kalra, D.; Wong, N.; Duell, P.B. Mustard oil and cardiovascular health: Why the controversy? J. Clin. Lipidol. 2022, 16, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Peng, W.; Wang, Y.; Xu, W.; Chen, W.; Huang, L.; Xu, Y. Palmitic Acid Inhibits the Growth and Metastasis of Gastric Cancer by Blocking the STAT3 Signaling Pathway. Cancers 2023, 15, 388. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, J.; Xin, Q.; Yuan, R.; Miao, Y.; Yang, M.; Cong, W. Protective effects of oleic acid and polyphenols in extra virgin olive oil on cardiovascular diseases. Food Sci. Hum. Wellness 2024, 13, 529–540. [Google Scholar] [CrossRef]
- Poggioli, R.; Hirani, K.; Jogani, V.G.; Ricordi, C. Modulation of inflammation and immunity by omega-3 fatty acids: A possible role for prevention and to halt disease progression in autoimmune, viral, and age-related disorders. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 529–540. [Google Scholar] [CrossRef]
- Tiwari, A.; Dwived, D.; Shukla, A.K.; Singh, S.P.; Singh, S.K. Understanding the Role of ω-3 Polyunsaturated Fatty Acids on Autoimmunity. In Immune-Boosting Nutraceuticals for Better Human Health; Apple Academic Press: New Jersey, NB, Canada, 2024; pp. 245–255. [Google Scholar] [CrossRef]
- Abdiani, N.; Kolahi, M.; Javaheriyan, M.; Sabaeian, M. Effect of storage conditions on nutritional value, oil content, and oil composition of sesame seeds. J. Agric. Food Res. 2024, 16, 101117. [Google Scholar] [CrossRef]
- Arellano, H.; Nardello-Rataj, V.; Szunerits, S.; Boukherroub, R.; Fameau, A.-L. Saturated long chain fatty acids as possible natural alternative antibacterial agents: Opportunities and challenges. Adv. Colloid Interface Sci. 2023, 318, 102952. [Google Scholar] [CrossRef]
- Ağagündüz, D.; Icer, M.A.; Yesildemir, O.; Koçak, T.; Kocyigit, E.; Capasso, R. The roles of dietary lipids and lipidomics in gut-brain axis in type 2 diabetes mellitus. J. Transl. Med. 2023, 21, 240. [Google Scholar] [CrossRef]
- Souza Aquino, J.; Batista, K.S.; Araujo-Silva, G.; Dos Santos, D.C.; de Brito, N.J.N.; López, J.A.; Stamford, T.L.M. Anti-oxidant and Lipid-Lowering Effects of Buriti Oil (Mauritia flexuosa L.) Administered to Iron-Overloaded Rats. Molecules 2023, 28, 2585. [Google Scholar] [CrossRef]
- Ali, A.; Khan, M.; Nadeem, M.A.; Imran, M.; Ahmad, S.; Amanet k Mubeen, M.; Hussain, S.; Ali, M.; Sultana, S.R.; Afzal, S.; et al. Climate Change Effects on the Quality of Different Crop Plants and Coping Mechanisms. In Climate Change Impacts on Agriculture; Jatoi, W.N., Mubeen, M., Hashmi, M.Z., Ali, S., Fahad, S., Mahmood, K., Eds.; Springer: Cham, Switzerland, 2023; pp. 355–370. [Google Scholar] [CrossRef]
- Kewlani, P.; Tewari, D.C.; Singh, L.; Negi, V.S.; Bhatt, I.D.; Pande, V. Saturated and Polyunsaturated Fatty Acids Rich Populations of Prinsepia utilis Royle in Western Himalaya. J. Oleo Sci. 2022, 71, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Ahmed, I.A.; Musa Özcan, M.; Uslu, N.; Juhaimi, F.A.L.; Osman, M.A.; Alqah, H.A.S.; Babiker, E.E. Effect of microwave roasting on color, total phenol, antioxidant activity, fatty acid composition, tocopherol, and chemical composition of sesame seed and oils obtained from different countries. J. Food Process. Preserv. 2020, 44, e14807. [Google Scholar] [CrossRef]
- Vishwakarma, G.K.; Paul, C.; Hadi, A.S.; Elsawah, A.M. An automated robust algorithm for clustering multivariate data. J. Comput. Appl. Math. 2023, 429, 115219. [Google Scholar] [CrossRef]
- Jainalabidin, N.S.M.; MohdAmidon, A.F.; Ismail1, N.; MohdYusoff, Z.; Tajuddin, S.N.; Tai, M. Modeling of the nearest k-neighbor by Mahalanobis variation and correlation in the distance metric for classification of agarwood oil quality. Int. J. Adv. Appl. Sci. 2022, 11, 242–252. [Google Scholar] [CrossRef]
- Jin, H.; Wang, Y.; Lv, B.; Zhang, K.; Zhu, Z.; Zhao, D.; Li, C. Rapid Detection of Avocado Oil Adulteration Using Low-Field Nuclear Magnetic Resonance. Foods 2022, 11, 1134. [Google Scholar] [CrossRef]
- Rachineni, K.; Sharma, P.; Shirke, V.S.; Mishra, K.; Awasthi, N.P. Facile and rapid detection of adulteration in mustard oils: NMR and unsupervised machine learning. Food Control 2023, 150, 109773. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, G.; Deng, Z.; Zhang, B.; Li, H. Effects of Endogenous Anti-Oxidative Components from Different Vegetable Oils on Their Oxidative Stability. Foods 2023, 12, 2273. [Google Scholar] [CrossRef]
- Arroyo-Cerezo, A.; Yang, X.; Jimenez-Carvelo, A.M.; Pellegrino, M.; Felicita Savino, A.; Berzaghi, P. Assessment of extra virgin olive oil quality by miniaturized near infrared instruments in a rapid and non-destructive procedure. Food Chem. 2024, 430, 137043. [Google Scholar] [CrossRef]
- Ndiaye, E.M.; Faye, P.G.; Sow, A.; Niane1, K.; Ndiaye1, S.; Baldé, S.; Cisse, O.I.K.; Ayessou, N.C.; Cisse, M. Impact of Storage Conditions on the Physicochemical Characteristics of Baobab Seed Oil (Adansonia digitata L.). Food Nutr. Sci. 2022, 13, 373–386. [Google Scholar] [CrossRef]
- Yang, H.; Lin, Y.; Zhu, X.; Mu, H.; Li, Y.; Chen, S.; Li, J.; Cao, X. Comprehensive comparison of a new technology with traditional methods for extracting Ougan (Citrus reticulata cv. Suavissima) seed oils: Physicochemical properties, fatty acids, functional components, and antioxidant activities. LWT 2024, 197, 115857. [Google Scholar] [CrossRef]
- Bendjabeur, S.; Bensouici, C.; Hazzit, M. Investigation of chemical composition, anticholinesterase, antioxidant, antihe-molytic and antibacterial activities of essential oil and ethanol extract from aerial parts of Algerian Ammoides verticillata (Brot.) Breistr. J. Essent. Oil Res. 2024, 36, 185–199. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, C.; Jin, J.; Jin, Q.; Wang, X. L-ascorbyl palmitate and endogenous micronutrients in vegetable oils provide synergistic antioxidant activities: Micronutrient species and concentration. Eur. J. Lipid Sci. Technol. 2024, 126, 2300228. [Google Scholar] [CrossRef]
- Kachel, M.; Stryjecka, M.; Ślusarczyk, L.; Matwijczuk, A.; Budziak-Wieczorek, I.; Gładyszewski, G. Impact of Metal Nanoparticles on the Phytochemical and Antioxidative Properties of Rapeseed Oil. Materials 2023, 16, 694. [Google Scholar] [CrossRef] [PubMed]
- Alagappan, L.; Chu, J.E.; Chua, J.H.; Ding, J.W.; Xiao, R.; Yu, Z.; Wong, L. Class-specific correction and classification of NIR spectra of edible oils. Chemom. Intell. Lab. Syst. 2023, 241, 104977. [Google Scholar] [CrossRef]
- Lozano-Castellón, J.; López-Yerena, A.; Domínguez-López, I.; Siscart-Serra, A.; Fraga, N.; Sámano, S.; Pérez, M. Extra virgin olive oil: A comprehensive review of efforts to ensure its authenticity, traceability, and safety. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2639–2664. [Google Scholar] [CrossRef]
Samples | Flavonoids (CE/100 g) | Polyphenols (GAE/100 g) | Vitamin C (mg/100 g) |
---|---|---|---|
BT1 | 108.24 | 103.06 | 11.87 |
BT2 | 93.17 | 172.68 | 18.50 |
BT21 | 103.63 | 184.94 | 10.56 |
BT22 | 91.92 | 215.32 | 13.87 |
BT23 | 114.20 | 70.04 | 29.29 |
BT24 | 126.51 | 140.18 | 18.71 |
BT25 | 134.28 | 49.15 | 15.61 |
BT26 | 117.83 | 155.95 | 38.31 |
BT27 | 115.08 | 206.75 | 20.42 |
BT28 | 85.04 | 140.90 | 13.58 |
BT29 | 121.15 | 210.62 | 12.64 |
BT2A | 27.86 | 69.19 | 13.13 |
BT2B | 44.10 | 36.76 | 11.14 |
BT2C | 99.75 | 147.67 | 7.37 |
BT2D | 48.29 | 35.36 | 12.89 |
BT3 | 128.72 | 85.56 | 26.86 |
BT31 | 133.52 | 103.14 | 29.09 |
BT32 | 132.76 | 107.46 | 25.83 |
BT33 | 152.65 | 87.89 | 14.36 |
BT34 | 134.71 | 108.66 | 17.23 |
BT35 | 126.69 | 75.85 | 10.33 |
BT36 | 124.99 | 131.69 | 35.02 |
BT37 | 122.61 | 152.52 | 29.10 |
BT38 | 123.32 | 107.16 | 25.12 |
BT39 | 132.52 | 39.10 | 19.30 |
BT3A | 141.49 | 237.41 | 12.41 |
BT3B | 120.29 | 184.34 | 19.03 |
BT3C | 118.69 | 100.39 | 16.36 |
BT3D | 113.50 | 96.34 | 17.94 |
BT3E | 110.03 | 60.24 | 17.95 |
BT3F | 100.79 | 106.51 | 24.01 |
BT3G | 108.07 | 76.03 | 23.10 |
BT4 | 88.15 | 129.14 | 23.45 |
BT41 | 103.02 | 92.40 | 14.79 |
BT42 | 70.18 | 100.05 | 28.95 |
BT43 | 79.98 | 233.20 | 28.48 |
BT44 | 88.16 | 117.95 | 29.82 |
BT45 | 89.04 | 238.76 | 28.27 |
BT46 | 77.04 | 172.79 | 14.00 |
BT47 | 73.71 | 209.22 | 25.57 |
BT5 | 117.58 | 92.59 | 16.55 |
BT6 | 73.72 | 28.96 | 18.85 |
BT61 | 74.43 | 26.08 | 26.00 |
BT62 | 79.87 | 20.80 | 23.94 |
BT7 | 53.54 | 12.04 | 15.02 |
BT71 | 126.80 | 18.45 | 23.69 |
BT72 | 133.43 | 59.85 | 25.44 |
BT73 | 71.56 | 83.52 | 27.09 |
BT74 | 70.98 | 53.64 | 26.27 |
BT8 | 77.36 | 90.93 | 18.30 |
Me | 102.10 | 111.58 | 20.51 |
Sd | 27.82 | 61.91 | 6.99 |
Samples | Myristic | Palmitic | Palmitoleic | Stearic | Oleic | Linoleic | Linolenic | Arachidic | Erucic |
---|---|---|---|---|---|---|---|---|---|
BT1 | 0.16 | 16.71 | 0.12 | 3.05 | 36.96 | 34.79 | 3.34 | 0.26 | 4.59 |
BT2 | 1.80 | 15.81 | 0.19 | 1.57 | 76.94 | 1.36 | 0.91 | 0.90 | 0.50 |
BT3 | 0.04 | 17.29 | 0.20 | 1.52 | 77.49 | 1.52 | 0.99 | 0.81 | <LOQ |
BT4 | 0.05 | 17.65 | 0.23 | 1.49 | 77.22 | 1.61 | 0.97 | 0.68 | <LOQ |
BT5 | 0.04 | 17.77 | 0.20 | 1.50 | 77.00 | 1.50 | 0.92 | 0.86 | <LOQ |
BT6 | 0.04 | 16.85 | 0.18 | 1.68 | 77.99 | 1.46 | 0.94 | 0.82 | <LOQ |
BT7 | 0.05 | 16.63 | 0.21 | 1.70 | 77.22 | 2.38 | 1.00 | 0.71 | <LOQ |
BT8 | 0.17 | 17.49 | 0.16 | 3.29 | 37.94 | 3.60 | 3.71 | 0.25 | 1.40 |
Me | 0.30 | 17.02 | 0.19 | 1.97 | 67.34 | 10.03 | 1.60 | 0.66 | 0.81 |
sd | 0.57 | 0.61 | 0.03 | 0.69 | 17.26 | 14.53 | 1.12 | 0.24 | 1.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, B.S.F.; Ferreira, N.R.; Gil, F.D.S.; Pereira, S.d.F.P.; Maciel, A.C.; Alves, C.N. Chemometric Tools Associated with Quality Parameters for Evaluation of Mauritia flexuosa L.f. Oil in the State of Pará (Brazil). Foods 2025, 14, 1585. https://doi.org/10.3390/foods14091585
da Silva BSF, Ferreira NR, Gil FDS, Pereira SdFP, Maciel AC, Alves CN. Chemometric Tools Associated with Quality Parameters for Evaluation of Mauritia flexuosa L.f. Oil in the State of Pará (Brazil). Foods. 2025; 14(9):1585. https://doi.org/10.3390/foods14091585
Chicago/Turabian Styleda Silva, Braian Saimon Frota, Nelson Rosa Ferreira, Fábio Dos Santos Gil, Simone de Fátima Pinheiro Pereira, Alana Coêlho Maciel, and Claúdio Nahum Alves. 2025. "Chemometric Tools Associated with Quality Parameters for Evaluation of Mauritia flexuosa L.f. Oil in the State of Pará (Brazil)" Foods 14, no. 9: 1585. https://doi.org/10.3390/foods14091585
APA Styleda Silva, B. S. F., Ferreira, N. R., Gil, F. D. S., Pereira, S. d. F. P., Maciel, A. C., & Alves, C. N. (2025). Chemometric Tools Associated with Quality Parameters for Evaluation of Mauritia flexuosa L.f. Oil in the State of Pará (Brazil). Foods, 14(9), 1585. https://doi.org/10.3390/foods14091585