The Moroccan Meska Horra: A Natural Candidate for Food and Therapeutic Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. P. lentiscus L. Resin
2.2. Hydrodistillation
2.3. Headspace Analysis (HS)
2.4. Solid-Phase Microextraction (SPME)
2.5. Ultrasonic Solid-Phase Microextraction (US-SPME)
2.6. GC/MS Analysis
2.7. Free-Radical Scavenging Activity
2.7.1. DPPH Assay
2.7.2. ABTS Assay
2.8. Evaluation of Antimicrobial Activity
- Gram-positive bacteria: Staphylococcus aureus (ATCC 6538) and Micrococcus luteus (LB 14110).
- Gram-negative bacteria: Escherichia coli (ATCC 10536) and Pseudomonas aeruginosa (ATCC 15442).
- Molds: Aspergillus niger and Geotrichum candidum.
- Yeasts: Candida glabrata and Rhodotorula glutinis.
2.8.1. Culture Preparation
2.8.2. Disc Diffusion Assay
2.8.3. Minimum Inhibitory Concentration (MIC) Determination
2.9. Molecular Docking Studies
2.9.1. Protein Selection and Preparation
- Posaconazole (PDB ID: 5FSA)—A fungal cytochrome P450 inhibitor.
- Adenosine-5′-triphosphate synthase (PDB ID: 2ZDQ)—Involved in bacterial energy metabolism.
- Novobiocin resistance protein (PDB ID: 4URN)—A bacterial DNA gyrase inhibitor target.
- Adenosine-5′-diphosphate ribose hydrolase (PDB ID: 2CDU)—Associated with bacterial stress response.
- Pterin-6-Yl-methyl-monophosphate binding protein (PDB ID: 2VEG)—A bacterial enzyme cofactor.
2.9.2. Ligand Preparation and Docking Procedure
2.9.3. Analysis of Docking Results
2.10. Statistical Analysis
3. Results
3.1. Extraction Yield from Hydrodistillation
3.2. GC/MS Analysis of P. lentiscus L. Resin Essential Oil and Extracts
3.2.1. Chemical Composition of P. lentiscus L. Resin Essential Oil
3.2.2. Chemical Composition of P. lentiscus L. Resin Extracts
- US-SPME: cis-Ocimene (46%), m-cymene (10%), D-limonene (6%), verbenone isomer (4%), α-pinene (4%), and verbenene (3%).
- SPME: cis-Ocimene (54%), D-limonene (6%), β-pinene (5%), camphene (3%), and (Z)-hexadec-7-enal (3%).
- HS: α-Pinene (14%), camphene (12%), β-pinene isomer (10%), tridec-3-ene (9%), 3-carene (7%), p-mentha-1(7),8(10)-dien-9-ol (7%), tricyclene (6%), trans-dodec-2-en-1-al (5%), E-dec-2-enal (4%), and sabinene (3%).
3.3. Antioxidant Activity of P. lentiscus L. Resin Essential Oil
3.4. Antimicrobial Properties of P. lentiscus L. Resin Essential Oil
3.5. Molecular Docking
- Antibacterial activity (4URN) displays the widest distribution of binding energies, indicating significant variability in compound-protein interactions.
- Antioxidant activity (1H6V) is associated with a relatively low mean binding energy (−6.22 kcal/mol), with minimal standard deviation, suggesting more consistent binding across compounds.
- Antifungal activity (5FSA) exhibits the highest standard deviation (4.38), reflecting notable differences in binding efficiency among tested compounds.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HD | Headspace |
SPME | Solid-phase microextraction |
US-SPME | Ultrasonic solid-phase microextraction |
GC-MS | Chromatography–mass spectrometry |
PTFE | Polytetrafluoroethylene |
PDB | Potato dextrose broth |
PDB | Protein Data Bank |
References
- Soulaidopoulos, S.; Tsiogka, A.; Chrysohoou, C.; Lazarou, E.; Aznaouridis, K.; Doundoulakis, I.; Tyrovola, D.; Tousoulis, D.; Tsioufis, K.; Vlachopoulos, C.; et al. Overview of Chios Mastic Gum (Pistacia lentiscus) Effects on Human Health. Nutrients 2022, 14, 590. [Google Scholar] [CrossRef] [PubMed]
- Paraskevopoulou, A.; Kiosseoglou, V. Chios Mastic Gum and Its Food Applications. In Functional Properties of Traditional Foods; Integrating Food Science and Engineering Knowledge into the Food Chain; Kristbergsson, K., Ötles, S., Eds.; Springer: Boston, MA, USA, 2016; Volume 12. [Google Scholar] [CrossRef]
- Pachi, V.K.; Mikropoulou, E.V.; Gkiouvetidis, P.; Siafakas, K.; Argyropoulou, A.; Angelis, A.; Mitakou, S.; Halabalaki, M. Traditional Uses, Phytochemistry and Pharmacology of Chios Mastic Gum (Pistacia lentiscus var. Chia, Anacardiaceae): A Review. J. Ethnopharmacol. 2020, 254, 112485. [Google Scholar] [CrossRef] [PubMed]
- Gortzi, O.; Rovoli, M.; Katsoulis, K.; Graikou, K.; Karagkini, D.-A.; Stagos, D.; Kouretas, D.; Tsaknis, J.; Chinou, I. Study of Stability, Cytotoxic and Antimicrobial Activity of Chios Mastic Gum Fractions (Neutral, Acidic) After Encapsulation in Liposomes. Foods 2022, 11, 271. [Google Scholar] [CrossRef]
- Ganos, C.G.; Aligiannis, N.; Chinou, I. Selected Traditional Beverages from Greece (North Aegean Region and Crete): History, Comprehensive Evaluation, and Future Perspectives. In Natural Products in Beverages. Reference Series in Phytochemistry; Mérillon, J.M., Riviere, C., Lefèvre, G., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Hadini, A.; Azdimousa, A.; Khoulati, A.; El Bekkaye, K.; Saalaoui, E. Valorization of Moroccan Pistacia lentiscus L. Leaves: Phytochemical and In Vitro Antioxidant Activity Evaluation Compared to Different Altitudes. Sci. World J. 2022, 2022, 6367663. [Google Scholar] [CrossRef]
- Koehler, J. Morocco: A Culinary Journey with Recipes from the Spice-Scented Markets of Marrakech to the Date-Filled Oasis of Zagora; Chronicle Books: San Francisco, CA, USA, 2012. [Google Scholar]
- Mohagheghzadeh, A.; Faridi, P.; Ghasemi, Y. Analysis of Mount Atlas Mastic Smoke: A Potential Food Preservative. Fitoterapia 2010, 81, 577–580. [Google Scholar] [CrossRef]
- Al-Zaben, M.; Zaban, M.A.; Naghmouchi, S.; Nasser Alsaloom, A.; Al-Sugiran, N.; Al-rokban, A. Comparison of Phytochemical Composition, Antibacterial, and Antifungal Activities of Extracts from Three Organs of Pistacia lentiscus from Saudi Arabia. Molecules 2023, 28, 5156. [Google Scholar] [CrossRef]
- Jaradat, N.; Al-Maharik, N.; Hawash, M.; Zaid, A.N.; Eid, A.M.; Hudaib, M.; Bustanji, Y.; Zihlif, M.; Issa, R.; Al-Qirim, T. Essential Oil Composition, Antimicrobial, Cytotoxic, and Cyclooxygenase Inhibitory Areas of Activity of Pistacia lentiscus from Palestine. Arab. J. Sci. Eng. 2022, 47, 6869–6879. [Google Scholar] [CrossRef]
- Sehaki, C.; Jullian, N.; Ayati, F.; Fernane, F.; Gontier, E. A Review of Pistacia lentiscus Polyphenols: Chemical Diversity and Pharmacological Activities. Plants 2023, 12, 279. [Google Scholar] [CrossRef]
- Floris, S.; Di Petrillo, A.; Pintus, F.; Delogu, G.L. Pistacia lentiscus: Phytochemistry and Antidiabetic Properties. Nutrients 2024, 16, 1638. [Google Scholar] [CrossRef]
- Vitalini, S.; Iriti, M.; Garzoli, S. GC-MS and SPME-GC/MS Analysis and Bioactive Potential Evaluation of Essential Oils from Two Viola Species Belonging to the V. calcarata Complex. Separations 2022, 9, 39. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Kuś, P.; Marijanović, Z.; Tuberoso, C.I.G.; Fecka, I.; Jerković, I. Headspace Solid-Phase Micro-Extraction Versus Hydrodistillation of Volatile Compounds from Leaves of Cultivated Mentha Taxa: Markers of Safe Chemotypes. Molecules 2022, 27, 6561. [Google Scholar] [CrossRef] [PubMed]
- Sehaki, C.; Jullian, N.; Choque, E.; Dauwe, R.; Fontaine, J.X.; Molinie, R.; Ayati, F.; Fernane, F.; Gontier, E. Profiling of Essential Oils from the Leaves of Pistacia lentiscus Collected in the Algerian Region of Tizi-Ouzou: Evidence of Chemical Variations Associated with Climatic Contrasts between Littoral and Mountain Samples. Molecules 2022, 27, 4148. [Google Scholar] [CrossRef] [PubMed]
- Llinares, J.; Llorens-Molina, J.-A.; Mulet, J.; Vacas, S. Soil Parameters and Bioclimatic Characteristics Affecting Essential Oil Composition of Leaves of Pistacia lentiscus L. from València (Spain). Span. J. Soil Sci. 2021, 11, 6. [Google Scholar] [CrossRef]
- Zhao, J.; Quinto, M.; Zakia, F.; Li, D. Microextraction of Essential Oils: A Review. J. Chromatogr. A 2023, 1708, 464357. [Google Scholar] [CrossRef] [PubMed]
- Bouakline, H.; Brahmi, M.; Ziani, I.; Rhizlan, A.; Idrissi Yahyaoui, M.; Angioni, A.; Talhaoui, A.; Bnouham, M.; Asehraou, A.; Tahani, A.; et al. Influence of Air-Drying Temperature on Yield, Volatilome Content, Antioxidant, Antidiabetic and Antimicrobial Activities of Pistacia lentiscus Leaf Oil: Experimental and Modeling Aspects. Food Biosci. 2024, 63, 105773. [Google Scholar] [CrossRef]
- Pachi, V.K.; Mikropoulou, E.V.; Dimou, S.; Dionysopoulou, M.; Argyropoulou, A.; Diallinas, G.; Halabalaki, M. Chemical Profiling of Pistacia lentiscus var. Chia Resin and Essential Oil: Ageing Markers and Antimicrobial Activity. Processes 2021, 9, 418. [Google Scholar] [CrossRef]
- John Wiley & Sons; National Institute of Standards and Technology. Wiley9/NIST11 (W9N11) Mass Spectral Library; John Wiley & Sons, Inc.: Hoboken, NJ, USA; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2011.
- Beraich, A.; El Farissi, H.; Belbachir, Y.; Cacciola, F.; Yahyaoui, M.I.; Choukoud, A.; Talhaoui, A. Traditional and Modern Extraction Methods for Pistacia lentiscus Essential Oil. Sustain. Chem. Pharm. 2024, 40, 101638. [Google Scholar] [CrossRef]
- Ahmed, D.; Khan, M.M.; Saeed, R. Comparative Analysis of Phenolics, Flavonoids, and Antioxidant and Antibacterial Potential of Methanolic, Hexanic and Aqueous Extracts from Adiantum caudatum Leaves. Antioxidants 2015, 4, 394–409. [Google Scholar] [CrossRef]
- Remmal, A.; Bouchikhi, T.; Rhayour, K.; Ettayebi, M.; Tantaoui-Elaraki, A. Improved Method for the Determination of Antimicrobial Activity of Essential Oils in Agar Medium. J. Essent. Oil Res. 1993, 5, 179–184. [Google Scholar] [CrossRef]
- Council of Europe. Herbal Drugs and Herbal Drug Preparations. European Pharmacopoeia 9.0; Council of Europe: Strasbourg, France, 2017; p. 1430. [Google Scholar]
- Ottria, R.; Xynomilakis, O.; Casati, S.; Abbiati, E.; Maconi, G.; Ciuffreda, P. Chios Mastic Gum: Chemical Profile and Pharmacological Properties in Inflammatory Bowel Disease: From the Past to the Future. Int. J. Mol. Sci. 2023, 24, 12038. [Google Scholar] [CrossRef]
- Yassaa, N.; Custer, T.; Song, W.; Pech, F.; Kesselmeier, J.; Williams, J. Quantitative and Enantioselective Analysis of Monoterpenes From Plant Chambers and in Ambient Air Using SPME. Atmos. Meas. Tech. 2010, 3, 1615–1627. [Google Scholar] [CrossRef]
- Song, N.E.; Lee, J.Y.; Lee, Y.Y.; Park, J.-D.; Jang, H.W. Comparison of Headspace–SPME and SPME-Arrow–GC–MS Methods for the Determination of Volatile Compounds in Korean Salt–Fermented Fish Sauce. Appl. Biol. Chem. 2019, 62, 16. [Google Scholar] [CrossRef]
- Šikuten, I.; Štambuk, P.; Karoglan Kontić, J.; Maletić, E.; Tomaz, I.; Preiner, D. Optimization of SPME-Arrow-GC/MS Method for Determination of Free and Bound Volatile Organic Compounds from Grape Skins. Molecules 2021, 26, 7409. [Google Scholar] [CrossRef] [PubMed]
- García, Y.; Rufini, J.; Campos, M.; Guedes, M.S.; Augusti, R.; Melo, J. SPME Fiber Evaluation for Volatile Organic Compounds Extraction from Acerola. J. Braz. Chem. Soc. 2018, 30, 247–255. [Google Scholar] [CrossRef]
- Yang, D.S.; Lei, Z.; Bedair, M.; Sumner, L.W. An Optimized SPME-GC-MS Method for Volatile Metabolite Profiling of Different Alfalfa (Medicago sativa L.) Tissues. Molecules 2021, 26, 6473. [Google Scholar] [CrossRef]
- Chalvantzi, I.; Nisiotou, A.; Banilas, G.; Mallouchos, A. Development of an Ultrasound-Assisted Emulsification Microextraction Method for the Determination of Volatile Compounds in Wines. Separations 2023, 10, 525. [Google Scholar] [CrossRef]
- Zhang, Q.; Qin, W.; Lin, D.; Shen, Q.; Saleh, A.S. The Changes in the Volatile Aldehydes Formed During the Deep-Fat Frying Process. J. Food Sci. Technol. 2015, 52, 7683–7696. [Google Scholar] [CrossRef]
- Tsigoriyna, L.; Sango, C.; Batovska, D. An Update on Microbial Biosynthesis of β-Caryophyllene, a Sesquiterpene With Multi-Pharmacological Properties. Fermentation 2024, 10, 60. [Google Scholar] [CrossRef]
- Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar Jugran, A.; Jayaweera, S.L.D.; Dias, D.A.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef]
- Ewais, O.; Abdel-Tawab, H.; El-Fayoumi, H.; Aboelhadid, S.M.; Al-Quraishy, S.; Falkowski, P.; Abdel-Baki, A.S. Antioxidant Properties of D-Limonene and Its Nanoemulsion Form Enhance Its Anticoccidial Efficiency in Experimentally Infected Broilers With Eimeria tenella: An In Vitro and In Vivo Study. Vet. Res. Commun. 2024, 48, 3711–3725. [Google Scholar] [CrossRef]
- Xanthis, V.; Fitsiou, E.; Voulgaridou, G.P.; Bogadakis, A.; Chlichlia, K.; Galanis, A.; Pappa, A. Antioxidant and Cytoprotective Potential of the Essential Oil Pistacia lentiscus var. chia and Its Major Components Myrcene and α-Pinene. Antioxidants 2021, 10, 127. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Gong, G.; Wang, X.; Tian, L. Membrane Damage Mechanism of Protocatechualdehyde Against Micrococcus luteus and Its Effect on Pork Quality Characteristics. Sci. Rep. 2022, 12, 18856. [Google Scholar] [CrossRef]
- Liang, J.; Huang, T.Y.; Li, X.; Gao, Y. Germicidal Effect of Intense Pulsed Light on Pseudomonas aeruginosa in Food Processing. Front. Microbiol. 2023, 14, 1247364. [Google Scholar] [CrossRef]
- Navale, V.; Vamkudoth, K.R.; Ajmera, S.; Dhuri, V. Aspergillus-Derived Mycotoxins in Food and the Environment: Prevalence, Detection, and Toxicity. Toxicol. Rep. 2021, 8, 1008–1030. [Google Scholar] [CrossRef]
- Al-Yasiri, M.; Normand, A.C.; L’Ollivier, C.; Lachaud, L.; Bourgeois, N.; Rebaudet, S.; Piarroux, R.; Mauffrey, J.F.; Ranque, S. Opportunistic Fungal Pathogen Candida glabrata Circulates Between Humans and Yellow-Legged Gulls. Sci. Rep. 2016, 6, 36157. [Google Scholar] [CrossRef]
- Guo, Y.; Baschieri, A.; Amorati, R.; Valgimigli, L. Synergic antioxidant activity of γ-terpinene with phenols and polyphenols enabled by hydroperoxyl radicals. Food Chem. 2021, 345, 128468. [Google Scholar] [CrossRef]
- Ciesla, Ł.; Wojtunik-Kulesza, K.; Oniszczuk, A.; Waksmundzka-Hajnos, M. Antioxidant synergism and antagonism between selected monoterpenes using the 2,2-diphenyl-1-picrylhydrazyl method. Flavour Fragr. J. 2016, 31, 407–419. [Google Scholar] [CrossRef]
- Benyoucef, F.; Dib, M.E.A.; Arrar, Z.; Costa, J.; Muselli, A. Synergistic Antioxidant Activity and Chemical Composition of Essential Oils from Thymus fontanesii, Artemisia herba-alba and Rosmarinus officinalis. J. Appl. Biotechnol. Rep. 2018, 5, 151–156. [Google Scholar] [CrossRef]
- Fratini, F.; Pecorini, C.; Resci, I.; Copelotti, E.; Nocera, F.P.; Najar, B.; Mancini, S. Evaluation of the Synergistic Antimicrobial Activity of Essential Oils and Cecropin a Natural Peptide on Gram-Negative Bacteria. Animals 2025, 15, 282. [Google Scholar] [CrossRef]
- Becerril, R.; Nerín, C.; Gómez-Lus, R. Evaluation of Bacterial Resistance to Essential Oils and Antibiotics after Exposure to Oregano and Cinnamon Essential Oils. Foodborne Pathog. Dis. 2012, 9, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Yap, P.S.; Yiap, B.C.; Ping, H.C.; Lim, S.H. Essential Oils, a New Horizon in Combating Bacterial Antibiotic Resistance. Open Microbiol. J. 2014, 8, 6–14. [Google Scholar] [CrossRef] [PubMed]
Components | Formula | GC/MS Analysis | ||||
---|---|---|---|---|---|---|
RT * | HD (%) | HS (%) | SPME (%) | US-SPME (%) | ||
2-Propanone | C3H6O | 0.02 | n.d. * | n.d. | 0.12 a | 0.06 a |
6,6-Dimethylhepta-2,4-diene | C9H16 | 0.64 | n.d. | n.d. | 0.42 a | 0.26 b |
Methanol, (1,4-dihydrophenyl) | C7H10O | 2.06 | n.d. | n.d. | n.d. | 0.14 |
cis-Ocimene | C10H16 | 2.88 | n.d. | n.d. | 54.31 a | 46.28 b |
2-Carene | C10H16 | 3.02 | n.d. | n.d. | 0.15 a | 0.27 a |
Benzene, methyl | C7H8 | 3.18 | n.d. | n.d. | 2.07 b | 3.01 a |
But-3-ene | C4H8 | 3.53 | n.d. | n.d. | 0.34 | n.d. |
Heptanal | C7H14O | 4.69 | n.d. | 0.75 | n.d. | n.d. |
Tricyclene | C10H16 | 5.05 | 0.96 b | 5.53 a | 0.76 c | 0.65 c |
3-Carene | C10H16 | 5.22 | n.d. | 7.05 | n.d. | n.d. |
α-Pinene | C10H16 | 5.41 | 25.98 a | 13.56 b | n.d. | 3.85 c |
Verbenene | C10H14 | 5.50 | n.d. | n.d. | 2.05 b | 3.07 a |
Camphene | C10H16 | 5.50 | 3.43 | 12.26 | 2.88 | 2.64 |
trans-Verbenol | C10H16O | 5.56 | 2.46 | n.d. | n.d. | n.d. |
p-Mentha-1(7),8(10)-dien-9-ol | C10H16O | 5.58 | n.d. | 6.70 | n.d. | n.d. |
Sabinene | C10H16 | 5.88 | n.d. | 2.99 a | 0.18 b | n.d. |
β-Pinene | C10H16 | 5.95 | 19.02 a | 9.68 b | 5.49 c | 0.16 d |
β-Myrcene | C10H16 | 6.11 | 3.42 | n.d. | n.d. | n.d. |
Octanal | C8H16O | 6.33 | n.d. | 1.06 | n.d. | n.d. |
α-Phellandrene | C10H16 | 6.38 | 2.51 | n.d. | n.d. | n.d. |
4-Carene | C10H16 | 6.49 | n.d. | 1.43 | n.d. | n.d. |
p-Cymene | C10H14 | 6.74 | 3.67 a | 0.71 b | n.d. | n.d. |
D-Limonene | C10H16 | 6.89 | 9.96 a | 0.37 d | 6.23 b | 5.71 c |
o-Cymol | C10H14 | 6.97 | 0.25 | n.d. | n.d. | n.d. |
cis-β-Ocimene | C10H16 | 7.07 | n.d. | 0.20 | n.d. | n.d. |
Ocimene | C10H16 | 7.27 | n.d. | 0.37 | n.d. | n.d. |
n-Octanol | C10H18O | 7.49 | n.d. | 0.34 | n.d. | n.d. |
trans-Limonene oxide | C10H16O | 7.53 | 0.03 | n.d. | n.d. | n.d. |
(2E)-3-Pentyl-2,4-pentadien-1-ol | C10H18O | 7.56 | n.d. | 0.26 | n.d. | n.d. |
trans-p-Mentha-2,8-dienol | C10H16O | 7.78 | 0.56 | n.d. | n.d. | n.d. |
Thujol | C10H18O | 7.82 | 0.55 | n.d. | n.d. | n.d. |
3-Tridecene | C13H26 | 8.01 | n.d. | 9.07 | n.d. | n.d. |
Verbenol | C10H16O | 8.19 | 0.15 c | 2.3 a | 0.29 b | 2.10 a |
4-Heptenal, (Z) | C7H12O | 8.20 | n.d. | n.d. | n.d. | 0.78 |
2,5-Dimethyl-1,5-hexadien-3-ol | C9H14O3 | 8.39 | n.d. | n.d. | n.d. | 0.25 |
α-Campholenal | C10H16O | 8.45 | 3.03 a | 1.97 b | 1.11 c | 1.26 c |
Eucalyptol | C10H18O | 8.45 | n.d. | n.d. | 0.37 a | 0.29 b |
p-Mentha-1,3,8-triene | C10H14 | 8.70 | n.d. | n.d. | n.d. | 0.67 |
L-Pinocarveol | C10H16O | 8.73 | 2.62 a | 1.27 b | n.d. | n.d. |
p-Mentha-1,5,8-triene | C10H14 | 8.77 | n.d. | n.d. | 0.72 | n.d. |
cis-Verbenol | C10H16O | 8.80 | n.d. | 1.74 a | 0.36 b | 0.15 c |
Cyclohexanol, 2-methyl-3-(1-methylethenyl) | C12H18O2 | 8.80 | n.d. | n.d. | n.d. | 0.15 |
2,6-Dimethyl-3,5,7-octatriene-2-ol, E, E | C10H16O | 8.81 | 3.98 | n.d. | n.d. | n.d. |
p-Mentha-1,5-dien-8-ol | C10H16O | 8.88 | 3.37 a | n.d. | 0.49 b | 0.27 c |
(E)-Non-2-enal | C9H16O | 8.92 | n.d. | 0.63 | n.d. | n.d. |
Pinocarvone | C10H14O | 9.07 | n.d. | 1.01 a | 0.51 c | 0.75 b |
Myrcenol | C10H18O | 9.18 | 3.93 | n.d. | n.d. | n.d. |
Terpinen-4-ol | C10H18O | 9.33 | 0.94 a | n.d. | 0.17 b | 0.12 b |
p-Cymen-8-ol | C10H14O | 9.48 | 0.57 | n.d. | n.d. | n.d. |
p-Menth-1-en-8-ol | C10H18O | 9.56 | 0.40 | n.d. | n.d. | n.d. |
Myrtenal | C10H14O | 9.62 | 0.72 c | 1.01 a | 0.76 c | 0.88 b |
Myrtenol | C10H14O | 9.72 | 0.95 a | n.d. | 0.49 b | 0.56 b |
Verbenone | C10H14O | 9.83 | 1.60 c | 0.47 d | 2.42 b | 3.95 a |
Carveol | C10H16O | 10.03 | 0.09 | n.d. | n.d. | n.d.. |
Carvone | C10H14O | 10.35 | 0.04 | n.d. | n.d. | n.d. |
(2E)-2-Decenal | C10H18O | 10.51 | n.d. | 3.94 | n.d. | n.d. |
m-Cymene | C11H16 | 10.64 | n.d. | n.d. | n.d. | 10.15 |
Bornyl acetate | C12H20O2 | 10.93 | 0.98 a | 0.50 b | n.d. | n.d. |
2,4-Dodecadien-1-al | C12H22O | 11.02 | n.d. | 0.82 | n.d. | n.d. |
2-Ethyl-4,5-dimethylphenol | C10H14O | 11.32 | 1.00 | n.d. | n.d. | n.d. |
2,4-Decadienal | C10H16O | 11.36 | n.d. | 1.37 | n.d. | n.d. |
Styrene | C12H18O2 | 11.46 | n.d. | n.d. | 0.14 b | 0.35 a |
o-Cymol | C10H14 | 11.68 | n.d. | n.d. | 0.74 b | 0.96 a |
δ-Elemene | C15H24 | 11.70 | 0.4 a | n.d. | 0.16 b | 0.17 b |
2-Undecenal | C11H20O | 11.80 | n.d. | 0.63 | n.d. | n.d. |
α-Cubebene | C15H24 | 11.87 | 0.19 b | 0.64 a | n.d. | n.d. |
Ylangene | C15H24 | 11.97 | 0.25 | n.d. | n.d. | n.d. |
trans-Dodec-2-en-1-al | C12H24O | 12.01 | n.d. | 5.16 | n.d. | n.d. |
Germacrene D-4-ol | C15H26O | 12.46 | 0.54 | n.d. | n.d. | n.d. |
β-Elemene | C15H24 | 12.50 | 0.23 | n.d. | n.d. | n.d. |
D-Longifolene | C15H24 | 12.82 | n.d. | 0.61 | n.d. | n.d. |
6-Methyl-5-hepten-2-one | C8H14O | 13.07 | n.d. | n.d. | 0.34 b | 0.45 a |
Caryophyllene | C15H24 | 12.97 | 0.59 | n.d. | n.d. | n.d. |
cis-α-Bisabolene | C15H24 | 13.45 | 0.03 | n.d. | n.d. | n.d. |
Copaene | C15H24 | 13.71 | 0.22 | n.d. | n.d. | n.d. |
Aromadendrene | C15H24 | 14.23 | 0.01 | n.d. | n.d. | n.d. |
δ-Cadinene | C15H24 | 14.31 | 0.01 | n.d. | n.d. | n.d. |
Z-Hexadec-8-ene | C16H32 | 14.83 | n.d. | 0.27 | n.d. | n.d. |
Caryophyllene oxide | C15H24O | 15.22 | 0.35 a | n.d. | n.d. | 0.11 b |
Fencholenic aldehyde | C10H16O | 15.86 | n.d. | n.d. | 0.20 a | 0.18 a |
(2E)-2-Tetradecen-1-ol | C14H28O | 15.96 | n.d. | 0.35 | n.d. | n.d. |
(E)-14-Hexadecenal | C16H30O | 16.03 | n.d. | 0.64 | n.d. | n.d. |
p-Cymenene | C10H12 | 16.20 | n.d. | n.d. | n.d. | 1.11 |
(Z)-Hexadec-7-enal | C16H30O | 16.30 | n.d. | 0.66 b | 2.94 a | n.d. |
1,2-Cyclododecanediol | C12H24O2 | 18.37 | n.d. | 0.63 b | 0.75 a | n.d. |
13-Tetradecenal | C12H26O | 18.57 | n.d. | 1.05 | n.d. | n.d. |
3-Pinanone | C10H16O | 18.59 | n.d. | n.d. | 0.63 b | 0.83 a |
β-Burbonene | C15H24 | 18.71 | n.d. | n.d. | 0.34 b | 1.16 a |
2,4-Dimethyl-2,6-heptadienal | C9H14O | 19.38 | n.d. | n.d. | 0.26 b | 0.30 a |
2,3,4,5-Tetramethyl-2-cyclopenten-1-one | C9H14O | 20.44 | n.d. | n.d. | n.d. | 0.27 |
Bornyl acetate | C12H20O | 20.71 | n.d. | n.d. | 0.41 a | 0.45 a |
2,3-Epoxypinane | C10H16O | 20.85 | n.d. | n.d. | 0.52 | n.d. |
Elemol | C15H26O | 20.95 | n.d. | n.d. | n.d. | 0.16 |
trans-β-Caryophyllene | C15H24 | 21.04 | n.d. | n.d. | n.d. | 0.28 |
trans-Verbenyl acetate | C12H18O2 | 21.41 | n.d. | n.d. | 0.88 a | 0.33 b |
Myrtenyl acetate | C12H18O2 | 22.48 | n.d. | n.d. | 0.33 b | 0.58 a |
L-trans-Pinocarveol | C10H16O | 23.01 | n.d. | n.d. | 1.84 b | 1.97 a |
(S)-cis-Verbenol | C10H16O | 23.11 | n.d. | n.d. | 2.33 a | 0.46 b |
Cyclohexene, 3-acetoxy-4-(1-hydroxy-1-methylethyl)-1-methyl- | C12H20O3 | 23.29 | n.d. | n.d. | 0.11 | n.d. |
cis-Carveol | C10H16O | 28.04 | n.d. | n.d. | 0.36 a | 0.33 a |
Cumyl alcohol | C10H14O | 28.36 | n.d. | n.d. | n.d. | 0.18 |
3-Cyclohexene-1-carboxylic acid, 3,4-dimethyl-, methyl ester | C10H16O | 39.10 | n.d. | n.d. | n.d. | 0.13 |
Monoterpenes (%) | 69.20 c | 54.15 d | 73.93 b | 75.78 a | ||
O-Containing monoterpenoids (%) | 26.97 a | 16.97 b | 15.23 c | 15.64 c | ||
Total monoterpenoids (%) | 96.17 a | 71.20 d | 89.16 c | 91.42 b | ||
Sesquiterpenes (%) | 1.93 a | 1.25 c | 0 d | 1.61 b | ||
O-Containing sesquiterpenoids (%) | 0.89 a | 0 c | 0 c | 0.27 b | ||
Total sesquiterpenoids (%) | 2.82 a | 1.25 c | 0 d | 1.88 b | ||
Other compounds | 1.00 d | 27.63 a | 6.47 b | 5.89 c |
E. coli | P. aeruginosa | M. luteus | S. aureus | |
---|---|---|---|---|
Essential oil (20 µL) | 10.33 ± 0.30 * | 10.26 ± 0.25 | 12.63 ± 0.41 | 11.90 ± 0.45 |
Gentamicin (1 mg/mL) | 25.20 ± 0.40 * | 25.83 ± 0.41 | 26.76 ± 0.45 | 27.16 ± 0.41 |
MIC (% v/v) | 0.5 | 0.125 | 0.062 | 0.75 |
MBC (% v/v) | ≥8 | ≥8 | ≥8 | ≥8 |
R. aureus | C. glabrata | A. niger | G. candidum | |
---|---|---|---|---|
Essential oil (20 µL) | 11.50 ± 0.26 * | 18.8 ± 0.79 | 19.56 ± 0.80 | 13.30 ± 0.45 |
Cycloheximide (1 mg/mL) | 21.10 ± 0.45 * | 21.5 ± 0.20 | 23.70 ± 0.36 | 22.76 ± 0.40 |
MIC (% v/v) | ≥8 | 2 | 2 | 8 |
MBC (% v/v) | ≥8 | ≥8 | ≥8 | ≥8 |
Antioxidant Activity | Antibacterial Activity | Antifungal Activity | ||||
---|---|---|---|---|---|---|
1H6V | 2CDU | 4URN | 2VEG | 2ZDQ | 5FSA | |
Compounds | Binding Free Energy ∆G (kcal/mol) | |||||
Ligand Natif | −8.0 | −7.7 | −10.4 | −6.9 | −8.1 | 9.9 |
α-Pinene | −5.5 | −6.4 | −5.0 | −5.1 | −5.4 | −6.1 |
β-Pinene | −5.2 | −6.4 | −5.2 | −5.3 | −5.3 | −6.0 |
D-Limonene | −5.6 | −6.2 | −5.3 | −4.9 | −5.3 | −7.1 |
Myrcenol | −5.3 | −5.9 | −5.1 | −4.7 | −4.7 | −6.0 |
p-Cymene | −5.6 | −6.4 | −5.3 | −5.0 | −5.6 | −7.2 |
Camphene | −5.5 | −6.4 | −4.9 | −4.9 | −5.1 | −6.2 |
β-Myrcene | −4.6 | −6.1 | −4.8 | −4.6 | −4.7 | −6.6 |
α-Campholenal | −5.3 | −6.1 | −5.3 | −4.8 | −5.5 | −6.0 |
L-Pinocarveol | −5.6 | −6.0 | −5.4 | −5.2 | −5.5 | −6.0 |
Verbenone | −5.6 | −6.7 | −5.3 | −4.9 | −5.7 | −6.1 |
Caryophyllene | −6.9 | −7.6 * | −7.1 | −5.8 | −6.9 | −7.2 |
Caryophyllene oxide | −7.2 | −7.5 | −6.7 | −5.9 | −7.3 | −6.9 |
Gentamicin | −9.4 | −9.3 | −8.8 | −7.1 | −9.2 | −8.7 |
Cycloheximide | −8.0 | −8.3 | −8.0 | −7.5 | −7.8 | −8.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beraich, A.; Dikici, B.; El Farissi, H.; Batovska, D.; Nikolova, K.; Belbachir, Y.; Choukoud, A.; Bentouhami, N.E.; Asehraou, A.; Talhaoui, A. The Moroccan Meska Horra: A Natural Candidate for Food and Therapeutic Applications. Foods 2025, 14, 1158. https://doi.org/10.3390/foods14071158
Beraich A, Dikici B, El Farissi H, Batovska D, Nikolova K, Belbachir Y, Choukoud A, Bentouhami NE, Asehraou A, Talhaoui A. The Moroccan Meska Horra: A Natural Candidate for Food and Therapeutic Applications. Foods. 2025; 14(7):1158. https://doi.org/10.3390/foods14071158
Chicago/Turabian StyleBeraich, Abdessamad, Burak Dikici, Hammadi El Farissi, Daniela Batovska, Krastena Nikolova, Yousra Belbachir, Anass Choukoud, Nour Eddine Bentouhami, Abdeslam Asehraou, and Abdelmoneam Talhaoui. 2025. "The Moroccan Meska Horra: A Natural Candidate for Food and Therapeutic Applications" Foods 14, no. 7: 1158. https://doi.org/10.3390/foods14071158
APA StyleBeraich, A., Dikici, B., El Farissi, H., Batovska, D., Nikolova, K., Belbachir, Y., Choukoud, A., Bentouhami, N. E., Asehraou, A., & Talhaoui, A. (2025). The Moroccan Meska Horra: A Natural Candidate for Food and Therapeutic Applications. Foods, 14(7), 1158. https://doi.org/10.3390/foods14071158