Impact of Ultrasound on a Gluten-Free Composite Flour Based on Rice Flour and Corn Starch for Breadmaking Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ultrasound Treatment
2.3. Functional Properties
2.4. Amylose, Amylopectin and Damaged Starch Content
2.5. Thermal Properties by Differential Scanning Calorimetry (DSC)
2.6. Morphological Evaluation by Scanning Electron Microscopy (SEM)
2.7. X-Ray Diffraction (XRD)
2.8. Fourier Transform Infrared (FTIR) Spectroscopy
2.9. Rheological Measurement
2.10. Statistical Analysis
3. Results and Discussion
3.1. Techno-Functional Properties
3.2. Amylose, Amylopectin, and Damaged Starch Content
3.3. Thermal Properties by DSC
3.4. Scanning Electron Microscopy (SEM)
3.5. X-Ray Diffraction (XRD) Analysis
3.6. FTIR Analysis
3.7. Rheological Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lebwohl, B.; Ludvigsson, J.F.; Green, P.H. Celiac disease and non-celiac gluten sensitivity. BMJ 2015, 351, h4347. [Google Scholar] [CrossRef]
- Hassan, H.F.; Mourad, L.; Khatib, N.; Assi, R.; Akil, S.; Khatib, S.E.; Hteit, R. Perceptions towards gluten free products among consumers: A narrative review. Indian J. Appl. Res. 2024, 4, 100441. [Google Scholar] [CrossRef]
- Capriles, V.D.; Valeria de Aguiar, E.; Garcia Dos Santos, F.; Fernandez, M.E.A.; de Melo, B.G.; Tagliapietra, B.L.; Scarton, M.; Clerici, M.T.; Conti, A.C. Current status and future prospects of sensory and consumer research approaches to gluten-free bakery and pasta products. Int. Food Res. 2023, 173 Pt 2, 113389. [Google Scholar] [CrossRef]
- Houben, A.; Höchstötter, A.; Becker, T. Possibilities to increase the quality in gluten-free bread production: An overview. Eur. Food Res. Technol. 2012, 235, 195–208. [Google Scholar] [CrossRef]
- Alencar, N.M.M.; de Araújo, V.A.; Faggian, L.; da Silveira Araújo, M.B.; Capriles, V.D. What about gluten-free products? An insight on celiac consumers’ opinions and expectations. J. Sens. Stud. 2021, 36, e12664. [Google Scholar] [CrossRef]
- do Nascimento, A.B.; Fiates, G.M.; dos Anjos, A.; Teixeira, E. Gluten-free is not enough—Perception and suggestions of celiac consumers. Int. J. Food Sci. Nutr. 2014, 65, 394–398. [Google Scholar] [CrossRef]
- do Nascimento, A.B.; Fiates, G.; Medeiros, R.; Teixeira, E. We want to be normal! Perceptions of a group of Brazilian consumers with coeliac disease on gluten-free bread buns. Int. J. Gastron. Food Sci. 2017, 7, 27–31. [Google Scholar] [CrossRef]
- Capriles, V.D.; Santos, F.G.; Aguiar, E.V. Innovative gluten-free breadmaking. In Trends in Wheat and Bread Making; Academic Press: Cambridge, MA, USA, 2021; pp. 371–404. [Google Scholar]
- Arendt, E.K.; Bello, F.D. Gluten-Free Cereal Products and Beverages, 1st ed.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Masure, H.G.; Fierens, E.; Delcour, J.A. Current and forward looking experimental approaches in gluten-free bread making research. J. Cereal Sci. 2016, 67, 92–111. [Google Scholar] [CrossRef]
- Bourekoua, H.; Benatallah, L.; Zidoune, M.N.; Rosell, C.M. Developing gluten free bakery improvers by hydrothermal treatment of rice and corn flours. LWT Food Sci. Technol. 2016, 73, 342–350. [Google Scholar] [CrossRef]
- Tsai, C.L.; Sugiyama, J.; Shibata, M.; Kokawa, M.; Fujita, K.; Tsuta, M.; Nabetani, H.; Araki, T. Changes in the texture and viscoelastic properties of bread containing rice porridge during storage. Biosci. Biotechnol. Biochem. 2012, 76, 331–335. [Google Scholar] [CrossRef]
- Soria, A.C.; Villamiel, M. Effect of ultrasound on the technological properties and bioactivity of food: A review. Trends Food Sci. Technol. 2010, 21, 323–331. [Google Scholar] [CrossRef]
- Adebowale, K.O.; Lawal, O.S. Comparative study of the functional properties of bambarra groundnut (Voandzeia subterranean), jack bean (Canavalia ensiformis) and mucuna bean (Mucuna pruriens) flours. Int. Food Res. J. 2004, 37, 355–365. [Google Scholar] [CrossRef]
- Gómez, M.; Martínez, M.M. Changing flour functionality through physical treatments for the production of gluten-free baking goods. J. Cereal Sci. 2016, 67, 68–74. [Google Scholar] [CrossRef]
- Yang, W.; Kong, X.; Zheng, Y.; Sun, W.; Chen, S.; Liu, D.; Zhang, H.; Fang, H.; Tian, J.; Ye, X. Controlled ultrasound treatments modify the morphology and physical properties of rice starch rather than the fine structure. Ultrason. Sonochem. 2019, 59, 104709. [Google Scholar] [CrossRef]
- Zhu, F. Impact of ultrasound on structure, physicochemical properties, modifications, and applications of starch. Trends Food Sci. Technol. 2015, 43, 1–17. [Google Scholar] [CrossRef]
- Witczak, M.; Ziobro, R.; Juszczak, L.; Korus, J. Starch and starch derivatives in gluten-free systems—A review. J. Cereal Sci. 2016, 67, 46–57. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, X.; Zhang, Y.; Zhang, R.; Liu, J.; Fan, B.; Wang, F.; Li, L. Application progress of ultrasonication in flour product processing: A review. Ultrason. Sonochem. 2023, 99, 106538. [Google Scholar] [CrossRef]
- Jamalabadi, M.; Saremnezhad, S.; Bahrami, A.; Jafari, S.M. The influence of bath and probe sonication on the physicochemical and microstructural properties of wheat starch. Food Sci. Nutr. 2019, 7, 2427–2435. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, G.; Liu, M.; Mei, X.; Yu, Q.; Kan, J. Effects of multi-frequency ultrasound on physicochemical properties, structural characteristics of gluten protein and the quality of noodle. Ultrason. Sonochem. 2020, 67, 105135. [Google Scholar] [CrossRef]
- Rostamabadi, H.; Nowacka, M.; Kumar, Y.; Xu, S.; Colussi, R.; Frasson, S.F.; Singh, S.K.; Falsafi, S.R. Green modification techniques: Sustainable approaches to induce novel physicochemical and technofunctional attributes in legume starches. Trends Food Sci. Technol. 2024, 146, 104389. [Google Scholar] [CrossRef]
- Pingret, D.; Anne-Sylvie, F.-T.; Chemat, F. Degradation during application of ultrasound in food processing: A review. Food Control 2013, 31, 593–606. [Google Scholar] [CrossRef]
- Farrokhi, M.; Ramos, I.N.; Silva, C.L.M. Effects of Ultrasonication and High Hydrostatic Pressure on Functional, Thermal, Structural, Rheological, and Pasting Properties of Gluten-Free Flour, Starch, and Protein Isolates for Enhanced Breadmaking; Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia: Porto, Portugal, 2025; Manuscript in preparation, to be submitted. [Google Scholar]
- Sosulski, F.W. The centrifuge method for determining flour absorption in hard red spring wheats. Cereal Chem. 1962, 39, 344–350. [Google Scholar]
- Lin, M.J.Y.; Humbert, E.S.; Sosulski, F.W. Certain Functional Properties of Sunflower Meal Products. J. Food Sci. 2006, 39, 368–370. [Google Scholar] [CrossRef]
- Abebe, W.; Collar, C.; Ronda, F. Impact of variety type and particle size distribution on starch enzymatic hydrolysis and functional properties of tef flours. Carbohydr. Polym. 2015, 115, 260–268. [Google Scholar] [CrossRef]
- Kaushal, P.; Kumar, V.; Sharma, H.K. Comparative study of physicochemical, functional, antinutritional and pasting properties of taro (Colocasia esculenta), rice (Oryza sativa) flour, pigeonpea (Cajanus cajan) flour and their blends. LWT Food Sci. Technol. 2012, 48, 59–68. [Google Scholar] [CrossRef]
- Georgopoulos, T.; Larsson, H.; Eliasson, A.-C. A comparison of the rheological properties of wheat flour dough and its gluten prepared by ultracentrifugation. Food Hydrocoll. 2004, 18, 143–151. [Google Scholar] [CrossRef]
- Smidova, Z.; Rysova, J. Gluten-Free Bread and Bakery Products Technology. Foods 2022, 11, 480. [Google Scholar] [CrossRef]
- Vela, A.J.; Villanueva, M.; Solaesa, Á.G.; Ronda, F. Impact of high-intensity ultrasound waves on structural, functional, thermal and rheological properties of rice flour and its biopolymers structural features. Food Hydrocoll. 2021, 113, 106480. [Google Scholar] [CrossRef]
- Bressiani, J.; Santetti, G.S.; Oro, T.; Esteres, V.; Biduski, B.; Miranda, M.Z.D.; Gutkoski, L.C.; de Almeida, J.L.; Gularte, M.A. Hydration properties and arabinoxylans content of whole wheat flour intended for cookie production as affected by particle size and Brazilian cultivars. LWT 2021, 150, 111918. [Google Scholar] [CrossRef]
- Falsafi, S.R.; Maghsoudlou, Y.; Rostamabadi, H.; Rostamabadi, M.M.; Hamedi, H.; Hosseini, S.M.H. Preparation of physically modified oat starch with different sonication treatments. Food Hydrocoll. 2019, 89, 311–320. [Google Scholar] [CrossRef]
- Mir, N.A.; Riar, C.S.; Singh, S. Structural modification of quinoa seed protein isolates (QPIs) by variable time sonification for improving its physicochemical and functional characteristics. Ultrason. Sonochem. 2019, 58, 104700. [Google Scholar] [CrossRef] [PubMed]
- Pareyt, B.; Finnie, S.M.; Putseys, J.A.; Delcour, J.A. Lipids in bread making: Sources, interactions, and impact on bread quality. J. Cereal Sci. 2011, 54, 266–279. [Google Scholar] [CrossRef]
- Luo, X.; Cao, J.; Gong, H.; Yan, H.; He, L. Phase separation technology based on ultrasonic standing waves: A review. Ultrason. Sonochem. 2018, 48, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Mohammad Amini, A.; Razavi, S.M.; Mortazavi, S.A. Morphological, physicochemical, and viscoelastic properties of sonicated corn starch. Carbohydr. Polym. 2015, 122, 282–292. [Google Scholar] [CrossRef]
- Vela, A.J.; Villanueva, M.; Nathia-Neves, G.; Ronda, F. Impact of Solubilized Substances on the Techno-Functional, Pasting and Rheological Properties of Ultrasound-Modified Rice, Tef, Corn and Quinoa Flours. Foods 2023, 12, 484. [Google Scholar] [CrossRef]
- Vela, A.J.; Villanueva, M.; Ozturk, O.K.; Hamaker, B.; Ronda, F. Modification of the microstructure of tef [Eragrostis tef (Zucc.) Trotter] flour ultrasonicated at different temperatures. Impact on its techno-functional and rheological properties. Curr. Res. Food Sci. 2023, 6, 100456. [Google Scholar] [CrossRef]
- Hoover, R.; Swamidas, G.; Kok, L.S.; Vasanthan, T. Composition and physicochemical properties of starch from pearl millet grains. Food Chem. 1996, 56, 355–367. [Google Scholar] [CrossRef]
- Vamadevan, V.; Bertoft, E. Impact of different structural types of amylopectin on retrogradation. Food Hydrocoll. 2018, 80, 88–96. [Google Scholar] [CrossRef]
- Vamadevan, V.; Bertoft, E. Structure-function relationships of starch components. Starch Stärke 2014, 67, 55–68. [Google Scholar] [CrossRef]
- Li, Y.; Hu, A.; Zheng, J.; Wang, X. Comparative studies on structure and physiochemical changes of millet starch under microwave and ultrasound at the same power. Int. J. Biol. Macromol. 2019, 141, 76–84. [Google Scholar] [CrossRef]
- Srichuwong, S.; Jane, J.-L. Physicochemical properties of starch affected by molecular composition and structures: A review. Food Sci. Biotechnol. 2007, 16, 663–674. [Google Scholar]
- Cooke, D.; Gidley, M.J. Loss of crystalline and molecular order during starch gelatinisation: Origin of the enthalpic transition. Carbohydr. Res. 1992, 227, 103–112. [Google Scholar] [CrossRef]
- Huang, Q.; Li, L.; Fu, X. Ultrasound effects on the structure and chemical reactivity of cornstarch granules. Starch Stärke 2007, 59, 371–378. [Google Scholar] [CrossRef]
- Ding, Y.; Luo, F.; Lin, Q. Insights into the relations between the molecular structures and digestion properties of retrograded starch after ultrasonic treatment. Food Chem. 2019, 294, 248–259. [Google Scholar] [CrossRef]
- Vela, A.J.; Villanueva, M.; Li, C.; Hamaker, B.; Ronda, F. Ultrasound treatments of tef [Eragrostis tef (Zucc.) Trotter] flour rupture starch α-(1,4) bonds and fragment amylose with modification of gelatinization properties. LWT Food Sci. Technol. 2023, 174, 114463. [Google Scholar] [CrossRef]
- Zhu, F.; Li, H. Modification of quinoa flour functionality using ultrasound. Ultrason. Sonochem. 2019, 52, 305–310. [Google Scholar] [CrossRef]
- Zhang, B.; Xiao, Y.; Wu, X.; Luo, F.; Lin, Q.; Ding, Y. Changes in structural, digestive, and rheological properties of corn, potato, and pea starches as influenced by different ultrasonic treatments. Int. J. Biol. Macromol. 2021, 185, 206–218. [Google Scholar] [CrossRef]
- Li, S.; Wei, Y.; Fang, Y.; Zhang, W.; Zhang, B. DSC study on the thermal properties of soybean protein isolates/corn starch mixture. J. Therm. Anal. Calorim 2013, 115, 1633–1638. [Google Scholar] [CrossRef]
- Ye, L.; Zheng, W.; Li, X.; Han, W.; Shen, J.; Lin, Q.; Hou, L.; Liao, L.; Zeng, X.A. The Role of Gluten in Food Products and Dietary Restriction: Exploring the Potential for Restoring Immune Tolerance. Foods 2023, 12, 4179. [Google Scholar] [CrossRef]
- Luo, Z.; Fu, X.; He, X.; Luo, F.; Gao, Q.; Yu, S. Effect of ultrasonic treatment on the physicochemical properties of maize starches differing in amylose content. Starch Stärke 2008, 60, 646–653. [Google Scholar] [CrossRef]
- Monroy, Y.; Rivero, S.; Garcia, M.A. Microstructural and techno-functional properties of cassava starch modified by ultrasound. Ultrason. Sonochem. 2018, 42, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wu, Y.; Liu, Y.; Ouyang, J. Effect of Ultrasonic and Microwave Dual-Treatment on the Physicochemical Properties of Chestnut Starch. J. Polym. 2020, 12, 1718. [Google Scholar] [CrossRef] [PubMed]
- Bonto, A.P.; Tiozon, R.N., Jr.; Sreenivasulu, N.; Camacho, D.H. Impact of ultrasonic treatment on rice starch and grain functional properties: A review. Ultrason. Sonochem. 2021, 71, 105383. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.; Hebraud, P.; Ashokkumar, M.; Hemar, Y. Investigation on the pitting of potato starch granules during high frequency ultrasound treatment. Ultrason. Sonochem. 2017, 35 Pt B, 547–555. [Google Scholar] [CrossRef]
- Li, M.; Li, J.; Zhu, C. Effect of ultrasound pretreatment on enzymolysis and physicochemical properties of corn starch. Int. J. Biol. Macromol. 2018, 111, 848–856. [Google Scholar] [CrossRef]
- Amarnath, M.S.; Muhammed, A.; Antony, A.K.; Malini, B.; Sunil, C.K. White finger millet starch: Physical modification (annealing and ultrasound), and its impact on physicochemical, functional, thermal and structural properties. Food Humanit. 2023, 1, 599–606. [Google Scholar] [CrossRef]
- Hu, A.; Li, Y.; Zheng, J. Dual-frequency ultrasonic effect on the structure and properties of starch with different size. LWT Food Sci. Technol. 2019, 106, 254–262. [Google Scholar] [CrossRef]
- Zavareze, E.d.R.; Dias, A.R.G. Impact of heat-moisture treatment and annealing in starches: A review. Carbohydr. Polym. 2011, 83, 317–328. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, T.; Xing, T.; Xu, X.-L.; Zhou, G. Rheological and physical properties of O/W protein emulsions stabilized by isoelectric solubilization/precipitation isolated protein: The underlying effects of varying protein concentrations. Food Hydrocoll. 2019, 95, 580–589. [Google Scholar] [CrossRef]
- Vela, A.J.; Villanueva, M.; Ronda, F. Physical modification caused by acoustic cavitation improves rice flour bread-making performance. LWT Food Sci. Technol. 2023, 183, 114950. [Google Scholar] [CrossRef]
- Vela, A.J.; Villanueva, M.; Ronda, F. Ultrasonication: An Efficient Alternative for the Physical Modification of Starches, Flours and Grains. Foods 2024, 13, 2325. [Google Scholar] [CrossRef]
- Varchanis, S.; Tsamopoulos, J.; Shen, A.Q.; Haward, S.J. Reduced and increased flow resistance in shear-dominated flows of Oldroyd-B fluids. J. Nonnewton. Fluid Mech. 2022, 300, 104698. [Google Scholar] [CrossRef]
Sample | WAC (g/g) | OAC (g/g) | WAI (g/g) | WSI (g/100 g) | SP (g/g) | Damaged Starch Content (%) | Amylose Content (%) | Amylopectin Content (%) |
---|---|---|---|---|---|---|---|---|
Non-sonicated | 1.81 ± 0.05 a | 0.94 ± 0.02 a | 12.54 ± 0.16 a | 0.8 ± 0.0 a | 12.6 ± 0.2 a | 12.0 ± 0.6 a | 23.5 ± 0.5 a | 76.5 ± 0.5 a |
15%-sonicated | 0.87 ± 0.02 b | 1.38 ± 0.06 b | 7.38 ± 0.26 b | 6.5 ± 0.2 b | 7.9 ± 0.3 b | 12.2 ± 0.4 a | 38.5 ± 0.6 b | 61.5 ± 0.7 b |
25%-sonicated | 1.23 ± 0.06 c | 1.24 ± 0.06 c | 8.29 ± 0.23 c | 5.6 ± 0.5 c | 8.8 ± 0.2 c | 11.9 ± 0.1 a | 47 ± 8 b | 52 ± 8 b |
Sample | To-gel (°C) | Tp-gel (°C) | Tc-gel (°C) | ΔHgel (J/g) |
---|---|---|---|---|
Non-sonicated | 68.5 ± 1.5 a | 71.5 ± 1 a | 78 ± 2 a | −1.3 ± 0.1 a |
15%-sonicated | 68.9 ± 1.1 a | 72.3 ± 0.4 a | 82.3 ± 1.1 b | −1.0 ± 0.0 b |
25%-sonicated | 68.5 ± 0.4 a | 74.6 ± 2 a | 81.7 ± 0.7 b | −1.1 ± 0.1 b |
Non-Sonicated | 15%-Sonicated | 25%-Sonicated | |
---|---|---|---|
1047/1022 | 1.29 ± 0.03 a | 1.27 ± 0.03 a | 1.25 ± 0.02 a |
1022/995 | 1.15 ± 0.02 a | 1.11 ± 0.01 ab | 1.11 ± 0.01 b |
Sample | (Pa) | (Pa) | ||
---|---|---|---|---|
Non-sonicated | 51 ± 30 a | 0.18 ± 0.05 a | 24 ± 4 a | 0.19 ± 0.03 a |
15%-sonicated | 69 ± 25 a | 0.16 ± 0.00 a | 30 ± 11 ab | 0.06 ± 0.07 b |
25%-sonicated | 66 ± 13 a | 0.11 ± 0.00 b | 17 ± 3 ac | 0.15 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farrokhi, M.; Ramos, I.N.; Silva, C.L.M. Impact of Ultrasound on a Gluten-Free Composite Flour Based on Rice Flour and Corn Starch for Breadmaking Applications. Foods 2025, 14, 1094. https://doi.org/10.3390/foods14071094
Farrokhi M, Ramos IN, Silva CLM. Impact of Ultrasound on a Gluten-Free Composite Flour Based on Rice Flour and Corn Starch for Breadmaking Applications. Foods. 2025; 14(7):1094. https://doi.org/10.3390/foods14071094
Chicago/Turabian StyleFarrokhi, Mahsa, Ines N. Ramos, and Cristina L. M. Silva. 2025. "Impact of Ultrasound on a Gluten-Free Composite Flour Based on Rice Flour and Corn Starch for Breadmaking Applications" Foods 14, no. 7: 1094. https://doi.org/10.3390/foods14071094
APA StyleFarrokhi, M., Ramos, I. N., & Silva, C. L. M. (2025). Impact of Ultrasound on a Gluten-Free Composite Flour Based on Rice Flour and Corn Starch for Breadmaking Applications. Foods, 14(7), 1094. https://doi.org/10.3390/foods14071094