Optimization of the Fermentation Process for a Mulberry Beverage Using Composite Microbial Strains and a Study on Its Physicochemical Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Fermented Mulberry Beverage
2.2.1. One-Way ANOVA and Orthogonal Experimental Design on Mulberry Fermentation
2.2.2. Sensory Evaluation Method
2.3. Chemical Analysis
2.3.1. Basic Physical and Chemical Indicators
2.3.2. Total Phenolics
2.3.3. Total Flavonoids
2.3.4. Total Anthocyanins
2.3.5. Superoxide Dismutase (SOD) Activity
2.3.6. Antioxidant Properties
DPPH Radical Scavenging Capacity
Hydroxyl Radical Scavenging Capacity
ABTS Radical Scavenging Capacity
2.3.7. Volatile Components
2.3.8. Data Statistics and Analysis
3. Results and Discussion
3.1. Effects of Different Single Factors on the Sugar Content and pH of Fermented Mulberry Beverages
3.2. Orthogonal Optimization of Fermentation Conditions
3.3. Analysis of the Physicochemical Properties of the Mulberry Beverages During the Fermentation Process
3.4. Analysis of Phenolic Compounds and Antioxidant Properties of Mulberry Beverages Fermented by Different Bacterial Strains
3.5. Analysis of Volatile Components
3.6. Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lian, Y.; Meng, Y.; Wang, M.; Song, J.; Suo, H.; Zhang, Y. Pre- and post-transformation changes in two mulberry varieties for semi-sweet wine production. Food Chem. X 2025, 29, 102728. [Google Scholar] [CrossRef]
- Bhattacharjya, D.; Sadat, A.; Dam, P.; Buccini, D.F.; Mondal, R.; Biswas, T.; Biswas, K.; Sarkar, H.; Bhuimali, A.; Kati, A.; et al. Current concepts and prospects of mulberry fruits for nutraceutical and medicinal benefits. Curr. Opin. Food Sci. 2021, 40, 121–135. [Google Scholar] [CrossRef]
- Zhao, Z.; Zou, S.; Luo, J.; Li, J.; Zhu, H.; Kang, F.; Zhang, T. Difference and correlation analysis of the microbial community structure and the volatile flavor compounds of six traditional cereal-fermented beverages in Xinjiang. LWT 2025, 232, 118385. [Google Scholar] [CrossRef]
- Wang, K.; Qi, J.; Jin, Y.; Li, F.; Wang, J.; Xu, H. Influence of fruit maturity and lactic fermentation on physicochemical properties, phenolics, volatiles, and sensory of mulberry juice. Food Biosci. 2022, 48, 101782. [Google Scholar] [CrossRef]
- Guan, Q.Q.; Xiong, T.; Xie, M.Y. Influence of Probiotic Fermented Fruit and Vegetables on Human Health and the Related Industrial Development Trend. Engineering 2021, 7, 212–218. [Google Scholar] [CrossRef]
- Saud, S.; Xiaojuan, T.; Fahad, S. The consequences of fermentation metabolism on the qualitative qualities and biological activity of fermented fruit and vegetable juices. Food Chem. X 2024, 21, 101209. [Google Scholar] [CrossRef]
- Fazio, N.A.; Di Sanzo, R.; Marino, G.; Carabetta, S.; Ligato, F.; Ioppolo, F.; Russo, M.; Randazzo, C.L.; Caggia, C.; Caccamo, M. Impact of native S. cerevisiae and non-Saccharomyces yeasts in chemical, aromatic, and sensory profiles of Carricante wines. Food Biosci. 2025, 68, 106559. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, T.; Sun, L.; Qiao, Z.; Pan, H.; Zhong, Y.; Zhuang, Y. Recent advances of fermented fruits: A review on strains, fermentation strategies, and functional activities. Food Chem. X 2024, 22, 101482. [Google Scholar] [CrossRef]
- Wang, H.X.; He, X.Q.; Li, J.N.; Wu, J.T.; Jiang, S.M.; Xue, H.; Zhang, J.C.; Jha, R.; Wang, R.M. Lactic acid bacteria fermentation improves physicochemical properties, bioactivity, and metabolic profiles of Opuntia ficus-indica fruit juice. Food Chem. 2024, 453, 139646. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.X.; Teng, J.; Lyu, Y.L.; Hu, X.Q.; Zhao, Y.L.; Wang, M.F. Enhanced Antioxidant Activity for Apple Juice Fermented with Lactobacillus plantarum ATCC14917. Molecules 2019, 24, 51. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Dong, L.; Li, Y.; Liu, Y.; Liu, Y.; Liu, L.; Liu, L. Fermentation of Lactobacillus fermentum NB02 with feruloyl esterase production increases the phenolic compounds content and antioxidant properties of oat bran. Food Chem. 2024, 437, 137834. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Feng, Y.; Yang, N.; Jiang, T.; Xu, H.; Lei, H. Fermentation of kiwifruit juice from two cultivars by probiotic bacteria: Bioactive phenolics, antioxidant activities and flavor volatiles. Food Chem. 2022, 373, 131455. [Google Scholar] [CrossRef]
- Tong, C.; Chen, X.; Deng, R.; Gao, H. Dynamic changes in physicochemical characteristics, bioactivity and flavor profile of fermented strawberry juice by Lactiplantibacillus plantarum. Food Chem. 2025, 495, 146388. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Mousavi Khaneghah, A.; Barba, F.J.; Nemati, Z.; Sohrabi Shokofti, S.; Alizadeh, F. Fermented sweet lemon juice (Citrus limetta) using Lactobacillus plantarum LS5: Chemical composition, antioxidant and antibacterial activities. J. Funct. Food. 2017, 38, 409–414. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Q.; Liu, H.; Kong, B.; Che n, Q. In vitro growth performance, antioxidant activity and cell surface physiological characteristics of Pediococcus pentosaceus R1 and Lactobacillus fermentum R6 stressed at different NaCl concentrations. Food Funct. 2020, 11, 6376–6386. [Google Scholar] [CrossRef]
- Dimoso, N.; Yuan, L.; Lu, C.-L.; Chen, C.-w.; Yang, Z.-q. Improving nutritional, bioactivity, and sensory properties of cereal by-products by co-culture fermentation: A review. J. Cereal Sci. 2025, 126, 104288. [Google Scholar] [CrossRef]
- Viretto, C.; Tlais, A.Z.A.; Tuccillo, F.; Polo, A.; Arora, K.; Verté, F.; Katina, K.; Di Cagno, R.; Gobbetti, M. Maximize the synergistic interactions among microbial consortia and plant-based matrices to design fermented cereal-pulse-based beverages. Food Res. Int. 2025, 220, 117045. [Google Scholar] [CrossRef]
- Li, H.; Huang, J.; Wang, Y.; Wang, X.; Ren, Y.; Yue, T.; Wang, Z.; Gao, Z. Study on the nutritional characteristics and antioxidant activity of dealcoholized sequentially fermented apple juice with Saccharomyces cerevisiae and Lactobacillus plantarum fermentation. Food Chem. 2021, 363, 130351. [Google Scholar] [CrossRef]
- Wang, L.Y.; Zhang, H.X.; Lei, H.J. Phenolics Profile, Antioxidant Activity and Flavor Volatiles of Pear Juice: Influence of Lactic Acid Fermentation Using Three Lactobacillus Strains in Monoculture and Binary Mixture. Foods 2022, 11, 11. [Google Scholar] [CrossRef]
- Cai, L.; Wang, W.; Tong, J.; Fang, L.; He, X.; Xue, Q.; Li, Y. Changes of bioactive substances in lactic acid bacteria and yeasts fermented kiwifruit extract during the fermentation. LWT 2022, 164, 113629. [Google Scholar] [CrossRef]
- Tantray, J.A.; Mansoor, S.; Wani, R.F.C.; Nissa, N.U. Chapter 43—Pour plate method for bacterial colony counting. In Basic Life Science Methods; Tantray, J.A., Mansoor, S., Wani, R.F.C., Nissa, N.U., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 177–179. [Google Scholar]
- Chen, H.; Wang, Y.; Zhang, Y.; Peng, N.; Zhang, S.; She, Y.; Yang, Y.; Liu, X.; Deng, Z.; Gu, X. Reengineering of ergosterol biosynthesis in Saccharomyces cerevisiae and its sustainable application in citrus peel processing industry. New Biotechnol. 2025, 90, 155–162. [Google Scholar] [CrossRef]
- Tan, X.; Zheng, Y.; Zhou, C.; Pan, D.; Cao, J.; Yang, D.; Sant’Ana, A.S.; Zhang, H.; Xia, Q. Enhanced off-flavor compounds biotransformation by microbial interaction between Saccharomyces cerevisiae and Lactobacillus plantarum assisted by physical excitor and yeast quorum sensing. Process Biochem. 2025, 151, 152–166. [Google Scholar] [CrossRef]
- Ding, Y.; Niu, Y.; Chen, Z.; Dong, S.; Li, H. Discovery of novel Lactobacillus plantarum co-existence-associated influencing factor(s) on Saccharomyces cerevisiae fermentation performance. LWT 2021, 135, 110268. [Google Scholar] [CrossRef]
- Devi, A.; Anu-Appaiah, K.A.; Lin, T.-F. Timing of inoculation of Oenococcus oeni and Lactobacillus plantarum in mixed malo-lactic culture along with compatible native yeast influences the polyphenolic, volatile and sensory profile of the Shiraz wines. LWT 2022, 158, 113130. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, Y.L.; Yang, J.; Wang, Q.; Jiang, N.; Chu, D.T.; Han, Y.B.; Zhou, J.Z. Chemical composition and sensory profiles of mulberry wines as fermented with different Saccharomyces cerevisiae strains. Int. J. Food Prop. 2017, 20, 2006–2021. [Google Scholar] [CrossRef]
- ISO 8586, 2012; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2012.
- Gao, T.Q.; Chen, J.L.; Xu, F.; Wang, Y.L.; Zhao, P.P.; Ding, Y.F.; Han, Y.B.; Yang, J.; Tao, Y. Mixed Mulberry Fruit and Mulberry Leaf Fermented Alcoholic Beverages: Assessment of Chemical Composition, Antioxidant Capacity In Vitro and Sensory Evaluation. Foods 2022, 11, 3125. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.H.; Fu, H.X.; Tu, K.H.; Zheng, J.H.; Shih, C.H.; Lin, Y.S. Impacts of extraction solvents and processing techniques on phytochemical composition and antioxidant property of mulberry (Morus spp.) leaves. Cogent Food Agric. 2025, 11, 2451731. [Google Scholar] [CrossRef]
- Wairata, J.; Fadlan, A.; Purnomo, A.S.; Taher, M.; Ersam, T. Total phenolic and flavonoid contents, antioxidant, antidiabetic and antiplasmodial activities of Garcinia forbesii King: A correlation study. Arab. J. Chem. 2022, 15, 103541. [Google Scholar] [CrossRef]
- Wang, R.S.; Dong, P.H.; Shuai, X.X.; Chen, M.S. Evaluation of Different Black Mulberry Fruits (Morus nigra L.) Based on Phenolic Compounds and Antioxidant Activity. Foods 2022, 11, 1252. [Google Scholar] [CrossRef]
- Yu, P.; Ma, C.; Gao, Q.; Yan, D.; Liu, Y.; Xu, J.; Liu, Y.; Zong, X.; Wang, S.; Fan, Y. Genome-wide identification and expression profiles of the superoxide dismutase (SOD) genes in Lentinula edodes. Int. J. Biol. Macromol. 2025, 322, 147032. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.B.; Lu, A.C.; Sun, Y.N.; Liu, B.Y.; Zhang, J.L.; Zhang, L.Y.; Huang, P.T.; Yang, A.P.; Li, Z.W.; Cao, Y.; et al. Purification and identification of antioxidant and angiotensin converting enzyme-inhibitory peptides from Guangdong glutinous rice wine. LWT-Food Sci. Technol. 2022, 169, 113953. [Google Scholar] [CrossRef]
- Li, Q.; Li, L.B.; Zhu, H.J.; Yang, F.; Xiao, K.; Zhang, L.; Zhang, M.L.; Peng, Y.S.; Wang, C.; Li, D.S.; et al. Lactobacillus fermentum as a new inhibitor to control advanced glycation end-product formation during vinegar fermentation. Food Sci. Hum. Wellness 2022, 11, 1409–1418. [Google Scholar] [CrossRef]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar] [CrossRef]
- Xie, J.Y.; Li, X.J.; Li, W.; Ding, H.; Yin, J.X.; Bie, S.T.; Li, F.Y.; Tian, C.W.; Han, L.F.; Yang, W.Z.; et al. Characterization of the key volatile organic components of different parts of fresh and dried perilla frutescens based on headspace-gas chromatography-ion mobility spectrometry and headspace solid phase microextraction-gas chromatography-mass spectrometry. Arab. J. Chem. 2023, 16, 104867. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, Q.; Tan, X.; Zhang, S.M.; Zeng, L.; Tang, J.; Xiang, W.L. Characterization of γ-aminobutyric acid (GABA)-producing Saccharomyces cerevisiae and coculture with Lactobacillus plantarum for mulberry beverage brewing. J. Biosci. Bioeng. 2020, 129, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Gao, Z.; Zheng, L.; Zhang, X.; Li, H. Regulation of Lactobacillus plantarum on the reactive oxygen species related metabolisms of Saccharomyces cerevisiae. LWT 2021, 147, 111492. [Google Scholar] [CrossRef]
- Zhang, W.T.; Yang, X.M.; Xu, Y.; Liu, B.J.; Meng, X.H. Effect of lactic acid bacteria fermentation on biotransformation of phenolic compounds and bioactivities of hawthorn pulp based on metabolomics. Process Biochem. 2025, 153, 304–314. [Google Scholar] [CrossRef]
- Ismail, A.S.; Sreedharan, D.K.; Ng, Z.J.; Tan, J.S. Microencapsulation of Lactobacillus cells utilizing the β-glucan-rich cell wall of Saccharomyces cerevisiae for enhanced stability and efficacy. Int. J. Biol. Macromol. 2025, 311, 143971. [Google Scholar] [CrossRef]
- Shao, L.; Zhao, X.; Cai, W.; Zhang, Q.; Shan, C. Changes in nutrient composition, antioxidant capacity, phenolics, and volatile organic compounds in black mulberry vinegar across different fermentation stages. Food Biosci. 2025, 66, 106222. [Google Scholar] [CrossRef]
- Padayachee, A.; Netzel, G.; Netzel, M.; Day, L.; Zabaras, D.; Mikkelsen, D.; Gidley, M.J. Binding of polyphenols to plant cell wall analogues—Part 1: Anthocyanins. Food Chem. 2012, 134, 155–161. [Google Scholar] [CrossRef]
- Markkinen, N.; Laaksonen, O.; Nahku, R.; Kuldjärv, R.; Yang, B. Impact of lactic acid fermentation on acids, sugars, and phenolic compounds in black chokeberry and sea buckthorn juices. Food Chem. 2019, 286, 204–215. [Google Scholar] [CrossRef]
- de Oliveira, S.D.; Araújo, C.M.; Borges, G.d.S.C.; Lima, M.d.S.; Viera, V.B.; Garcia, E.F.; de Souza, E.L.; de Oliveira, M.E.G. Improvement in physicochemical characteristics, bioactive compounds and antioxidant activity of acerola (Malpighia emarginata D.C.) and guava (Psidium guajava L.) fruit by-products fermented with potentially probiotic lactobacilli. LWT 2020, 134, 110200. [Google Scholar] [CrossRef]
- Gan, R.Y.; Shah, N.P.; Wang, M.F.; Lui, W.Y.; Corke, H. Lactobacillus plantarum WCFS1 Fermentation Differentially Affects Antioxidant Capacity and Polyphenol Content in Mung bean (Vigna radiata) and Soya Bean (Glycine max) Milks. J. Food Process Preserv. 2017, 41, 9. [Google Scholar] [CrossRef]
- Jiang, B.; Tian, L.; Huang, X.; Liu, Z.; Jia, K.; Wei, H.; Tao, X. Characterization and antitumor activity of novel exopolysaccharide APS of Lactobacillus plantarum WLPL09 from human breast milk. Int. J. Biol. Macromol. 2020, 163, 985–995. [Google Scholar] [CrossRef]
- Acin-Albiac, M.; Filannino, P.; Arora, K.; Da Ros, A.; Gobbetti, M.; Di Cagno, R. Role of Lactic Acid Bacteria Phospho-β-Glucosidases during the Fermentation of Cereal by-Products. Foods 2021, 10, 97. [Google Scholar] [CrossRef] [PubMed]
- Hur, S.J.; Lee, S.Y.; Kim, Y.-C.; Choi, I.; Kim, G.-B. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.; Liu, X.; Liu, R.; Aihaiti, A.; Hong, J.; Zheng, L.; Xing, J.; Cui, Y.; Wang, L. Analysis of the antioxidant efficacy substances in fermented black mulberry juice and their preventive effects on oxidative stress in C2C12 cells. Food Chem. 2025, 473, 142988. [Google Scholar] [CrossRef] [PubMed]
- Kwaw, E.; Ma, Y.; Tchabo, W.; Apaliya, M.T.; Wu, M.; Sackey, A.S.; Xiao, L.; Tahir, H.E. Effect of lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice. Food Chem. 2018, 250, 148–154. [Google Scholar] [CrossRef]
- Zhao, X.; Tang, F.; Cai, W.; Peng, B.; Zhang, P.; Shan, C. Effect of fermentation by lactic acid bacteria on the phenolic composition, antioxidant activity, and flavor substances of jujube–wolfberry composite juice. LWT 2023, 184, 114884. [Google Scholar] [CrossRef]
- Wu, Y.; Han, Y.; Tao, Y.; Li, D.; Xie, G.; Show, P.L.; Lee, S.Y. In vitro gastrointestinal digestion and fecal fermentation reveal the effect of different encapsulation materials on the release, degradation and modulation of gut microbiota of blueberry anthocyanin extract. Food Res. Int. 2020, 132, 109098. [Google Scholar] [CrossRef]
- Santos, R.T.S.; Biasoto, A.C.T.; Rybka, A.C.P.; Castro, C.D.P.C.; Aidar, S.T.; Borges, G.S.C.; Silva, F.L.H. Physicochemical characterization, bioactive compounds, in vitro antioxidant activity, sensory profile and consumer acceptability of fermented alcoholic beverage obtained from Caatinga passion fruit (Passiflora cincinnata Mast.). LWT 2021, 148, 111714. [Google Scholar] [CrossRef]
- Granato, D.; Katayama, F.C.U.; de Castro, I.A. Phenolic composition of South American red wines classified according to their antioxidant activity, retail price and sensory quality. Food Chem. 2011, 129, 366–373. [Google Scholar] [CrossRef]
- Stephenie, S.; Chang, Y.P.; Gnanasekaran, A.; Esa, N.M.; Gnanaraj, C. An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement. J. Funct. Foods 2020, 68, 103917. [Google Scholar] [CrossRef]
- Yin, J.X.; Wu, M.F.; Lin, R.M.; Li, X.; Ding, H.; Han, L.F.; Yang, W.Z.; Song, X.B.; Li, W.L.; Qu, H.B.; et al. Application and development trends of gas chromatography-ion mobility spectrometry for traditional Chinese medicine, clinical, food and environmental analysis. Microchem. J. 2021, 168, 106527. [Google Scholar] [CrossRef]
- Xu, W.; Li, Q.; Song, Z.; Hu, X.; Cai, K.; Zhang, L.; Lin, X.; Liu, S.; Li, C.; Xu, Q. Co-fermentation of Lactiplantibacillus plantarum and Saccharomyces cerevisiae enhances the flavor characteristic of mature coconut water: Insights from volatile and non-volatile profiles. Food Chem. X 2025, 29, 102832. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Liu, Y.; Wang, J.; Guo, X.; Dong, P.; Dai, C.; Wang, D.; Wang, C.; Ren, C.; Gao, Q.; et al. Optimization of fermentation conditions for potato—Based fermented beverages and analysis of flavor substances. Int. J. Gastron. Food Sci. 2025, 42, 101301. [Google Scholar] [CrossRef]
- du Toit, S.C.; Rossouw, D.; du Toit, M.; Bauer, F.F. Enforced Mutualism Leads to Improved Cooperative Behavior between Saccharomyces cerevisiae and Lactobacillus plantarum. Microorganisms 2020, 8, 1109. [Google Scholar] [CrossRef] [PubMed]
- Boss, P.K.; Pearce, A.D.; Zhao, Y.J.; Nicholson, E.L.; Dennis, E.G.; Jeffery, D.W. Potential Grape-Derived Contributions to Volatile Ester Concentrations in Wine. Molecules 2015, 20, 7845–7873. [Google Scholar] [CrossRef]
- Banic, M.; Butorac, K.; Culjak, N.; Novak, J.; Pavunc, A.L.; Nejasmic, D.; Zovko, L.; Tonkovic, K.; Suskovic, J.; Kos, B. A comparative HS-SPME-GC-MS-based volatile fingerprint analysis of newly developed milk beverages fermented with autochthonous and commercial cultures. Food Chem. 2025, 488, 144845. [Google Scholar] [CrossRef]
- Januszek, M.; Satora, P.; Wajda, L.; Tarko, T. Saccharomyces bayanusEnhances Volatile Profile of Apple Brandies. Molecules 2020, 25, 3127. [Google Scholar] [CrossRef]
- Hu, K.; Zhao, H.Y.; Kang, X.T.; Ge, X.N.; Zheng, M.N.; Hu, Z.Y.; Tao, Y.S. Fruity aroma modifications in Merlot wines during simultaneous alcoholic and malolactic fermentations through mixed culture of S. cerevisiae, P. fermentans, and L. brevis. LWT-Food Sci. Technol. 2022, 154, 112711. [Google Scholar] [CrossRef]
- Procópio, D.P.; Lee, J.W.; Shin, J.; Tramontina, R.; Avila, P.F.; Brenelli, L.B.; Squina, F.M.; Damasio, A.; Rabelo, S.C.; Goldbeck, R.; et al. Metabolic engineering of Saccharomyces cerevisiae for second-generation ethanol production from xylo-oligosaccharides and acetate. Sci. Rep. 2023, 13, 19182. [Google Scholar] [CrossRef]
- Longo, R.; Carew, A.; Sawyer, S.; Kemp, B.; Kerslake, F. A review on the aroma composition of Vitis vinifera L. Pinot noir wines: Origins and influencing factors. Crit. Rev. Food Sci. Nutr. 2021, 61, 1589–1604. [Google Scholar] [CrossRef]
- Çenesiz, A.A.; Çiftci, I. Modulatory effects of medium chain fatty acids in poultry nutrition and health. Worlds Poult. Sci. J. 2020, 76, 234–248. [Google Scholar] [CrossRef]
- Xu, X.X.; Bao, Y.J.; Wu, B.B.; Lao, F.; Hu, X.S.; Wu, J.H. Chemical analysis and flavor properties of blended orange, carrot, apple and Chinese jujube juice fermented by selenium-enriched probiotics. Food Chem. 2019, 289, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Devi, A.; Anu-Appaiah, K.A. Mixed malolactic co-culture (Lactobacillus plantarum and Oenococcus oeni) with compatible Saccharomyces influences the polyphenolic, volatile and sensory profile of Shiraz wine. LWT-Food Sci. Technol. 2021, 135, 110246. [Google Scholar] [CrossRef]






| Level | Factors | |||
|---|---|---|---|---|
| Inoculation Ratio (v/v) (A) | Inoculum Amount/% (v/v) (B) | Fermentation Time/h (C) | Fermentation Temperature/°C (D) | |
| −1 | 2:1 | 0.5 | 36 | 27 |
| 0 | 1:1 | 1.0 | 48 | 32 |
| 1 | 1:2 | 1.5 | 60 | 37 |
| Item | Score | |
|---|---|---|
| Appearance | color: dark purple | 6 |
| clarity: shaking in the sunlight is relatively clear | 6 | |
| overall appearance: the color is uniform and consistent, with a smooth texture and a lustrous sheen | 11 | |
| Aroma | fruitiness: it has the distinctive aroma of blackberries | 6 |
| mellowness: rich aroma | 6 | |
| acidity: moderately sour | 6 | |
| overall aroma: the aroma is harmonious and balanced, with a distinctive mulberry flavor | 15 | |
| Taste | fruitiness: it has the flavor of mulberries | 6 |
| sweetness, acidity: Sweet and sour just right, with no off-flavors | 6 | |
| aftertaste: Sweet aftertaste | 6 | |
| texture: uniform and stable texture | 6 | |
| overall mouthfeel: delicate texture, harmonious and balanced flavor | 20 | |
| Treatment | Inoculation Ratio (A) | Inoculum Amount/% (B) | Fermentation Time/h (C) | Fermentation Temperature/°C (D) | Sugar Content/°Brix | pH | Sensory Evaluation Score |
|---|---|---|---|---|---|---|---|
| 1 | 2:1 | 0.50 | 36.00 | 27.00 | 15.00 ± 0.62 | 3.81 ± 0.31 | 75 ± 0.31 |
| 2 | 2:1 | 1.00 | 48.00 | 32.00 | 8.90 ± 0.24 | 4.05 ± 0.07 | 89 ± 0.11 |
| 3 | 2:1 | 1.50 | 60.00 | 37.00 | 7.50 ± 0.08 | 3.93 ± 0.24 | 85 ± 0.25 |
| 4 | 1:1 | 0.50 | 48.00 | 37.00 | 9.00 ± 0.31 | 3.67 ± 0.41 | 80 ± 0.29 |
| 5 | 1:1 | 1.00 | 60.00 | 27.00 | 7.10 ± 0.15 | 3.84 ± 0.32 | 85 ± 0.23 |
| 6 | 1:1 | 1.50 | 36.00 | 32.00 | 10.00 ± 0.11 | 3.84 ± 0.31 | 79 ± 0.30 |
| 7 | 1:2 | 0.50 | 60.00 | 32.00 | 7.20 ± 0.11 | 3.80 ± 0.37 | 82 ± 0.26 |
| 8 | 1:2 | 1.00 | 36.00 | 37.00 | 10.00 ± 0.43 | 3.78 ± 0.39 | 77 ± 0.28 |
| 9 | 1:2 | 1.50 | 48.00 | 27.00 | 8.50 ± 0.21 | 3.73 ± 0.40 | 80 ± 0.24 |
| K1 | 10.47 | 10.43 | 11.67 | 10.20 | |||
| K2 | 8.70 | 8.67 | 8.80 | 8.73 | |||
| K3 | 8.70 | 8.67 | 7.30 | 8.83 | |||
| R | 1.87 | 1.76 | 4.36 | 1.46 | |||
| Optimal sugar content conditions: A2B2C3D2 | |||||||
| K1 | 3.93 | 3.76 | 3.81 | 3.79 | |||
| K2 | 3.79 | 3.88 | 3.82 | 3.90 | |||
| K3 | 3.76 | 3.84 | 3.85 | 3.79 | |||
| R | 0.17 | 0.12 | 0.04 | 0.12 | |||
| Optimal pH conditions: A1B2C3D2 | |||||||
| K1 | 83.00 | 79.00 | 77.00 | 80.00 | |||
| K2 | 81.33 | 83.67 | 83.00 | 83.33 | |||
| K3 | 79.67 | 81.33 | 84 | 80.67 | |||
| R | 3.33 | 4.67 | 7.00 | 3.33 | |||
| Optimal conditions for sensory evaluation: A1B2C3D2 | |||||||
| Compound | MJ | SM | LM | CM |
|---|---|---|---|---|
| Total sugar (g/L) | 239.72 ± 3.46 a | 88.02 ± 6.63 d | 204.86 ± 2.45 b | 105.36 ± 1.56 c |
| Sugar content (°Brix) | 22 ± 0.10 a | 7.8 ± 0.10 c | 19 ± 0.25 b | 7.5 ± 0.2 c |
| Total acid (g/L) | 1.92 ± 0.12 d | 6.17 ± 0.13 c | 11.98 ± 0.14 a | 9.74 ± 0.09 b |
| pH | 5.34 ± 0.01 a | 4.64 ± 0.03 b | 3.50 ± 0.02 d | 4.12 ± 0.03 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Zhou, J.; Bu, W.; Ning, C. Optimization of the Fermentation Process for a Mulberry Beverage Using Composite Microbial Strains and a Study on Its Physicochemical Properties. Foods 2025, 14, 4312. https://doi.org/10.3390/foods14244312
Wang D, Zhou J, Bu W, Ning C. Optimization of the Fermentation Process for a Mulberry Beverage Using Composite Microbial Strains and a Study on Its Physicochemical Properties. Foods. 2025; 14(24):4312. https://doi.org/10.3390/foods14244312
Chicago/Turabian StyleWang, Di, Jingqiu Zhou, Wei Bu, and Chong Ning. 2025. "Optimization of the Fermentation Process for a Mulberry Beverage Using Composite Microbial Strains and a Study on Its Physicochemical Properties" Foods 14, no. 24: 4312. https://doi.org/10.3390/foods14244312
APA StyleWang, D., Zhou, J., Bu, W., & Ning, C. (2025). Optimization of the Fermentation Process for a Mulberry Beverage Using Composite Microbial Strains and a Study on Its Physicochemical Properties. Foods, 14(24), 4312. https://doi.org/10.3390/foods14244312
