Effect of Agroforestry and Cocoa-Producing Geographical Origin on the Sensory Profile of Beans and Chocolates in the Climate Change Context in Côte d’Ivoire
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Sites of Carrying out of Research Activities
2.1.2. Cocoa Beans Samples
2.2. Methods
2.2.1. Fresh Cocoa Beans
2.2.2. Cocoa Beans Fermentation
2.2.3. Cocoa Bean Sampling
2.2.4. Cocoa Volatile Compounds Analysis
2.2.5. Sensory Analysis of Chocolate
2.2.6. Statistical Analysis
3. Results and Discussion
3.1. Effect of Agroforestry on Native Volatile Compound Contents of Crude Cocoa Beans
3.2. Effect of Agroforestry on Sensory Compound Contents of Dry Fermented Cocoa Beans
3.3. Effects of Agroforestry and Producing Regions on the Desired Volatile Compound Profiles of Cocoa Beans
3.4. Effects of Agroforestry on the Volatile Compound Profiles of Chocolates Within Each Cocoa-Producing Area
3.5. Effects of Agroforestry on the Organoleptic Quality of Chocolate Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pedan, V.; Fischer, N.; Bernath, K.; Hühn, T.; Rohn, S. Determination of oligomeric proanthocyanidins and their antioxidant capacity from different chocolate manufacturing stages using the NP HPLC-online-DPPH methodology. Food Chem. 2017, 214, 523–532. [Google Scholar] [CrossRef]
- Jahurul, M.H.A.; Zaidul, I.S.M.; Norulaini, N.A.N.; Sahena, F.; Jinap, S.; Azmir, J.; Sharif, K.M.; Omar, A.K.M. Cocoa butter fats and possibilities of substitution in food products concerning cocoa varieties, alternative sources, extraction methods, composition, and characteristics. J. Food Eng. 2013, 117, 467–476. [Google Scholar] [CrossRef]
- ICCO. Quarterly Bulletin of Cocoa Statistics; Vol. L, No. 2, Cocoa year 2023/24; International Cocoa Organization: Abidjan, Côte d’Ivoire, 2024. [Google Scholar]
- Kalischek, N.; Lang, N.; Renier, C.; Daudt, R.C.; Addoah, T.; Thompson, W.; Blaser-Hart, W.J.; Garrett, R.; Schindler, K.; Wegner, J.D. Cocoa plantations are associated with deforestation in Côte d’Ivoire and Ghana. Nat. Food 2023, 4, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Achaw, O.W.; Danso-Boateng, E. Cocoa Processing and Chocolate Manufacture. In Chemical and Process Industries; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Santander Muñoz, M.; Rodríguez Cortina, J.; Vaillant, F.E.; Escobar Parra, S. An overview of the physical and biochemical transformation of cocoa seeds to beans and to chocolate: Sensory formation. Crit. Rev. Food Sci. Nutr. 2019, 60, 1593–1613. [Google Scholar] [CrossRef]
- Aprotosoaie, A.C.; Luca, S.V.; Miron, A. Sensory chemistry of cocoa and cocoa products—An overview. Compr. Rev. Food Sci. Food Saf. 2016, 15, 73–91. [Google Scholar] [CrossRef] [PubMed]
- Saltini, R.; Akkerman, R.; Frosch, S. Optimizing chocolate production through traceability: A review of the influence of farming practices on cocoa bean quality. Food Control. 2013, 29, 167–187. [Google Scholar] [CrossRef]
- Owusu, M.; Petersen, M.A.; Heimdal, H. Effect of fermentation method, roasting and conching conditions on the aroma volatiles of dark chocolate. J. Food Process. Preserv. 2012, 36, 446–456. [Google Scholar] [CrossRef]
- Kongor, J.E.; Hinneh, M.; de Walle, D.V.; Afoakwa, E.O.; Boeckx, P.; Dewettinck, K. Factors influencing quality variation in cocoa (Theobroma cacao) bean sensory profile—A review. Food Res. Int. 2016, 82, 44–52. [Google Scholar] [CrossRef]
- Lima, L.J.R.; Almeida, M.H.; Nout, M.R.; Zwietering, M.H. Theobroma cacao L., “The food of the Gods”: Quality determinants of commercial cocoa beans, with particular reference to the impact of fermentation. Crit. Rev. Food. Sci. Nutr. 2011, 51, 731–761. [Google Scholar] [CrossRef] [PubMed]
- Kadow, D.; Niemenak, N.; Rohn, S.; Lieberei, R. Fermentation-like Incubation of Cocoa Seeds (Theobroma cacao L.)—Reconstruction and Guidance of the Fermentation Process. LWT-Food Sci. Technol. 2015, 62, 357–361. [Google Scholar] [CrossRef]
- Hue, C.; Gunata, Z.; Breysse, A.; Davrieux, F.; Boulanger, R.; Sauvage, F.X. Impact of fermentation on nitrogenous compounds of cocoa beans (Theobroma cacao L.) from various origins. Food Chem. 2016, 192, 958–964. [Google Scholar] [CrossRef]
- De Vuyst, L.; Weckx, S. The cocoa bean fermentation process: From ecosystem analysis to starter culture development. J. Appl. Microbiol. 2016, 121, 5–17. [Google Scholar] [CrossRef]
- Crafack, M.; Mikkelsen, M.B.; Saerens, S.; Knudsen, M.; Blennow, A.; Lowor, S.; Takrama, J.; Swiegers, J.H.; Petersen, G.B.; Heimdal, H.; et al. Influencing cocoa sensory using Pichia kluyveri and Kluyveromyces marxianus in a defined mixed starter culture for cocoa fermentation. Int. J. Food Microbiol. 2013, 167, 103–116. [Google Scholar] [CrossRef]
- Voigt, J.; Lieberei, R. Biochemistry of cocoa fermentation. In Cocoa and Coffee Fermentations; CRC Press: Boca Raton, FL, USA, 2014; pp. 193–225. [Google Scholar]
- Afoakwa, E.O.; Quao, J.; Takrama, J.; Budu, A.S.; Saalia, F.K. Chemical composition and physical quality characteristics of Ghanaian cocoa beans as affected by pulp pre-conditioning and fermentation. J. Food Sci. Technol. 2013, 50, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Amanquah, D.T. Effect of Mechanical Depulping on the Biochemical, Physicochemicaland Polyphenolic Constituents During Fermentation and Drying of Ghanaian Cocoa Beans. Doctoral Dissertation, University of Ghana, Accra, Ghana, 2013. [Google Scholar]
- Parra-Paitan, C.; Meyfroidt, P.; Verburg, P.H.; Zu Ermgassen, E.K. Deforestation and climate risk hotspots in the global cocoa value chain. Environ. Sci. Policy 2024, 158, 103796. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Bakhshandeh, E.; Hosseini, M.; Alavi, S.M. Assessing the effects of deforestation and intensive agriculture on the soil quality through digital soil mapping. Geoderma 2020, 363, 114139. [Google Scholar] [CrossRef]
- Schroth, G.; da Fonseca, G.A.; Harvey, C.A.; Gascon, C.; Vasconcelos, H.L.; Izac, A.M.N. (Eds.) Agroforestry and Biodiversity Conservation in Tropical Landscapes; Island Press: Washington, DC, USA, 2004; 523p. [Google Scholar]
- Somarriba, E.; Saj, S.; Orozco-Aguilar, L.; Somarriba, A.; Rapidel, B. Shade canopy density variables in cocoa and coffee agroforestry systems. Agroforest Syst. 2024, 98, 585–601. [Google Scholar] [CrossRef]
- Middendorp, R.S.; Vanacker, V.; Lambin, E.F. Impacts of shaded agroforestry management on carbon sequestration, biodiversity and farmers income in cocoa production landscapes. Landsc. Ecol. 2018, 33, 1953–1974. [Google Scholar] [CrossRef]
- Chavan, S.B.; Rawale, G.B.; Pradhan, A.; Uthappa, A.R.; Kakade, V.D.; Morade, A.S.; Paul, N.; Das, B.; Chichaghare, A.R.; Changan, S.; et al. Optimizing tree shade gradients in Emblica officinalis-based agroforestry systems: Impacts on soybean physio-biochemical traits and yield under degraded soils. Agrofor. Syst. 2025, 99, 21. [Google Scholar] [CrossRef]
- Lin, C.H.; McGraw, M.L.; George, M.F.; Garret, S.E. Nutritive quality and morphological development under partial shade of some forage species with agroforestry potential. Agrofor. Syst. 2001, 53, 269–281. [Google Scholar] [CrossRef]
- Guehi, T.S.; Dadie, A.T.; Koffi, K.P.; Dabonne, S.; Ban-Koffi, L.; Kedjebo, K.D.; Nemlin, G.J. Performance of different fermentation methods and the effect of their duration on the quality of raw cocoa beans. Int. J. Food Sci. Technol. 2010, 45, 2508–2514. [Google Scholar] [CrossRef]
- Kouassi, A.D.D.; Koné, K.M.; Assi-Clair, B.J.; Lebrun, M.; Maraval, I.; Boulanger, R.; Guéhi, T.S. Effect of spontaneous fermentation location on the fingerprint of volatile compound precursors of cocoa and the sensory perceptions of the end-chocolate. J. Food Sci. Technol. 2022, 59, 4466–4478. [Google Scholar] [CrossRef] [PubMed]
- Koné, M.K.; Guéhi, S.T.; Durand, N.; Ban-Koffi, L.; Berthiot, L.; Tachon, A.F.; Brou, K.; Boulanger, R.; Montet, D. Contribution of predominant yeasts to the occurrence of aroma compounds during cocoa bean fermentation. Food Res. Int. 2016, 89, 910–917. [Google Scholar] [CrossRef]
- Nascimento, M.B.; Amorim, L.R.; Nonato, M.A.; Roselino, M.N.; Santana, L.R.; Ferreira, A.C.; Rodrigues, F.M.; Mesquita, P.R.R.; Soares, S.E. Optimization of HS-SPME/GC-MS method for determining volatile organic compounds and sensory profile in cocoa honey from different cocoa varieties (Theobroma cacao L.). Molecules 2024, 29, 3194. [Google Scholar] [CrossRef]
- Assi-Clair, B.J.; Koné, M.K.; Kouamé, K.; Lahon, M.C.; Berthiot, L.; Durand, N.; Lebrun, M.; Julien-Ortiz, A.; Maraval, I.; Boulanger, R.; et al. Effect of aroma potential of Saccharomyces cerevisiae fermentation on the volatile profile of raw cocoa and sensory attributes of chocolate produced thereof. Eur. Food Res. Technol. 2019, 245, 1459–1471. [Google Scholar] [CrossRef]
- Santander, M.; Leguizamón, L.; Vaillant, F.; Boulanger, R.; Zuluaga, M.; Maraval, I.; Rodriguez, J.; Liano, S.; Sommerer, N.; Meudec, E.; et al. Influence of driven fermentation of cacao in bioreactors on quality: Decoding the effect of temperature, mixing, and pH on metabolomic, sensory, and volatile profiles. LWT-Food Sci. Technol. 2025, 231, 118313. [Google Scholar] [CrossRef]
- Yang, D.; Wu, B.; Qin, X.; Zhao, X.; Zhu, Z.; Yan, L.; Zhang, F.; Wu, G.; Li, F. Quality differences and profiling of volatile components between fermented and unfermented cocoa seeds (Theobroma cacao L.) of Criollo, Forastero and Trinitario in China. Beverage Plant Res. 2024, 4, e010. [Google Scholar] [CrossRef]
- Kreuzwieser, J.; Schnitzler, J.P.; Steinbrecher, R. Biosynthesis of organic compounds emitted by plants. Plant Biol. 1999, 1, 149–159. [Google Scholar] [CrossRef]
- Kimmerer, T.W.; MacDonald, R.C. Acetaldehyde and ethanol biosynthesis in leaves of plants. Plant Physiol. 1987, 84, 1204–1209. [Google Scholar] [CrossRef]
- Missihoun, T.D.; Kotchoni, S.O. Aldehyde dehydrogenase and the hypotheisis of a glycolaldehyde shunt pathway of photorespiration. Plant Signal. Behav. 2018, 13, 2936. [Google Scholar] [CrossRef]
- Fang, Y.; Li, R.; Chu, Z.; Zhu, K.; Gu, F.; Zhang, Y. Chemical and sensory profile changes of cocoa beans (Theobroma cacao L.) during primary fermentation. Food Sci. Nutr. 2020, 8, 4121–4133. [Google Scholar] [CrossRef]
- Konan, G.D.; Kpangui, K.B.; Kouakou, K.A.; Barima, Y.S.S. Typology of cocoa-based agroforestry systems according to the cocoa production gradient in Côte d’Ivoire. Int. J. Biol. Chem. Sci. 2023, 17, 378–391. [Google Scholar] [CrossRef]
- Sauvadet, M.; Van den Meersche, K.; Allinne, C.; Gay, F.; de Melo Virginio Filho, E.; Chauvat, M.; Becquer, T.; Tixier, P.; Harmand, J.M. Shade trees have higher impact on soil nutrient availability and food web in organic than conventional coffee agroforestry. Sci. Tot. Environ. 2019, 649, 1065–1074. [Google Scholar] [CrossRef]
- Koné, K.M.; Assi-Clair, B.J.; Kouassi, A.D.D.; Yao, A.K.; Ban-Koffi, L.; Durand, N.; Guéhi, T.S. Pod storage time and spontaneous fermentation treatments and their impact on the generation of cocoa flavour precursor compounds. Int. J. Food Sci. Technol. 2021, 56, 2516–2529. [Google Scholar] [CrossRef]
- Marseglia, A.; Musci, M.; Rinaldi, M.; Palla, G.; Caligiani, A. Volatile fingerprint of unroasted and roasted cocoa beans (Theobroma cacao L.) from different geographical origins. Food Res. Int. 2020, 132, 109101. [Google Scholar] [CrossRef]
- Rottiers, H.; Tzompa Sosa, D.A.; De Winne, A.; Ruales, J.; De Clippeleer, J.; De Leersnyder, I.; De Wever, J.; Everaery, H.; Messens, K.; Dewettinck, K. Dynamique des composés volatils et des précurseurs d’arômes lors de la fermentation spontanée de fèves de cacao Trinitario de qualité supérieure. Eur. Food Res. Technol. 2019, 245, 1917–1937. [Google Scholar] [CrossRef]
- Rodriguez-Campos, J.; Escalona-Buendía, H.B.; Contreras-Ramos, S.M.; Orozco-Avila, I.; Jaramillo-Flores, E.; Lugo-Cervantes, E. Effect of fermentation time and drying temperature on volatile compounds in cocoa. Food Chem. 2012, 132, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Jinap, S.; Ikrawan, Y.; Bakar, J.; Saari, N.; Lioe, H.N. Aroma precursors and methylpyrazines in under fermented cocoa beans induced by endogenous carboxy peptidase. J. Food Sci. 2008, 73, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Puziah, H.; Jinap, S.; Sharifah, K.S.M.; Asbi, A. Changes free amino acid, peptide, sugar and pyrazine concentration during cocoa fermentation. J. Sci. Food Agric. 1998, 78, 535–542. [Google Scholar]
- Ramli, N.; Hassan, O.; Said, M.; Samsudin, W.; Idris, N.A. Influence of roasting conditions on volatile sensory of roasted Malaysian cocoa beans. J. Food Process. Preserv. 2006, 30, 280–298. [Google Scholar] [CrossRef]
- Ho, V.T.T.; Zhao, J.; Fleet, G. Yeasts are essential for cocoa bean fermentation. Int. J. Food Microbiol. 2014, 174, 72–87. [Google Scholar] [CrossRef]
- Fayek, N.M.; Xiao, J.; Farag, M.A. A multifunctional study of naturally occurring pyrazines in biological systems; formation mechanisms, metabolism, food applications and functional properties. Crit. Rev. Food Sci. Nutr. 2023, 63, 5322–5338. [Google Scholar] [CrossRef]
- Ouattara, H.G.; Koffi, B.L.; Karou, G.T.; Sangaré, A.; Niamke, S.L.; Diopoh, J.K. Implication of Bacillus sp. in the production of pectinolytic enzymes during cocoa fermentation. World J. Microbiol. Biotechnol. 2008, 24, 1753–1760. [Google Scholar] [CrossRef]
- Reineccius, G.A.; Keeney, P.G.; Weissberger, W. Factors affecting the concentration of pyrazines in cocoa beans. J. Agric. Food Chem. 1972, 20, 202–206. [Google Scholar] [CrossRef]
- Hinneh, M.; Semanhyia, E.; Van de Walle, D.; De Winne, A.; Tzompa-Sosa, D.A.; Scalone, G.L.L.; De Meulenaer, B.; Messens, K.; Durme, J.V.; Afoakwa, E.O.; et al. Assessing the influence of pod storage on sugar and free amino acid profiles and the implications on some Maillard reaction related sensory volatiles in Forastero cocoa beans. Food Res. Int. 2018, 111, 607–620. [Google Scholar] [CrossRef] [PubMed]
- Kouamé, C.; Loiseau, G.; Grabulos, J.; Boulanger, R.; Mestres, C. Development of a model for the alcoholic fermentation of cocoa beans by a Saccharomyces cerevisiae strain. Int. J. Food Microbiol. 2021, 337, 108917. [Google Scholar] [CrossRef] [PubMed]
- Chetschik, I.; Pedan, V.; Chatelain, K.; Kneubühl, M.; Hühn, T. Characterization of the sensory properties of dark chocolates produced by a novel technological approach and comparison with traditionally produced dark chocolates. J. Agric. Food Chem. 2019, 67, 3991–4001. [Google Scholar] [CrossRef] [PubMed]
- Adler, P.; Frey, L.J.; Berger, A.; Bolten, C.J.; Hansen, C.E.; Wittmann, C. The key to acetate: Metabolic fluxes of acetic acid bacteria under cocoa pulp fermentation-simulating conditions. Appl. Environ. Microbiol. 2014, 80, 4702–4716. [Google Scholar] [CrossRef]
- Crafack, M.; Keul, H.; Eskildsen, C.E.; Petersen, M.A.; Saerens, S.; Blennow, A.; Skovmand-Larsen, M.; Swiegers, J.H.; Petersen, G.B.; Heimdal, H.; et al. Impact of starter cultures and fermentation techniques on the volatile aroma and sensory profile of chocolate. Food Res. Int. 2014, 63, 306–316. [Google Scholar] [CrossRef]
- Meersman, E.; Steensels, J.; Struyf, N.; Paulus, T.; Saels, V.; Mathawan, M.; Allegaert, L.; Vrancken, G.; Verstrepen, K.J. Tuning chocolate sensory through development of thermotolerant Saccharomyces cerevisiae starter cultures with increased acetate ester production. Appl. Environ. Microbiol. 2016, 82, 732–746. [Google Scholar] [CrossRef]
- Gutiérrez-Ríos, H.G.; Suárez-Quiroz, M.L.; Hernández-Estrada, Z.J.; Castellanos-Onorio, O.P.; Alonso-Villegas, R.; Rayas-Duarte, P.; Cano-Sarmiento, C.; Figueroa-Hernández, C.Y.; González-Rios, O. Yeasts as producers of sensory precursors during cocoa bean fermentation and their relevance as starter cultures: A review. Fermentation 2022, 8, 331. [Google Scholar] [CrossRef]
- Ziegleder, G. Composition of Sensory Extracts of Raw and Roasted Cocoas. Z. Lebensm. Unters. Forsch. 1991, 192, 521–525. [Google Scholar] [CrossRef]
- Ziegleder, G. Linalool Contents as Characteristic of Some Sensory Grade Cocoas. Z. Lebensm. Unters. Forsch. 1990, 191, 306–309. [Google Scholar] [CrossRef]
- Lin, L.Y.; Chen, K.F.; Changchien, L.L.; Chen, K.C.; Peng, R.Y. Volatile variation of Theobroma cacao Malvaceae L. beans cultivated in Taiwan affected by processing via fermentation and roasting. Molecules 2022, 27, 3058. [Google Scholar] [CrossRef] [PubMed]
- Hamdouche, Y.; Meile, J.C.; Lebrun, M.; Guehi, T.; Boulanger, R.; Teyssier, C.; Montet, D. Impact of turning, pod storage and fermentation time on microbial ecology and volatile composition of cocoa beans. Food Res. Int. 2019, 119, 477–491. [Google Scholar] [CrossRef] [PubMed]
- Selamat, J.; Mordingah Harun, S. Formation of methyl pyrazine during cocoa bean fermentation. Pertanika 1994, 17, 27. [Google Scholar]
- Rodriguez-Campos, J.; Escalona-Buendía, H.B.; Orozco-Avila, I.; Lugo-Cervantes, E.; Jaramillo-Flores, M.E. Dynamics of volatile and non-volatile compounds in cocoa (Theobroma cacao L.) during fermentation and drying processes using principal components analysis. Food Res. Int. 2011, 44, 250–258. [Google Scholar] [CrossRef]
- Frauendorfer, F.; Schieberle, P. Changes in key aroma compounds of Criollo cocoa beans during roasting. J. Agric. Food Chem. 2008, 56, 10244–10251. [Google Scholar] [CrossRef]
- de Andrade, A.B.; da Cruz, M.L.; de Souza Oliveira, F.A.; Soares, S.; Druzian, J.I.; de Santana, L.R.R.; de Souza, C.O.; da Silva Bispo, E. Influence of under-fermented cocoa mass in chocolate production: Sensory acceptance and volatile profile characterization during the processing. LWT-Food Sci. Technol. 2021, 149, 112048. [Google Scholar] [CrossRef]
















| Chemical Families | Sensory Compounds Content (µg.g−1) per Class Found in Crude Cocoa Beans According to Ivorian Cocoa Producing Areas | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Adzopé | Agnibilékrou | Divo | Guibéroua | Méagui | ||||||
| Cropping Systems | ||||||||||
| AF System | FS System | AF System | FS System | AF System | FS System | AF System | FS System | AF System | FS System | |
| Aldehydes | 138.6 ± 7.6 a | 118.8 ± 2.4 a | 111.7 ± 4.6 ab | 102.4 ± 12.8 a | 73.7 ± 0.9 c | 116.5 ± 2.7 a | 107.6 ± 23.5 b | 116.2 ± 41.1 a | 95.7 ± 1.2 bc | 92.7 ± 1 a |
| Esters | 85.4 ± 2b | 59.5 ± 2.5 a | 56 ± 3.5 c | 70.1 ± 25.7 a | 56.6 ± 0.3b c | 73.2 ± 2.8 a | 65 ± 22.1b c | 56.2 ± 25.1 a | 159.8 ± 4.2 a | 71.7 ± 1.4 a |
| Alcohols | 590.9 ± 27.4 b | 391.6 ± 10 a | 330.6 ± 110.8 c | 448.6 ± 223.7 a | 341.5 ± 9.1 c | 432.2 ± 0.1 a | 432 ± 69.2 c | 362 ± 186.1 a | 1134.4 ± 34 a | 173.9 ± 12 a |
| Ketones | 103.4 ± 6 c | 151.7 ± 0.9 a | 108.7 ± 38.7 c | 85.8 ± 62 a | 191.4 ± 32.4 b | 195.1 ± 1.1 a | 153.3 ± 5.7 b | 106.7 ± 91.3 a | 504.6 ± 2.7 a | 58.6 ± 7 a |
| Terpenes | 8.5 ± 0 ab | 11 ± 0.7 a | 3.9 ± 0.5 b | 2.7 ± 0.3 c | 1.7 ± 0.4 b | 4.3 ± 0.3 b | 12.7 ± 7.2 a | 3.2 ± 0.5 c | 8.2 ± 0.1 ab | 2.9 ± 0.1 c |
| Others | 7.7 ± 0 a | 3.2 ± 0.1 c | 7.7 ± 8.1 a | 4.6 ± 3 bc | 5.9 ± 0.4 a | 8 ± 0.2 ab | 5.4 ± 1 a | 2.3 ± 1.2 c | 6.4 ± 0.1 a | 10.3 ± 0.5 a |
| Classes of Volatile Compounds | Adzopé | Agnibilékrou | Divo | Guibéroua | Méagui |
|---|---|---|---|---|---|
| Aldehydes | 456.08 ± 77.6 a | 147.14 ± 51 b | 159.53 ± 5.90 b | 456.77 ± 2 a | 182.59 ± 17.7 b |
| Esters | 75.04 ± 20.3 b | 70.06 ± 7.72 b | 35.97 ± 14.06.71 c | 117.68 ± 9.7 a | 44.6 ± 1.3 bc |
| Alcohols | 385.67 ± 259.1 a | 158.73 ± 50.17 a | 269.45 ± 111 a | 273.2 ± 10.6 a | 83.31 ± 1.2 a |
| Ketones | 44.84 ± 12.2 b | 51.97 ± 14.19 b | 125.18 ± 49.13 a | 86.36 ± 9 ab | 42.17 ± 20.2 b |
| Acids | 630.34 ± 149.2 ab | 476.18 ± 19.82 ab | 588.29 ± 120.52 ab | 742.04 ± 11 a | 401.23 ± 117.2 b |
| Pyrazines | 16.23 ± 6.61 bc | 9.53 ± 7.24 c | 70.61 ± 28.51 a | 56.92 ± 20.51 ab | 20.57 ± 12.6 bc |
| Terpenes | 10.79 ± 2.20 a | 8.48 ± 3.32 a | 4.28 ± 3.34 ab | 7.59 ± 2.4 ab | 1.73 ± 0.9 b |
| Others | 13.14 ± 6.63 b | 4.83 ± 2.79 b | 5.02 ± 0.42 b | 46.08 ± 9.1 a | 2.13 ± 0.1 b |
| Useful Sensory Compounds | Kovats Index (NIST) | Calculated Kovats Index | Odor Description | Cropping System | Concentration of Sensory Compounds of Cocoa Beans from PRODUCING regions (µg.g−1) | ||||
|---|---|---|---|---|---|---|---|---|---|
| Adz | Agni | Divo | Guib | Méa | |||||
| 3-Methylbutyl acetate | 1123 | 1123 | Fruity, banana | AF | 47.7 ± 17 b | 2.2 ± 0.1 c | 2.8 ± 1.2 c | 84.2 ± 3.7 a | 15.8 ± 2.9 c |
| FS | 75.2 ± 2.9 a | 37.2 ± 9.1 ab | 33.2 ± 36.3 ab | 41.9 ± 17 ab | 18.6 ± 9.4 b | ||||
| 2-Methylbutyl acetate | 1125 | 1120 | Fruity, banana | AF | 72.6 ± 1.8 a | 24.4 ± 5.6 b | 9.5 ± 1.3 b | 76.3 ± 11.8 a | 16.0 ± 3.6 b |
| FS | 75.2 ± 2.9 a | 37.2 ± 9.1 ab | 33.2 ± 36.3 ab | 39.9 ± 13 ab | 18.6 ± 9.4 b | ||||
| Benzyl acetate | 1720 | 1714 | Sweet, floral, fruity | AF | 1.4 ± 0.2 a | 0.8 ± 0.2 a | 1.7 ± 1.2 a | 3.4 ± 2.3 a | 0.5 ± 0.1 a |
| FS | 2.8 ± 1.1 a | 1.8 ± 1.5 a | 2.5 ± 0.4 a | 1.5 ± 0.8 a | 1.8 ± 1.5 a | ||||
| 2-Methylpropanal | 819 | 823 | Chocolate | AF | 0.5 ± 0.1 c | 2.1 ± 0.2 a | 1.5 ± 0.1 ab | 1.3 ± 0.3 abc | 0.9 ± 0.7 bc |
| FS | 2.5 ± 0.3 ab | 3.1 ± 1.3 a | 0.9 ± 0.5 b | 1.5 ± 0.6 ab | 1.1 ± 0 b | ||||
| 2-Methylbutanal | 914 | 872 | Cocoa, chocolate, almond | AF | 8.2 ± 9.9 b | 1.5 ± 1.1 b | 3.7 ± 3.3 b | 65.3 ± 3.3 a | 2.4 ± 0.1 b |
| FS | 3.2 ± 1.3 a | 1.8 ± 1 a | 1.7 ± 0.6 a | 26.3 ± 9.7 a | 1.7 ± 0.2 a | ||||
| 3-Methylbutanal | 918 | 876 | Cocoa, chocolate | AF | 1.4 ± 0.2 b | 1.1 ± 0.3 bc | 1.1 ± 0.2 bc | 2.0 ± 0.1 a | 0.8 ± 0.1 c |
| FS | 1.6 ± 0.8 a | 0.94 ± 0.1 a | 1.4 ± 0.3 a | 0.7 ± 0.3 a | 1.3 ± 0.1 a | ||||
| Benzyl alcohol | 1870 | 1878 | Floral, pink, phenolic | AF | 3.9 ± 1.6 a | 2.7 ± 0.2 a | 4.6 ± 2.7 a | 5.7 ± 2.5 a | 3.2 ± 0.1 a |
| FS | 5.6 ± 1.1 a | 5.1 ± 0.9 a | 5.1 ± 0.6 a | 3.2 ± 1.2 a | 6.4 ± 3.1 a | ||||
| 2-Phenylethanol | 1907 | 1907.8 | Floral, Flowery | AF | 45.0 ± 21. 2a | 65 ± 2.1 a | 23.7 ± 12.6 a | 75.4 ± 54.3 a | 40.6 ± 6.8 a |
| FS | 28.8 ± 13.8 b | 102.9 ± 2.1 a | 19.0 ± 2.7 b | 22.7 ± 8.2 b | 29.0 ± 6.9 b | ||||
| Acetoin | 1285 | 1305 | Creamy, buttery | AF | 30.1 ± 9.6 b | 34.4 ± 11.2 b | 93.1 ± 36.4 a | 57.3 ± 4.9 ab | 33.3 ± 19.2 b |
| FS | 57.4 ± 27.2 bc | 25.6 ± 6.9 c | 99.3 ± 4.3 ab | 116.5 ± 7.6 a | 71.5 ± 22.4 b | ||||
| 2-Acetoxybutan-3-one | 1378 | 1405 | Sweet, creamy, buttery | AF | 1.9 ± 1.3 b | 2.5 ± 1.1 b | 14.4 ± 9.1 a | 6.1 ± 2.1 ab | 1.1 ± 0.7 b |
| FS | 2.7 ± 1.4 c | 1.2 ± 0.9 c | 19.3 ± 0.2 a | 10.4 ± 4.2 b | 3.7 ± 3.1 c | ||||
| Acetophenone | 1647 | 1624 | Flowery, sweet | AF | 5.2 ± 0.4 a | 6.7 ± 1.9 a | 4.8 ± 0.9 a | 4.4 ± 1.3 a | 3.7 ± 1.3 a |
| FS | 4.8 ± 0.1 b | 6.7 ± 1 a | 4.4 ± 0.5 b | 3.4 ± 0.5 b | 3.53 ± 0.5 b | ||||
| 2.3.5-Trimethylpyrazine | 1402 | 1407 | Cocoa, roasted, baked, Peanut, roasted | AF | 2.06 ± 0.7 bc | 1.1 ± 0.5 c | 4.3 ± 1.1 a | 3.5 ± 1.1 ab | 2.2 ± 0.4 bc |
| FS | 2.3 ± 1.1 bc | 1.1 ± 0.6 c | 4.1 ± 0.2 a | 2.7 ± 0.7 ab | 4 ± 0.3 a | ||||
| Tetramethylpyrazine | 1469 | 1468 | Milk coffee, roasted, chocolate | AF | 14.1 ± 5.9 bc | 8.4 ± 6.7 c | 66.2 ± 27.4 a | 53.4 ± 19. 5ab | 18.5 ± 12.2 bc |
| FS | 14.68 ± 7.8 bc | 3.61 ± 2.3 c | 64.8 ± 15.9 ab | 78.47 ± 40.1 a | 60.2 ± 18 ab | ||||
| Cis-linalool oxide | 1444 | 1473.3 | Sweet, floral, earthy, woody | AF | 1.4 ± 0.2 a | 1.05 ± 0 ab | 0.7 ± 0.2 b | 1.3 ± 0.5 ab | 0.6 ± 0.1 b |
| FS | 1.45 ± 0.2 a | 1.2 ± 0.2 ab | 0.63 ± 0 c | 1.2 ± 0.3 ab | 0.8 ± 0.1 bc | ||||
| Linalool | 1547 | 1548.4 | Floral, rose, sweet, green, citrus | AF | 2.4 ± 0.4 a | 2.4 ± 1 a | 0.8 ± 0.5 b | 1.1 ± 0.5 ab | 0.3 ± 0.1 b |
| FS | 2.2 ± 0.2 ab | 3.4 ± 1 a | 0.5 ± 0.1 c | 1.00 ± 0.2 bc | 0.5 ± 0.2 c | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amien, F.G.K.; Koné, M.K.; Kadjo, C.A.; Yao, A.K.; Maraval, I.; Boulanger, R.; Guéhi, S.T. Effect of Agroforestry and Cocoa-Producing Geographical Origin on the Sensory Profile of Beans and Chocolates in the Climate Change Context in Côte d’Ivoire. Foods 2025, 14, 4321. https://doi.org/10.3390/foods14244321
Amien FGK, Koné MK, Kadjo CA, Yao AK, Maraval I, Boulanger R, Guéhi ST. Effect of Agroforestry and Cocoa-Producing Geographical Origin on the Sensory Profile of Beans and Chocolates in the Climate Change Context in Côte d’Ivoire. Foods. 2025; 14(24):4321. https://doi.org/10.3390/foods14244321
Chicago/Turabian StyleAmien, Florent G. Kouamé, Maï Koumba Koné, Christian Adobi Kadjo, Alfred Koffi Yao, Isabelle Maraval, Renaud Boulanger, and Simplice Tagro Guéhi. 2025. "Effect of Agroforestry and Cocoa-Producing Geographical Origin on the Sensory Profile of Beans and Chocolates in the Climate Change Context in Côte d’Ivoire" Foods 14, no. 24: 4321. https://doi.org/10.3390/foods14244321
APA StyleAmien, F. G. K., Koné, M. K., Kadjo, C. A., Yao, A. K., Maraval, I., Boulanger, R., & Guéhi, S. T. (2025). Effect of Agroforestry and Cocoa-Producing Geographical Origin on the Sensory Profile of Beans and Chocolates in the Climate Change Context in Côte d’Ivoire. Foods, 14(24), 4321. https://doi.org/10.3390/foods14244321

