Crosstalk Among Gut Microbiota, Microbial Metabolites, and Inflammatory Cytokines: Current Understanding and Future Directions
Abstract
1. Introduction
2. Gut Microbiota Modulate the Release of Inflammatory Cytokines
3. Microbial Metabolites Modulate the Release of Inflammatory Cytokines
3.1. Short-Chain Fatty Acids (SCFAs)
3.2. Tryptophan Metabolites
3.3. Bile Acids (BAs)
3.4. Polyamines
3.5. Microbe-Associated Molecular Patterns (MAMPs)
4. Inflammatory Cytokines Remodel the Gut Microbiota Composition
5. The Evolutionary Pressure by Antibiotics on the Communication Network
6. Foods Intervene in the Immune-Inflammatory Response by Modulating Inflammatory Cytokines
6.1. Probiotics
6.2. Other Foods
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| IL | Interleukin |
| TNF | Tumor necrosis factor |
| TGF | Transforming growth factor |
| PRRs | Pattern recognition receptors |
| GPR | G protein-coupled receptor |
| AHR | Aryl hydrocarbon receptor |
| HDAC | Histone deacetylase |
| TLR | Toll-like receptor |
| TGR | Takeda G-protein-coupled receptor |
| TPRL | tetratricopeptide repeat lipoprotein |
| TCRs | T-cell receptors |
| FXR | Farnesoid X receptor |
| VDR | Vitamin D receptor |
| SAA | Serum amyloid A |
| SBP | Substrate-binding protein |
| SFB | Segmented filamentous bacteria |
| GPCRs | G protein-coupled receptors |
| IELs | Intraepithelial lymphocytes |
| NKT | Natural killer T |
| DCs | Dendritic cells |
| EPS | Extracellular polysaccharides |
| SCFAs | Short-chain fatty acids |
| BAs | Bile acids |
| DSS | Dextran sulfate sodium |
| LPS | Lipopolysaccharide |
| PD | Parkinson’s disease |
References
- Shutov, E.V.; Bolshakov, S.A.; Makarova, T.A.; Fedoseeva, I.A.; Teplyuk, D.A.; Pavlov, C.S.; Sorokoletov, S.M. Gut Microbiota and Kidney Diseases. Literature review. Nephrol. Dial. 2024, 26, 283–302. [Google Scholar] [CrossRef]
- Rejuba, P. The Gut Microbiome: The Complex Ecosystem within us. Int. J. Sci. Res. Arch. 2023, 10, 329–341. [Google Scholar] [CrossRef]
- Thursby, E.; Juge, N. Introduction to the Human Gut Microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef]
- Feng, X.; Luo, C.; Che, J. Diet Modulates Host Health through Gut Microbiota Derived Extracellular Vesicles: A Short Review. Aceh J. Anim. Sci. 2023, 8, 58–61. [Google Scholar] [CrossRef]
- Zhao, M.; Chu, J.; Feng, S.; Guo, C.; Xue, B.; He, K.; Li, L. Immunological Mechanisms of Inflammatory Diseases Caused by Gut Microbiota Dysbiosis: A Review. Biomed. Pharmacother. 2023, 164, 114985. [Google Scholar] [CrossRef]
- Metwally, H.; Kishimoto, T. Gut Microbiome Metabolites and the Intestinal Homeostasis. J. Clin. Res. Rep. 2024, 15, 01–06. [Google Scholar] [CrossRef]
- Parker, C.T.; Tindall, B.J.; Garrity, G.M. International Code of Nomenclature of Prokaryotes. Int. J. Syst. Evol. Microbiol. 2019, 69, S1–S111. [Google Scholar] [CrossRef]
- Al Bander, Z.; Nitert, M.D.; Mousa, A.; Naderpoor, N. The Gut Microbiota and Inflammation: An Overview. Int. J. Environ. Res. Public Health 2020, 17, 7618. [Google Scholar] [CrossRef]
- Adak, A.; Khan, M.R. An Insight into Gut Gicrobiota and Its Functionalities. Cell. Mol. Life Sci. 2019, 76, 473–493. [Google Scholar] [CrossRef]
- Dogra, S.K.; Dore, J.; Damak, S. Gut Microbiota Resilience: Definition, Link to Health and Strategies for Intervention. Front. Microbiol. 2020, 11, 572921. [Google Scholar] [CrossRef]
- Cristofori, F.; Dargenio, V.N.; Dargenio, C.; Miniello, V.L.; Barone, M.; Francavilla, R. Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body. Front. Immunol. 2021, 12, 578386. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.A.; Hennet, T. Mechanisms and Consequences of Intestinal Dysbiosis. Cell. Mol. Life Sci. 2017, 74, 2959–2977. [Google Scholar] [CrossRef] [PubMed]
- Kostic, A.D.; Xavier, R.J.; Gevers, D. The Microbiome in Inflammatory Bowel Disease: Current Status and the Future Ahead. Gastroenterology 2014, 146, 1489–1499. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation, Metaflammation and Immunometabolic Disorders. Nature 2017, 542, 177–185. [Google Scholar] [CrossRef]
- Malesza, I.J.; Malesza, M.; Walkowiak, J.; Mussin, N.; Walkowiak, D.; Aringazina, R.; Bartkowiak-Wieczorek, J.; Mądry, E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021, 10, 3164. [Google Scholar] [CrossRef]
- Ghosh, S.S.; Wang, J.; Yannie, P.J.; Ghosh, S. Intestinal Barrier Dysfunction, LPS Translocation, and Disease Development. J. Endocr. Soc. 2020, 4, bvz039. [Google Scholar] [CrossRef]
- Di Vincenzo, F.; Del Gaudio, A.; Petito, V.; Lopetuso, L.R.; Scaldaferri, F. Gut microbiota, Intestinal Permeability, and Systemic Inflammation: A Narrative Review. Intern. Emerg. Med. 2024, 19, 275–293. [Google Scholar] [CrossRef]
- Kim, A.J.; Moreau, F.; Gorman, H.; Chadee, K. Colonic Goblet Cells Produce Augmented Levels of Pro-inflammatory Cytokines due to Metabolically Stressful MUC2 Mucin Biosynthesis. FASEB J. 2022, 36, S1.0R878. [Google Scholar] [CrossRef]
- Contreras-Ruiz, L.; Ghosh-Mitra, A.; Shatos, M.A.; Dartt, D.A.; Masli, S. Modulation of Conjunctival Goblet Cell Function by Inflammatory Cytokines. Mediat. Inflamm. 2013, 2013, 636812. [Google Scholar] [CrossRef]
- Khan, I.; Ullah, N.; Zha, L.; Bai, Y.; Khan, A.; Zhao, T.; Che, T.; Zhang, C. Alteration of Gut Microbiota in Inflammatory Bowel Disease (IBD): Cause or Consequence? IBD Treatment Targeting the Gut Microbiome. Pathogens 2019, 8, 126. [Google Scholar] [CrossRef]
- Yang, S.; Yu, M. Role of Goblet Cells in Intestinal Barrier and Mucosal Immunity. J. Inflamm. Res. 2021, 14, 3171–3183. [Google Scholar] [CrossRef]
- Adolph, T.E.; Mayr, L.; Grabherr, F.; Tilg, H. Paneth Cells and their Antimicrobials in Intestinal Immunity. Curr. Pharm. Des. 2018, 24, 1121–1129. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between Microbiota and Immunity in Health and Disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Schirmer, M.; Smeekens, S.P.; Vlamakis, H.; Jaeger, M.; Oosting, M.; Franzosa, E.A.; Horst, R.T.; Jansen, T.; Jacobs, L.; Bonder, M.J.; et al. Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell 2016, 167, 1897. [Google Scholar] [CrossRef]
- Alswat, A.S. The Influence of the Gut Microbiota on Host Health: A Focus on the Gut–Lung Axis and Therapeutic Approaches. Life 2024, 14, 1279. [Google Scholar] [CrossRef]
- Kim, S.; Seo, S.U.; Kweon, M.N. Gut Microbiota-derived Metabolites Tune Host Homeostasis Fate. Semin. Immunopathol. 2024, 46, 2. [Google Scholar] [CrossRef]
- Shim, J.A.; Ryu, J.H.; Jo, Y.; Hong, C. The Role of Gut Microbiota in T cell Immunity and Immune Mediated Disorders. Int. J. Biol. Sci. 2023, 19, 1178–1191. [Google Scholar] [CrossRef]
- Vancamelbeke, M.; Vermeire, S. The Intestinal Barrier: A Fundamental Role in Health and Disease. Expert. Rev. Gastroenterol. Hepatol. 2017, 11, 821–834. [Google Scholar] [CrossRef]
- Mendes, V.; Galvao, I.; Vieira, A.T. Mechanisms by Which the Gut Microbiota Influences Cytokine Production and Modulates Host Inflammatory Responses. J. Interferon Cytokine Res. 2019, 39, 393–409. [Google Scholar] [CrossRef]
- Ullah, H.; Arbab, S.; Tian, Y.; Chen, Y.; Liu, C.Q.; Li, Q.; Li, K. Crosstalk between Gut Microbiota and Host Immune System and Its Response to Traumatic Injury. Front. Immunol. 2024, 15, 1413485. [Google Scholar] [CrossRef]
- Saini, A.; Dalal, P.; Sharma, D. Deciphering the Interdependent Labyrinth between Gut Microbiota and the Immune System. Lett. Appl. Microbiol. 2022, 75, 1122–1135. [Google Scholar] [CrossRef]
- Liu, C.; Chu, D.; Kalantar-Zadeh, K.; George, J.; Young, H.A.; Liu, G. Cytokines: From Clinical Significance to Quantification. Adv. Sci. 2021, 8, e2004433. [Google Scholar] [CrossRef]
- Bamias, G.; Cominelli, F. Cytokines and Intestinal Inflammation. Curr. Opin. Gastroenterol. 2016, 32, 437–442. [Google Scholar] [CrossRef]
- Hu, X.; Yuan, X.; Zhang, G.; Song, H.; Ji, P.; Guo, Y.; Liu, Z.; Tian, Y.; Shen, R.; Wang, D. The Intestinal Macrophage–Intestinal Stem Cell Axis in Inflammatory Bowel Diseases: From Pathogenesis to Therapy. Life Sci. 2024, 344, 122452. [Google Scholar] [CrossRef]
- Dubinsky, M. Targeting Cytokines in Inflammatory Bowel Disease. Gastroenterol. Hepatol. 2023, 19, 550–552. [Google Scholar]
- Li, S.; Li, W.; Wu, X.; Zhang, B.; Liu, L.; Yin, L. Immune Cell-derived Extracellular Vesicles for Precision Therapy of Inflammatory-related Diseases. J. Control. Release 2024, 368, 533–547. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, B.; Wang, T.; Gao, L.; Yang, Z.J.; Wang, F.F.; Shang, H.W.; Hua, R.; Xu, J.D. Biological Characteristics of IL-6 and Related Intestinal Diseases. Int. J. Biol. Sci. 2021, 17, 204–219. [Google Scholar] [CrossRef]
- Jang, D.-I.; Lee, A.-H.; Shin, H.-Y.; Song, H.-R.; Park, J.-H.; Kang, T.-B.; Lee, S.-R.; Yang, S.-H. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef]
- Verstockt, B.; Salas, A.; Sands, B.E.; Abraham, C.; Leibovitzh, H.; Neurath, M.F.; Vande Casteele, N.; Alimentiv Translational Research Consortium (ATRC). IL-12 and IL-23 pathway inhibition in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 433–446. [Google Scholar] [CrossRef]
- Ritzmann, F.; Lunding, L.P.; Bals, R.; Wegmann, M.; Beisswenger, C. IL-17 Cytokines and Chronic Lung Diseases. Cells 2022, 11, 2132. [Google Scholar] [CrossRef]
- Krueger, J.G.; Eyerich, K.; Kuchroo, V.K.; Ritchlin, C.T.; Abreu, M.T.; Elloso, M.M.; Fourie, A.; Fakharzadeh, S.; Sherlock, J.P.; Yang, Y.W.; et al. IL-23 Past, Present, and Future: A Roadmap to Advancing IL-23 Science and Therapy. Front. Immunol. 2024, 15, 1331217. [Google Scholar] [CrossRef]
- Ding, H.; Wang, G.; Yu, Z.; Sun, H.; Wang, L. Role of Interferon-gamma (IFN-gamma) and IFN-gamma Receptor 1/2 (IFNgammaR1/2) in Regulation of Immunity, Infection, and Cancer Development: IFN-gamma-dependent or Independent Pathway. Biomed. Pharmacother. 2022, 155, 113683. [Google Scholar] [CrossRef]
- Deng, Z.; Fan, T.; Xiao, C.; Tian, H.; Zheng, Y.; Li, C.; He, J. TGF-beta Signaling in Health, Disease, and Therapeutics. Signal Transduct. Target. Ther. 2024, 9, 61. [Google Scholar] [CrossRef]
- West, N.R. Coordination of Immune-Stroma Crosstalk by IL-6 Family Cytokines. Front. Immunol. 2019, 10, 1093. [Google Scholar] [CrossRef]
- Hu, B.; Ren, J.; Luo, Y.; Keith, B.; Young, R.M.; Scholler, J.; Zhao, Y.; June, C.H. Augmentation of Antitumor Immunity by Human and Mouse CAR T Cells Secreting IL-18. Cell Rep. 2017, 20, 3025–3033. [Google Scholar] [CrossRef]
- Valeri, M.; Raffatellu, M. Cytokines IL-17 and IL-22 in the Host Response to Infection. Pathog. Dis. 2016, 74, ftw111. [Google Scholar] [CrossRef]
- Maciel-Fiuza, M.F.; Muller, G.C.; Campos, D.M.S.; do Socorro Silva Costa, P.; Peruzzo, J.; Bonamigo, R.R.; Veit, T.; Vianna, F.S.L. Role of Gut Microbiota in Infectious and Inflammatory Diseases. Front. Microbiol. 2023, 14, 1098386. [Google Scholar] [CrossRef]
- Ma, T.; Shen, X.; Shi, X.; Sakandar, H.A.; Quan, K.Y.; Li, Y.L.; Jin, H.; Kwok, L.Y.; Zhang, H.P.; Sun, Z.H. Targeting Gut Microbiota and Metabolism as the Major Probiotic Mechanism-An Evidence-based Review. Trends Food Sci. Technol. 2023, 138, 178–198. [Google Scholar] [CrossRef]
- Marchesi, J.R.; Adams, D.H.; Fava, F.; Hermes, G.D.; Hirschfield, G.M.; Hold, G.; Quraishi, M.N.; Kinross, J.; Smidt, H.; Tuohy, K.M.; et al. The Gut Microbiota and Host Health: A New Clinical Frontier. Gut 2016, 65, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Nikola, L.; Iva, L. Gut Microbiota as a Modulator of Type 1 Diabetes: A Molecular Perspective. Life Sci. 2024, 359, 123187. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Tian, L.M.; Fabi, J.P.; de Vos, P. The Potential of Prebiotics, Probiotics, and Synbiotics for Ameliorating Intestinal Barrier Dysfunction and Modulating Inflammatory Responses as Dietary Supplements in Diabetes Mellitus Management. Food Biosci. 2025, 72, 107539. [Google Scholar] [CrossRef]
- Li, B.Y.; Xu, X.Y.; Gan, R.Y.; Sun, Q.C.; Meng, J.M.; Shang, A.; Mao, Q.Q.; Li, H.B. Targeting Gut Microbiota for the Prevention and Management of Diabetes Mellitus by Dietary Natural Products. Foods 2019, 8, 440. [Google Scholar] [CrossRef]
- Zygmunt, A.E.; Drabczyk, M.; Karoń, K.; Karoń, Ł.M.; Grabowski, W.; Pedrycz, D.; Drapała, G.; Pedrycz, E.; Karoń, S. Gut Microbiota and Insulin Resistance: Mechanisms, Therapeutic Strategies, and Future Directions. J. Educ. Health Sport. 2025, 80, 58309. [Google Scholar] [CrossRef]
- Fliegerova, K.O.; Mahayri, T.M.; Sechovcova, H.; Mekadim, C.; Mrazek, J.; Jarosikova, R.; Dubsky, M.; Fejfarova, V. Diabetes and Gut Microbiome. Front. Microbiol. 2024, 15, 1451054. [Google Scholar] [CrossRef]
- Chen, L.; Chen, R.; Wang, H.; Liang, F. Mechanisms Linking Inflammation to Insulin Resistance. Int. J. Endocrinol. 2015, 2015, 508409. [Google Scholar] [CrossRef]
- Lyv, Z.Y.; Wang, L.J.; Xu, M.X.; Bai, X.F.; Cao, L.J. Association between the Structure of Intestinal Flora and Inflammatory Response in Children with Sepsis: A Prospective Cohort Study. Chin. J. Contemp. Pediatr. 2024, 26, 567–574. [Google Scholar] [CrossRef]
- Chen, X.; Shi, S.; Sun, C.; Li, S. A Study of the Relationship between Inflammatory Immune Function and Intestinal Flora in Adolescent Patients with First-Episode Depression. Actas Esp. Psiquiatr. 2024, 52, 1–9. [Google Scholar]
- Shen, Y.; Fan, N.; Ma, S.X.; Cheng, X.; Yang, X.; Wang, G. Gut Microbiota Dysbiosis: Pathogenesis, Diseases, Prevention, and Therapy. MedComm 2025, 6, e70168. [Google Scholar] [CrossRef]
- Paray, B.A.; Albeshr, M.F.; Jan, A.T.; Rather, I.A. Leaky Gut and Autoimmunity: An Intricate Balance in Individuals Health and the Diseased State. Int. J. Mol. Sci. 2020, 21, 9770. [Google Scholar] [CrossRef]
- Vich Vila, A.; Imhann, F.; Collij, V.; Jankipersadsing, S.A.; Gurry, T.; Mujagic, Z.; Kurilshikov, A.; Bonder, M.J.; Jiang, X.; Tigchelaar, E.F.; et al. Gut microbiota Composition and Functional Changes in Inflammatory Bowel Disease and Irritable Bowel Syndrome. Sci. Transl. Med. 2018, 10, eaap8914. [Google Scholar] [CrossRef]
- Tatiya-Aphiradee, N.; Chatuphonprasert, W.; Jarukamjorn, K. Immune Response and Inflammatory Pathway of Ulcerative Colitis. J. Basic Clin. Physiol. Pharmacol. 2018, 30, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Al-Bayati, L.; Nayeri Fasaei, B.; Merat, S.; Bahonar, A.; Ghoddusi, A. Quantitative Analysis of the Three Gut Microbiota in UC and Non-UC Patients Using Real-time PCR. Microb. Pathog. 2023, 181, 106198. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, S.L.; Li, L.B. Correlation between Intestinal Flora and Serum Inflammatory Factors in Patients with Crohn’s Disease. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 4913–4917. [Google Scholar] [PubMed]
- Zhou, G.; Yang, J. Correlations of Gastrointestinal Hormones with Inflammation and Intestinal Flora in Patients with Gastric Cancer. J. BUON 2019, 24, 1595–1600. [Google Scholar]
- Li, L.; Yan, Q.; Ma, N.; Chen, X.; Li, G.; Liu, M. Analysis of Intestinal Flora and Inflammatory Cytokine Levels in Children with Non-infectious Diarrhea. Transl. Pediatr. 2021, 10, 1340–1345. [Google Scholar] [CrossRef]
- Wang, S.S.; Li, X.H.; Liu, P.; Li, J.; Liu, L. The Relationship between Alzheimer’s Disease and Intestinal Microflora Structure and Inflammatory Factors. Front. Aging Neurosci. 2022, 14, 972982. [Google Scholar] [CrossRef]
- Liu, B.; Ding, Z.; Xiong, J.; Heng, X.; Wang, H.; Chu, W. Gut Microbiota and Inflammatory Cytokine Changes in Patients with Ankylosing Spondylitis. Biomed. Res. Int. 2022, 2022, 1005111. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Wang, J.; Zhang, F. Relationship between Intestinal Flora and Inflammatory Factors in Patients with Nonalcoholic Steatohepatitis. Exp. Ther. Med. 2018, 15, 723–726. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, T.; Yuan, H.; Pan, W.; Dai, Q. Correlations of Inflammatory Factors with Intestinal Flora and Gastrointestinal Incommensurate Symptoms in Children with Asthma. Med. Sci. Monit. 2018, 24, 7975–7979. [Google Scholar] [CrossRef]
- Wang, X.; Peng, J.; Cai, P.; Xia, Y.; Yi, C.; Shang, A.; Akanyibah, F.A.; Mao, F. The Emerging Role of the Gut Microbiota and Its Application in Inflammatory Bowel Disease. Biomed. Pharmacother. 2024, 179, 117302. [Google Scholar] [CrossRef]
- Mahgoup, E.M. Gut Microbiota as a Therapeutic Target for Hypertension: Challenges and Insights for Future Clinical Applications Gut Microbiota and Hypertension Therapy. Curr. Hypertens. Rep. 2025, 27, 14. [Google Scholar] [CrossRef]
- Anwer, E.K.E.; Ajagbe, M.; Sherif, M.; Musaibah, A.S.; Mahmoud, S.; ElBanbi, A.; Abdelnaser, A. Gut Microbiota Secondary Metabolites: Key Roles in GI Tract Cancers and Infectious Diseases. Biomedicines 2025, 13, 100. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Li, Y.; Chen, M.; Xue, L.; Wang, J.; Ding, Y.; Gu, Q.; Zhang, J.; Zhao, H.; Xie, X.; et al. Therapeutic Applications of Gut Microbes in Cardiometabolic Diseases: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2024, 108, 156. [Google Scholar] [CrossRef]
- Atarashi, K.; Suda, W.; Luo, C.; Kawaguchi, T.; Motoo, I.; Narushima, S.; Kiguchi, Y.; Yasuma, K.; Watanabe, E.; Tanoue, T.; et al. Ectopic Colonization of Oral Bacteria in the Intestine Drives T(H)1 Cell Induction and Inflammation. Science 2017, 358, 359–365. [Google Scholar] [CrossRef]
- Verma, R.; Lee, C.; Jeun, E.J.; Yi, J.; Kim, K.S.; Ghosh, A.; Byun, S.; Lee, C.G.; Kang, H.J.; Kim, G.C.; et al. Cell Surface Polysaccharides of Bifidobacterium bifidum Induce the Generation of Foxp3(+) Regulatory T Cells. Sci. Immunol. 2018, 3, eaat6975. [Google Scholar] [CrossRef]
- Hickey, A.; Stamou, P.; Udayan, S.; Ramón-Vázquez, A.; Esteban-Torres, M.; Bottacini, F.; Woznicki, J.A.; Hughes, O.; Melgar, S.; Ventura, M.; et al. Bifidobacterium breve Exopolysaccharide Blocks Dendritic Cell Maturation and Activation of CD4+ T Cells. Front. Microbiol. 2021, 12, 653587. [Google Scholar] [CrossRef]
- Turroni, F.; Serafini, F.; Foroni, E.; Duranti, S.; Motherway, M.O.; Taverniti, V.; Mangifesta, M.; Milani, C.; Viappiani, A.; Roversi, T.; et al. Role of Sortase-dependent Pili of Bifidobacterium bifidum PRL2010 in Modulating Bacterium-host Interactions. Proc. Natl. Acad. Sci. USA 2013, 110, 11151–11156. [Google Scholar] [CrossRef]
- Brown, E.M.; Kenny, D.J.; Xavier, R.J. Gut Microbiota Regulation of T Cells During Inflammation and Autoimmunity. Annu. Rev. Immunol. 2019, 37, 599–624. [Google Scholar] [CrossRef]
- Nagashima, K. Blockbuster T cells in the gut: A High-resolution View of Immune Modulation by the Gut Microbiome Is Presented. Science 2024, 385, 36–37. [Google Scholar] [CrossRef]
- Li, Z.; Xiong, W.; Liang, Z.; Wang, J.; Zeng, Z.; Kolat, D.; Li, X.; Zhou, D.; Xu, X.; Zhao, L. Critical Role of the Gut Microbiota in Immune Responses and Cancer Immunotherapy. J. Hematol. Oncol. 2024, 17, 33. [Google Scholar] [CrossRef]
- Takeuchi, T.; Nakanishi, Y.; Ohno, H. Microbial Metabolites and Gut Immunology. Annu. Rev. Immunol. 2024, 42, 153–178. [Google Scholar] [CrossRef]
- Guzior, D.V.; Quinn, R.A. Review: Microbial Transformations of Human Bile Acids. Microbiome 2021, 9, 140. [Google Scholar] [CrossRef]
- Candelli, M.; Franza, L.; Pignataro, G.; Ojetti, V.; Covino, M.; Piccioni, A.; Gasbarrini, A.; Franceschi, F. Interaction between Lipopolysaccharide and Gut Microbiota in Inflammatory Bowel Diseases. Int. J. Mol. Sci. 2021, 22, 6242. [Google Scholar] [CrossRef]
- Mann, E.R.; Lam, Y.K.; Uhlig, H.H. Short-chain Fatty Acids: Linking Diet, the Microbiome and Immunity. Nat. Rev. Immunol. 2024, 24, 577–595. [Google Scholar] [CrossRef]
- van der Hee, B.; Wells, J.M. Microbial Regulation of Host Physiology by Short-chain Fatty Acids. Trends Microbiol. 2021, 29, 700–712. [Google Scholar] [CrossRef] [PubMed]
- Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; et al. Commensal Microbe-derived Butyrate Induces the Differentiation of Colonic Regulatory T Cells. Nature 2013, 504, 446–450. [Google Scholar] [CrossRef]
- Wu, W.; Sun, M.; Chen, F.; Cao, A.T.; Liu, H.; Zhao, Y.; Huang, X.; Xiao, Y.; Yao, S.; Zhao, Q.; et al. Microbiota Metabolite Short-Chain Fatty Acid Acetate Promotes Intestinal IgA Response to Microbiota Which Is Mediated by GPR43. Mucosal Immunol. 2017, 10, 946–956. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Yu, T.; Huang, X.; Bilotta, A.J.; Xu, L.; Lu, Y.; Sun, J.; Pan, F.; Zhou, J.; Zhang, W.; et al. Intestinal Microbiota-derived Short-chain Fatty Acids Regulation of Immune Cell IL-22 Production and Gut Immunity. Nat. Commun. 2020, 11, 4457. [Google Scholar] [CrossRef]
- Dodd, D.; Spitzer, M.H.; Van Treuren, W.; Merrill, B.D.; Hryckowian, A.J.; Higginbottom, S.K.; Le, A.; Cowan, T.M.; Nolan, G.P.; Fischbach, M.A.; et al. A Gut Bacterial Pathway Metabolizes Aromatic Amino Acids into Nine Circulating Metabolites. Nature 2017, 551, 648–652. [Google Scholar] [CrossRef]
- Roager, H.M.; Licht, T.R. Microbial Tryptophan Catabolites in Health and Disease. Nat. Commun. 2018, 9, 3294. [Google Scholar] [CrossRef]
- Renga, G.; Nunzi, E.; Pariano, M.; Puccetti, M.; Bellet, M.M.; Pieraccini, G.; D’Onofrio, F.; Santarelli, I.; Stincardini, C.; Aversa, F.; et al. Optimizing Therapeutic Outcomes of Immune Checkpoint Blockade by a Microbial Tryptophan Metabolite. J. Immunother. Cancer 2022, 10, e003725. [Google Scholar] [CrossRef] [PubMed]
- Riazati, N.; Kable, M.E.; Newman, J.W.; Adkins, Y.; Freytag, T.; Jiang, X.; Stephensen, C.B. Associations of Microbial and Indoleamine-2,3-dioxygenase-derived Tryptophan Metabolites with Immune Activation in Healthy Adults. Front. Immunol. 2022, 13, 917966. [Google Scholar] [CrossRef]
- Li, X.; Lu, C.; Fan, D.; Lu, X.; Xia, Y.; Zhao, H.; Xu, H.; Zhu, Y.; Li, J.; Liu, H.; et al. Human Umbilical Mesenchymal Stem Cells Display Therapeutic Potential in Rheumatoid Arthritis by Regulating Interactions Between Immunity and Gut Microbiota via the Aryl Hydrocarbon Receptor. Front. Cell Dev. Biol. 2020, 8, 131. [Google Scholar] [CrossRef]
- Liu, M.; Nieuwdorp, M.; de Vos, W.M.; Rampanelli, E. Microbial Tryptophan Metabolism Tunes Host Immunity, Metabolism, and Extraintestinal Disorders. Metabolites 2022, 12, 834. [Google Scholar] [CrossRef]
- Li, K.Y.; Hao, Z.H.; Du, J.Y.; Gao, Y.M.; Yang, S.Y.; Zhou, Y.L. Bacteroides thetaiotaomicron Relieves Colon Inflammation by Activating Aryl Hydrocarbon Receptor and Modulating CD4(+) T Cell Homeostasis. Int. Immunopharmacol. 2021, 90, 107183. [Google Scholar] [CrossRef]
- Dias, I.C.D.; Carabelli, B.; Ishii, D.K.; de Morais, H.; de Carvalho, M.C.; de Souza, L.E.R.; Zanata, S.M.; Brandao, M.L.; Cunha, T.M.; Ferraz, A.C.; et al. Indoleamine-2,3-Dioxygenase/Kynurenine Pathway as a Potential Pharmacological Target to Treat Depression Associated with Diabetes. Mol. Neurobiol. 2016, 53, 6997–7009. [Google Scholar] [CrossRef]
- Perino, A.; Schoonjans, K. Metabolic Messengers: Bile Acids. Nat. Metab. 2022, 4, 416–423. [Google Scholar] [CrossRef]
- Hang, S.; Paik, D.; Yao, L.; Kim, E.; Trinath, J.; Lu, J.; Ha, S.; Nelson, B.N.; Kelly, S.P.; Wu, L.; et al. Bile Acid Metabolites Control T(H)17 and T(reg) Cell Differentiation. Nature 2019, 576, 143–148. [Google Scholar] [CrossRef]
- Jia, W.; Xie, G.; Jia, W. Bile Acid-microbiota Crosstalk in Gastrointestinal Inflammation and Carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 111–128. [Google Scholar] [CrossRef]
- Sanchez-Jimenez, F.; Medina, M.A.; Villalobos-Rueda, L.; Urdiales, J.L. Polyamines in Mammalian Pathophysiology. Cell Mol. Life Sci. 2019, 76, 3987–4008. [Google Scholar] [CrossRef]
- Carriche, G.M.; Almeida, L.; Stuve, P.; Velasquez, L.; Dhillon-LaBrooy, A.; Roy, U.; Lindenberg, M.; Strowig, T.; Plaza-Sirvent, C.; Schmitz, I.; et al. Regulating T-cell Differentiation through the Polyamine Spermidine. J. Allergy Clin. Immunol. 2021, 147, 335–348.e11. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, X.; Escames, G.; Lei, W.; Zhang, X.; Li, M.; Jing, T.; Yao, Y.; Qiu, Z.; Wang, Z.; et al. The NLRP3 Inflammasome: Contributions to Inflammation-related Diseases. Cell. Mol. Biol. Lett. 2023, 28, 51. [Google Scholar] [CrossRef]
- Bai, H.; Zhang, Q. Activation of NLRP3 Inflammasome and Onset of Alzheimer’s Disease. Front. Immunol. 2021, 12, 701282. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Sun, Y.; Zhao, L.; Shi, X. NLRP3 Inflammasome and Its Role in Autoimmune Diseases: A Promising Therapeutic Target. Biomed. Pharmacother. 2024, 175, 116679. [Google Scholar] [CrossRef]
- Kang, S.S.; Sim, J.R.; Yun, C.H.; Han, S.H. Lipoteichoic Acids As a Major Virulence Factor Causing Inflammatory Responses via Toll-like Receptor 2. Arch. Pharm. Res. 2016, 39, 1519–1529. [Google Scholar] [CrossRef]
- Mukherjee, T.; Hovingh, E.S.; Foerster, E.G.; Abdel-Nour, M.; Philpott, D.J.; Girardin, S.E. NOD1 and NOD2 in Inflammation, Immunity and Disease. Arch. Biochem. Biophys. 2019, 670, 69–81. [Google Scholar] [CrossRef]
- Wolf, A.J.; Underhill, D.M. Peptidoglycan Recognition by the Innate Immune System. Nat. Rev. Immunol. 2018, 18, 243–254. [Google Scholar] [CrossRef]
- Wen, M.; Wang, J.; Ou, Z.; Nie, G.; Chen, Y.; Li, M.; Wu, Z.; Xiong, S.; Zhou, H.; Yang, Z.; et al. Bacterial Extracellular Vesicles: A Position Paper by the Microbial Vesicles Task Force of the Chinese Society for Extracellular Vesicles. Interdiscip. Med. 2023, 1, e20230017. [Google Scholar] [CrossRef]
- Shi, Y.; Zheng, Z.; Wang, W.; Hu, H. Harnessing the Therapeutic Potential of Bacterial Extracellular Vesicles via Functional Peptides. Interdiscip. Med. 2025, 3, e20240125. [Google Scholar] [CrossRef]
- Xie, J.H.; Li, Q.Q.; Nie, S.P. Bacterial Extracellular Vesicles: An Emerging Postbiotic. Trends Food Sci. Technol. 2024, 143, 104275. [Google Scholar] [CrossRef]
- Gubatan, J.; Holman, D.R.; Puntasecca, C.J.; Polevoi, D.; Rubin, S.J.S.; Rogalla, S. Antimicrobial Peptides and the Gut Microbiome in Inflammatory Bowel Disease. World J. Gastroent. 2021, 27, 7402–7422. [Google Scholar] [CrossRef]
- Nuding, S.; Frasch, T.; Schaller, M.; Stange, E.F.; Zabel, L.T. Synergistic Effects of Antimicrobial Peptides and Antibiotics against. Antimicrob. Agents Chemother. 2014, 58, 5719–5725. [Google Scholar] [CrossRef]
- Tougaard, P.; Skov, S.; Pedersen, A.E.; Krych, L.; Nielsen, D.S.; Bahl, M.I.; Christensen, E.G.; Licht, T.R.; Poulsen, S.S.; Metzdorff, S.B.; et al. TL1A Regulates TCRγδ+ Intraepithelial Lymphocytes and Gut Microbial Composition. Eur. J. Immunol. 2015, 45, 865–875. [Google Scholar] [CrossRef]
- Le Bourhis, L.; Martin, E.; Péguillet, I.; Guihot, A.; Froux, N.; Coré, M.; Lévy, E.; Dusseaux, M.; Meyssonnier, V.; Premel, V.; et al. Antimicrobial Activity of Mucosal-associated Invariant T Cells. Nat. Immunol. 2010, 11, 701–708. [Google Scholar] [CrossRef]
- Hapil, F.Z.; Wingender, G. The Interaction between Invariant Natural Killer T Cells and the Mucosal Microbiota. Immunology 2018, 155, 164–175. [Google Scholar] [CrossRef]
- Saha, P.; Mell, B.; Golonka, R.M.; Bovilla, V.R.; Abokor, A.A.; Mei, X.; Yeoh, B.S.; Doris, P.A.; Gewirtz, A.T.; Joe, B.; et al. Selective IgA Deficiency in Spontaneously Hypertensive Rats with Gut Dysbiosis. Hypertension 2022, 79, 2239–2249. [Google Scholar] [CrossRef]
- Becattini, S.; Taur, Y.; Pamer, E.G. Antibiotic-Induced Changes in the Intestinal Microbiota and Disease. Trends Mol. Med. 2016, 22, 458–478. [Google Scholar] [CrossRef]
- Kim, S.; Covington, A.; Pamer, E.G. The Intestinal Microbiota: Antibiotics, Colonization Resistance, and Enteric Pathogens. Immunol. Rev. 2017, 279, 90–105. [Google Scholar] [CrossRef]
- Ianiro, G.; Mullish, B.H.; Kelly, C.R.; Kassam, Z.; Kuijper, E.J.; Ng, S.C.; Iqbal, T.H.; Allegretti, J.R.; Bibbò, S.; Sokol, H.; et al. Reorganisation of Faecal Microbiota Transplant Services during the COVID-19 Pandemic. Gut 2020, 69, 1555–1563. [Google Scholar] [CrossRef]
- Duan, H.; Yu, L.L.; Tian, F.W.; Zhai, Q.X.; Fan, L.P.; Chen, W. Antibiotic-induced Gut Dysbiosis and Barrier Disruption and the Potential Protective Strategies. Crit. Rev. Food Sci. Nutr. 2022, 62, 1427–1452. [Google Scholar] [CrossRef]
- Carson, D.; Barry, R.; Hopkins, E.G.D.; Roumeliotis, T.I.; García-Weber, D.; Mullineaux-Sanders, C.; Elinav, E.; Arrieumerlou, C.; Choudhary, J.S.; Frankel, G. Citrobacter Rodentium Induces Rapid and Unique Metabolic and Inflammatory Responses in Mice Suffering from Severe Disease. Cell. Microbiol. 2020, 22, e13126. [Google Scholar] [CrossRef]
- Palleja, A.; Mikkelsen, K.H.; Forslund, S.K.; Kashani, A.; Allinm, K.H.; Nielsen, T.; Hansen, T.H.; Liang, S.S.; Feng, Q.; Zhang, C.C.; et al. Recovery of Gut Microbiota of Healthy Adults following Antibiotic Exposure. Nat. Microbiol. 2018, 3, 1255–1265. [Google Scholar] [CrossRef] [PubMed]
- Korpela, K.; Salonen, A.; Virta, L.J.; Kekkonen, R.A.; Forslund, K.; Bork, P.; de Vos, W.M. Intestinal Microbiome Is Related to Lifetime Antibiotic Use in Finnish Pre-school Children. Nat. Commun. 2016, 7, 10410. [Google Scholar] [CrossRef]
- Halawa, E.M.; Fadel, M.; Al-Rabia, M.W.; Behairy, A.; Nouh, N.A.; Abdo, M.; Olga, R.; Fericean, L.; Atwa, A.M.; El-Nablaway, M.; et al. Antibiotic Action and Resistance: Updated Review of Mechanisms, Spread, Influencing Factors, and Alternative Approaches for Combating Resistance. Front. Pharmacol. 2023, 14, 1305294. [Google Scholar] [CrossRef]
- Ramirez, J.; Guarner, F.; Bustos Fernandez, L.; Maruy, A.; Sdepanian, V.L.; Cohen, H. Antibiotics as Major Disruptors of Gut Microbiota. Front. Cell. Infect. Microbiol. 2020, 10, 572912. [Google Scholar] [CrossRef]
- Dongre, D.S.; Saha, U.B.; Saroj, S.D. Exploring the Role of Gut Microbiota in Antibiotic Resistance and Prevention. Ann. Med. 2025, 57, 2478317. [Google Scholar] [CrossRef]
- Wuethrich, I.; Pelzer, B.W.; Khodamoradi, Y.; Vehreschild, M.J. The Role of the Human Gut Microbiota in Colonization and Infection with Multidrug-resistant Bacteria. Gut Microbes 2021, 13, 1911279. [Google Scholar] [CrossRef]
- Moura de Sousa, J.; Lourenco, M.; Gordo, I. Horizontal Gene Transfer Among Host-associated Microbes. Cell Host Microbe 2023, 31, 513–527. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, J.; Chen, Z.; Chen, N.; Gu, F.; He, Q. Integrated Analysis of the Alterations in Gut Microbiota and Metabolites of Mice Induced After Long-Term Intervention with Different Antibiotics. Front. Microbiol. 2022, 13, 832915. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, X.; Zhang, Y.; Zheng, K.; Xiang, Q.; Chen, N.; Chen, Z.; Zhang, N.; Zhu, J.; He, Q. Antibiotic-Induced Disruption of Gut Microbiota Alters Local Metabolomes and Immune Responses. Front. Cell. Infect. Microbiol. 2019, 9, 99. [Google Scholar] [CrossRef]
- Gao, H.; Shu, Q.; Chen, J.; Fan, K.; Xu, P.; Zhou, Q.; Li, C.; Zheng, H. Antibiotic Exposure Has Sex-Dependent Effects on the Gut Microbiota and Metabolism of Short-Chain Fatty Acids and Amino Acids in Mice. mSystems 2019, 4, 10–1128. [Google Scholar] [CrossRef]
- Wu, Y.; Tang, X.; Hu, F.; Zhu, T.; Liu, H.; Xiong, Y.; Zuo, X.; Xu, A.; Zhuang, X. Long-term Use of Broad-spectrum Antibiotics Affects Ly6C(hi) Monocyte Recruitment and IL-17A and IL-22 Production through the Gut Microbiota in Tumor-bearing Mice Treated with Chemotherapy. Immunol. Res. 2022, 70, 829–843. [Google Scholar] [CrossRef]
- Gao, W.; Liu, X.; Zhang, S.; Wang, J.; Qiu, B.; Shao, J.; Huang, W.; Huang, Y.; Yao, M.; Tang, L.L. Alterations in Gut Microbiota and Inflammatory Cytokines after Administration of Antibiotics in Mice. Microbiol. Spectr. 2024, 12, e0309523. [Google Scholar] [CrossRef]
- Wang, J.; Xiang, Q.; Gu, S.; Gu, Y.; Yao, M.; Huang, W.; Gao, W.; Tang, L.L. Short- and Long-Term Effects of Different Antibiotics on the Gut Microbiota and Cytokines Level in Mice. Infect. Drug Resist. 2022, 15, 6785–6797. [Google Scholar] [CrossRef]
- Si, W.; Zhao, X.; Li, R.; Li, Y.; Ma, C.; Zhao, X.; Bugno, J.; Qin, Y.; Zhang, J.; Liu, H.; et al. Lactobacillus rhamnosus GG Induces STING-dependent IL-10 in Intestinal Monocytes and Alleviates Inflammatory Colitis in Mice. J. Clin. Investig. 2025, 135, e174910. [Google Scholar] [CrossRef]
- Ganguly, N.K.; Bhattacharya, S.K.; Sesikeran, B.; Nair, G.B.; Ramakrishna, B.S.; Sachdev, H.P.S.; Batish, V.K.; Kanagasabapathy, A.S.; Muthuswamy, V.; Kathuria, S.C.; et al. ICMR-DBT Guidelines for Evaluation of Probiotics in Food. Indian J. Med. Res. 2011, 134, 22–25. [Google Scholar]
- Abdollahi, S.; Mehrabian, S.; Pourshafie, M.R.; Rohani, M. The Preventive and Therapeutic Role of Native Probiotic Lactobacillus Species in Controlling Inflammation. Folia Microbiol. 2025, 3, 1–9. [Google Scholar] [CrossRef]
- Jouriani, F.H.; Torkamaneh, M.; Torfeh, M.; Ashrafian, F.; Aghamohammad, S.; Rohani, M. Native Lactobacillus and Bifidobacterium Probiotics Modulate Autophagy Genes and Exert Anti-inflammatory Effect. Sci. Rep. 2025, 15, 25006. [Google Scholar] [CrossRef]
- Mishra, V.H.; Gupta, P.; Khade, A.M.; Deshkar, A.T. Use of Probiotics in Managing Gastrointestinal, Metabolic, and Immune-related Diseases. J. Datta Meghe Inst. Med. Sci. Univ. 2025, 20, 214–217. [Google Scholar] [CrossRef]
- Dicks, L.M.T.; Geldenhuys, J.; Mikkelsen, L.S.; Brandsborg, E.; Marcotte, H. Our Gut Microbiota: A Long Walk to Homeostasis. Benef. Microbes 2018, 9, 3–19. [Google Scholar] [CrossRef]
- Hu, S.L.; Wang, L.; Jiang, Z.Y. Dietary Additive Probiotics Modulation of the Intestinal Microbiota. Protein Pept. Lett. 2017, 24, 382–387. [Google Scholar] [CrossRef]
- Monteagudo-Mera, A.; Rastall, R.A.; Gibson, G.R.; Charalampopoulos, D.; Chatzifragkou, A. Adhesion Mechanisms Mediated by Probiotics and Prebiotics and Their Potential Impact on Human Health. Appl. Microbiol. Biotechnol. 2019, 103, 6463–6472. [Google Scholar] [CrossRef] [PubMed]
- Bu, Z.C.; Xia, Y.J.; Ai, L.Z.; Xiong, Z.Q.; Song, X.; Wang, G.Q. Synthetic Pathway and Functional Study of Short Chain Fatty Acids in Probiotics. Food Ferment. Ind. 2022, 48, 286–291, 302. [Google Scholar]
- da Silva, M.F.; de Lima, M.D.S.F.; Converti, A. Effect of Short-Chain Fatty Acids Produced by Probiotics. In Lactic Acid Bacteria; CRC Press: Boca Raton, FL, USA, 2020; pp. 124–141. [Google Scholar]
- Anjana, A.; Tiwari, S.K. Bacteriocin-Producing Probiotic Lactic Acid Bacteria in Controlling Dysbiosis of the Gut Microbiota. Front. Cell. Infect. Microbiol. 2022, 12, 851140. [Google Scholar] [CrossRef]
- Wang, X.Z.; Zhang, P.; Zhang, X. Probiotics Regulate Gut Microbiota: An Effective Method to Improve Immunity. Molecules 2021, 26, 6076. [Google Scholar] [CrossRef]
- Shvets, Y.; Khranovska, N.; Senchylo, N.; Ostapchenko, D.; Tymoshenko, I.; Onysenko, S.; Kobyliak, N.; Falalyeyeva, T. Microbiota Substances Modulate Dendritic Cells Activity: A Critical View. Heliyon 2024, 10, e27125. [Google Scholar] [CrossRef]
- Zheng, D.Z.; Wang, Z.R.; Sui, L.; Xu, Y.G.; Wang, L.; Qiao, X.Y.; Cui, W.; Jiang, Y.P.; Zhou, H.; Tang, L.J.; et al. Lactobacillus johnsonii Activates Porcine Monocyte Derived Dendritic Cells Maturation to Modulate Th Cellular Immune Response. Cytokine 2021, 144, 155581. [Google Scholar] [CrossRef]
- Mazziotta, C.; Tognon, M.; Martini, F.; Torreggiani, E.; Rotondo, J.C. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 2023, 12, 184. [Google Scholar] [CrossRef]
- Sun, Y.H.; Sun, Z.; Fang, B.; Wang, R.; Liu, Y.; Li, J.Y.; Lan, H.L.; Zhao, W.; Hung, W.L.; Zhang, M. Exploring the Anti-inflammatory Potential of Lacticaseibacillus paracasei Postbiotics: Mechanistic Insights and Functional Components. Food Biosci. 2025, 65, 106105. [Google Scholar] [CrossRef]
- Zhou, L.Y.; Liu, D.Y.; Xie, Y.; Yao, X.J.; Li, Y. Bifidobacterium infantis Induces Protective Colonic PD-L1 and Foxp3 Regulatory T Cells in an Acute Murine Experimental Model of Inflammatory Bowel Disease. Gut Liver 2019, 13, 430–439. [Google Scholar] [CrossRef]
- Wan, C.; Qian, W.W.; Liu, W.; Pi, X.G.; Tang, M.T.; Wang, X.L.; Gu, Q.; Li, P.; Zhou, T. Exopolysaccharide from Lactobacillus rhamnosus ZFM231 alleviates DSS-induced colitis in mice by regulating gut microbiota. J. Sci. Food Agric. 2022, 102, 7087–7097. [Google Scholar] [CrossRef]
- Caviglia, G.P.; Tucci, A.; Pellicano, R.; Fagoonee, S.; Rosso, C.; Abate, M.L.; Olivero, A.; Armandi, A.; Vanni, E.; Saracco, G.M.; et al. Clinical Response and Changes of Cytokines and Zonulin Levels in Patients with Diarrhoea-Predominant Irritable Bowel Syndrome Treated with Bifidobacterium Longum ES1 for 8 or 12 Weeks: A Preliminary Report. J. Clin. Med. 2020, 9, 2353. [Google Scholar] [CrossRef]
- Jiang, S.; Hou, Y.; Meng, L.; Pu, X.; Zhu, X.; Tuo, Y.; Qian, F.; Mu, G. Effect of Lactiplantibacillus plantarum HM-22 on ImmunoRegulation and Intestinal Microbiota in Alpha-lactalbumin-induced Allergic Mice. Food Funct. 2021, 12, 8887–8898. [Google Scholar] [CrossRef] [PubMed]
- Prakoeswa, C.R.S.; Bonita, L.; Karim, A.; Herwanto, N.; Umborowati, M.A.; Setyaningrum, T.; Hidayati, A.N.; Surono, I.S. Beneficial Effect of Lactobacillus plantarum IS-10506 Supplementation in Adults with Atopic Dermatitis: A Randomized Controlled Trial. J. Dermatol. Treat. 2022, 33, 1491–1498. [Google Scholar] [CrossRef]
- Magistrelli, L.; Amoruso, A.; Mogna, L.; Graziano, T.; Cantello, R.; Pane, M.; Comi, C. Probiotics May Have Beneficial Effects in Parkinson’s Disease: In vitro Evidence. Front. Immunol. 2019, 10, 969. [Google Scholar] [CrossRef]
- Visñuk, D.P.; de Giori, G.S.; LeBlanc, J.G.; de LeBlanc, A.D. Neuroprotective Effects Associated with Immune Modulation by Selected Lactic Acid Bacteria in a Parkinson’s Disease Model. Nutrition 2020, 79-80, 110995. [Google Scholar] [CrossRef]
- Hu, T.T.; Fan, Y.; Long, X.Y.; Pan, Y.N.; Mu, J.F.; Tan, F.; Zhao, X. Protective Effect of Lactobacillus plantarum YS3 on Dextran Sulfate Sodium-induced Colitis in C57BL/6J Mice. J. Food Biochem. 2021, 45, e13632. [Google Scholar] [CrossRef]
- Bai, L.; Gao, M.; Cheng, X.; Kang, G.; Cao, X.; Huang, H. Engineered Butyrate-Producing Bacteria Prevents High Fat Diet-induced Obesity in Mice. Microb. Cell Fact. 2020, 19, 94. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, X.; Bai, L.; Gao, M.; Kang, G.; Cao, X.; Huang, H. Positive Interventional Effect of Engineered Butyrate-Producing Bacteria on Metabolic Disorders and Intestinal Flora Disruption in Obese Mice. Microbiol. Spectr. 2022, 10, e0114721. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, N.; Chen, H.; Tang, C.; Wang, J.; Wang, Y.; Zhang, Y.; Guo, H.; Yuan, J. Recent Advances of Engineered Probiotics for Therapeutic Applications. BioDesign Res. 2025, 7, 100039. [Google Scholar] [CrossRef]
- Huang, H.; Yin, H.; Zhang, X. Editorial: Engineering Probiotics for Multiple Interventions on Intestinal Diseases. Front. Cell Infect. Microbiol. 2023, 13, 1138998. [Google Scholar] [CrossRef]
- Gurbatri, C.R.; Arpaia, N.; Danino, T. Engineering Bacteria as Interactive Cancer Therapies. Science 2022, 378, 858–864. [Google Scholar] [CrossRef]
- Praveschotinunt, P.; Duraj-Thatte, A.M.; Gelfat, I.; Bahl, F.; Chou, D.B.; Joshi, N.S. Engineered E. coli Nissle 1917 for the Delivery of Matrix-tethered Therapeutic Domains to the Gut. Nat. Commun. 2019, 10, 5580. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Liu, X.Y.; Zhang, D.; Zhang, Y.D.; Li, Z.H.; Liu, X.; Wu, F.; Chen, G.Q. Construction of a Sustainable 3-hydroxybutyrate-producing Probiotic Escherichia coli for Treatment of Colitis. Cell. Mol. Immunol. 2021, 18, 2344–2357. [Google Scholar] [CrossRef]
- Al-Habsi, N.; Al-Khalili, M.; Haque, S.A.; Elias, M.; Olqi, N.A.; Al Uraimi, T. Health Benefits of Prebiotics, Probiotics, Synbiotics, and Postbiotics. Nutrients 2024, 16, 3955. [Google Scholar] [CrossRef]
- Erhardt, R.; Harnett, J.E.; Steels, E.; Steadman, K.J. Functional Constipation and the Effect of Prebiotics on the Gut Microbiota: A Review. Br. J. Nutr. 2023, 130, 1015–1023. [Google Scholar] [CrossRef]
- Levi, Y.; Novais, G.S.; Dias, R.B.; Andraus, R.A.C.; Messora, M.R.; Neto, H.B.; Ervolino, E.; Santinoni, C.S.; Maia, L.P. Effects of the Prebiotic Mannan Oligosaccharide on the Experimental Periodontitis in Rats. J. Clin. Periodontol. 2018, 45, 1078–1089. [Google Scholar] [CrossRef]
- Xu, X.; Wu, J.; Jin, Y.; Huang, K.; Zhang, Y.; Liang, Z. Both Saccharomyces boulardii and Its Postbiotics Alleviate Dextran Sulfate Sodium-Induced Colitis in Mice, Association with Modulating Inflammation and Intestinal Microbiota. Nutrients 2023, 15, 1484. [Google Scholar] [CrossRef]
- Itoh, T.; Miyazono, D.; Sugata, H.; Mori, C.; Takahata, M. Anti-inflammatory Effects of Heat-killed Lactiplantibacillus argentoratensis BBLB001 on a Gut Inflammation Co-culture Cell Model and Dextran Sulfate Sodium-induced Colitis Mouse Model. Int. Immunopharmacol. 2024, 143, 113408. [Google Scholar] [CrossRef]
- De Marco, S.; Sichetti, M.; Muradyan, D.; Piccioni, M.; Traina, G.; Pagiotti, R.; Pietrella, D. Probiotic Cell-Free Supernatants Exhibited Anti-Inflammatory and Antioxidant Activity on Human Gut Epithelial Cells and Macrophages Stimulated with LPS. Evid. Based Complement. Altern. Med. 2018, 2018, 1756308. [Google Scholar] [CrossRef]
- Zhang, X.F.; Guan, X.X.; Tang, Y.J.; Sun, J.F.; Wang, X.K.; Wang, W.D.; Fan, J.M. Clinical Effects and Gut Microbiota Changes of Using Probiotics, Prebiotics or Synbiotics in Inflammatory Bowel Disease: A Systematic Review and Meta-analysis. Eur. J. Nutr. 2021, 60, 2855–2875. [Google Scholar] [CrossRef]
- Yadegar, A.; Bar-Yoseph, H.; Monaghan, T.M.; Pakpour, S.; Severino, A.; Kuijper, E.J.; Smits, W.K.; Terveer, E.M.; Neupane, S.; Nabavi-Rad, A.; et al. Fecal Microbiota Transplantation: Current Challenges and Future Landscapes. Clin. Microbiol. Rev. 2024, 37, e0006022. [Google Scholar] [CrossRef]
- Belvoncikova, P.; Maronek, M.; Gardlik, R. Gut Dysbiosis and Fecal Microbiota Transplantation in Autoimmune Diseases. Int. J. Mol. Sci. 2022, 23, 10729. [Google Scholar] [CrossRef]


| Inflammatory Cytokines | Major Sources | Main Physiological Functions | Ref. | |
|---|---|---|---|---|
| Pro-inflammatory cytokines | TNF-α | T cells, macrophages, dendritic cells | Inflammatory; tumor necrosis; stimulation of adhesion molecules; activation of the immune system | [38] |
| IL-12 | Dendritic cells | Promote inflammation; promote the differentiation and proliferation of Th1 cells, enhance cellular immune response | [39] | |
| IL-17 | Th17 cells, Treg cells, dendritic cells | Activate the signal cascade reaction; mediate the expression of inflammatory mediators in target cells | [40] | |
| IL-23 | Dendritic cells | Reprogrammed immune cells; induce and maintain a highly pro-inflammatory state | [41] | |
| IFN-γ | T cells (Th1 cells) | Pro-inflammatory; promote Th1 immune response; activate macrophages | [42] | |
| Anti-inflammatory cytokines | IL-10 | Macrophages, dendritic cells, B cells | Anti-inflammatory; inhibit the release of Th1 cells and cytokine IFN-γ; inhibit the production of macrophage cytokines | [32] |
| TGF-β | Dendritic cells | Immunity; regulating cell survival, metabolism, growth, proliferation, differentiation, adhesion, migration and death | [43] | |
| Regulatory cytokines | IL-6 | Dendritic cells, monocytes | Proinflammatory or anti-inflammatory; acute phase response; induction of humoral immune response | [44] |
| IL-18 | Regulatory T cells | Enhance the secretion of Th1 cytokine IFN-γ; | [45] | |
| IL-22 | B cells, type 3 innate lymphocytes | Enhance mucosal barrier repair and maintenance; | [46] | |
| Disease | Changes in the Gut Microbiota | Changes in Inflammatory Cytokines | Ref. |
|---|---|---|---|
| Inflammatory Bowel Disease, IBD | Eubacterium rectale, Faecalibacterium prausnitzii, Roseburia intestinalis ↓ Bacteroides fragilis ↑ | IL-6, TGF-β, IL-17, IL-22 ↑ | [60] |
| Ulcerative colitis, UC | Faecalibacterium prausnitzii, Prevotella, Peptostreptococcus ↓ | TNF-α, IL-1, IL-6, IL-9, IL-13, IL-33 ↑ TGF-β, IL-10, IL-37 ↓ | [61,62] |
| Sepsis | Staphylococcus, Streptococcus, Enterococcus, Haemophilus ↑ Akkermansia, Ruminococcus ↓ | CRP, IL-6, IL-10, TNF-α ↑ | [56] |
| Depression | Bifidobacterium, Escherichia coli, Lactobacillus, Bacteroides ↓ | TNF-α, IL-1β, IL-6 ↑ | [57] |
| Crohn’s disease | Escherichia coli, Enterococcus ↑ Bifidobacteria, Lactobacillus ↓ | IL-1, IL-17, L-22, IL-33 ↑ | [63] |
| Gastric cancer | Bifidobacteria, Lactobacillus, Bacillus or Coccus ↓ | IL-6, IL-17 ↑ | [64] |
| Non-infectious diarrhea | Escherichia coli, Enterococcus ↑ Bifidobacterium, Lactobacillus ↓ | IL-2, IL-8, IL-10, TNF-α ↑ | [65] |
| Alzheimer’s disease, AD | Lactobacillus, Bifidobacterium, Ruminococcus ↓ Escherichia coli, Enterococcus ↑ | TNF-α, IL-6 ↑ | [66] |
| Ankylosing spondylitis | Cyanobacteria, Deinococcota, Patescibacteria, Actinobacteriota, Synergistota ↑ Acidobacteriota, Bdellovibrionota, Campylobacterota, Chloroflexi, Gemmatimonadota, Myxococcota, Nitrospirota, Proteobacteria, Verrucomicrobiota ↓ | IL-23, IL-17, IFN-γ ↑ | [67] |
| Nonalcoholic steatohepatitis | Bifidobacterium, Lactobacillus ↓ Enterobacter, Enterococcus ↑ | IL-10, IL-17 ↑ | [68] |
| Asthma | Bifidobacteria and Lactobacilli ↓ Escherichia coli, Helicobacter pylori, Streptococcus, and Staphylococcus aureus ↑ | CRP, TNF-α, IL-6 ↑ | [69] |
| Experimental Methods | Year | Probiotic Strain | Diseases | Inflammatory Cytokines Changes | Improvements in Clinical Symptoms or Histological Indicators | Ref. |
|---|---|---|---|---|---|---|
| Animal experimentation | 2025 | L. rhamnosus GG | Inflammatory colitis | IL-10 ↑ | Body weight ↑; Alleviated colon shortening; Histological scores ↑ | [135] |
| Animal experimentation | 2019 | B. infantis | Inflammatory bowel disease, IBD | The expression of IL-10 and TGF-β1 ↑ | Body weight ↑; Disease activity index (DAI) and histological damage scores ↓ | [151] |
| Animal experimentation | 2022 | L. rhamnosus ZFM231 | Colitis | TGF-β ↑; TNF-α ↓ | DAI and colon tissue damage ↓; Body weight ↑; | [152] |
| Clinical trial | 2020 | B. Longum ES1 | Irritable bowel syndrome, IBS | IL-6, IL-8 and TNF-α ↓ | Key clinical symptoms and quality of life were significantly improved. | [153] |
| Animal experimentation | 2021 | L. plantarum HM-22 | Be allergic | IL-10, IFN-γ, TGF-β ↑; Total IgE and IL-4 ↓ | Body weight ↑; Abnormal organ indices and colon tissue damage ↓ | [154] |
| Clinical trial | 2022 | L. plantarum IS-10506 | Atopic dermatitis | IL-4 and IL-17 ↓; IFN-γ and Foxp3+ ↑ | Scoring atopic dermatitis index ↓ | [155] |
| In vitro experiment | 2019 | L. salivarius LS01 L. acidophilus | Parkinson’s disease, PD | TNF-α, IL-6, and IL-17A ↓; IL-4 and IL-10 ↑ | Inflammatory cytokines and ROS ↓ | [156] |
| Animal experimentation | 2020 | L. plantarum CRL 2130 S. thermophilus CRL 807 S. thermophilus CRL 808 | Parkinson’s disease, PD | IL-6 and TNF-α ↓; IL-10 ↑ | Effectively improved motor symptoms and neuroinflammation. | [157] |
| Animal experimentation | 2021 | Lactobacillus plantarum YS3 | Ulcerative colitis, UC | IFN-γ, IL-1β, TNF-α, IL-6, IL-12 ↓; IL-10 ↑ | DAI ↓; Alleviated colon shortening. | [158] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, G.; Wang, R.; Wang, Y.; Sun, S.; Chen, J.; Zhang, Q. Crosstalk Among Gut Microbiota, Microbial Metabolites, and Inflammatory Cytokines: Current Understanding and Future Directions. Foods 2025, 14, 3836. https://doi.org/10.3390/foods14223836
Wu G, Wang R, Wang Y, Sun S, Chen J, Zhang Q. Crosstalk Among Gut Microbiota, Microbial Metabolites, and Inflammatory Cytokines: Current Understanding and Future Directions. Foods. 2025; 14(22):3836. https://doi.org/10.3390/foods14223836
Chicago/Turabian StyleWu, Guanglei, Ran Wang, Yicheng Wang, Siyuan Sun, Juan Chen, and Qi Zhang. 2025. "Crosstalk Among Gut Microbiota, Microbial Metabolites, and Inflammatory Cytokines: Current Understanding and Future Directions" Foods 14, no. 22: 3836. https://doi.org/10.3390/foods14223836
APA StyleWu, G., Wang, R., Wang, Y., Sun, S., Chen, J., & Zhang, Q. (2025). Crosstalk Among Gut Microbiota, Microbial Metabolites, and Inflammatory Cytokines: Current Understanding and Future Directions. Foods, 14(22), 3836. https://doi.org/10.3390/foods14223836

