Dietary Plant-Based Protein Supplements: Sources, Processing, Nutritional Value, and Health Benefits
Abstract
1. Introduction
2. Sources of Plant-Based Protein Supplements (PBPSs)
2.1. Legumes (Soybeans, Peas, Lentils, Chickpeas)
2.2. Cereals (Rice, Quinoa, Oats)
2.3. Nuts and Seeds (Hemp, Pumpkin, Almonds, Chia Seeds)
Source | Protein (g/100g) | PDCAAS Score | DIAAS Score | Limiting Amino Acid | Key Micronutrients | Notable Features | Reference |
---|---|---|---|---|---|---|---|
Cereals | |||||||
Wheat | Flour: 8–15%; seitan: 20.93% (db) | 0.45–0.54 | 0.39 | Lysine, isoleucine, leucine, aromatic amino acid, threonine, and valine | Magnesium, molybdenum, zinc, calcium | Increases muscle protein synthesis. Often used in meat imitation products. | [5,35] |
Oats | 45–55.4% (oat protein concentrate) | 0.77 (oat protein concentrate) | 0.44 | Lysine and threonine | Iron, zinc, manganese | Used to attenuate glycemic response of sugar-sweetened beverages. | [36] |
Corn (whole-grain maize) | 13.4% | 0.41–0.50 | 0.38 | Lysine (primarily), also isoleucine, sulfur-containing amino acids, threonine, and tryptophan | Magnesium, zinc, vitamins B1 and B6 | Tends to meet methionine content requirements. | [5,37] |
Barley | 11% | 0.50–0.76 | 0.50 | Lysine | Boron, calcium, copper, iron, potassium, magnesium, manganese, phosphorus, zinc | Barley has a high mean fecal true protein digestibility. | [5,19,38] |
Buckwheat | 5.67% | NA | 0.33–0.56 | Threonine and leucine | Vitamins B1, B2, B5, B6, vitamin C, vitamin E | Rich in lysine. It is gluten-free, making it an alternative for patients with celiac disease. | [38,39] |
Quinoa | 12–23% | 0.75 | 0.68 | - | Vitamin A, vitamins B1, B2, B5, B6, B9, vitamin C, vitamin E | Improved clinical features and metabolism of high-fat diet-induced non-alcoholic fatty liver disease in mice. | [38,40,41] |
Rice | 70–78 (rice protein concentrates or isolates) | 0.50–0.60 | 0.29–0.42 | Brown rice low in lysine | B vitamins, selenium | Easy to digest. Increases muscle mass and strength. Rich in methionine. Rice protein is applied in nanomaterial synthesis. | [42] |
Legumes | |||||||
Faba bean | 20–35% (db) | 0.60–0.67 | 0.77 | Primarily methionine, histidine, and tryptophan | Iron, zinc, folate | Promising protein source. Faba bean protein concentrates and isolate showed positive effects on postprandial glycemia and appetite. | [43,44] |
Soy protein isolate | 88–90 | 0.92 | 0.68–0.97 | Sulfur | Iron, calcium, magnesium | Complete protein, rich in isoflavones. | [42] |
Pea protein concentrate | 20% in flour to 98% in concentrate | 0.72 | 0.82 | Sulfur and tryptophan | Phosphorus, iron, zinc | Hypoallergenic, rich in arginine. | [45] |
Lentils | 27% in flour to 91% in lentil protein concentrate | 0.68–0.80 | 0.75 (whole food) | Primarily methionine, and lysine | Iron, zinc, calcium, magnesium | Highly nutritious legume that can enhance protein intake in food products. | [5] |
Common beans (mung bean, broad bean, kidney bean) | 20–25% | 0.50–0.65 | 0.54–0.61 | Methionine, cysteine, and tryptophan | Iron, folate, magnesium, potassium | Rich source of carbohydrates, protein, energy, vitamins, minerals, and fibers. | [46,47] |
Nuts/seeds | |||||||
Hemp | 50–60 | 0.51 | 0.54 | Lysine | Omega-3, zinc, magnesium | Balanced omega-6:3 ratio. | [45] |
Chia | 35–40 | 0.65 | - | Lysine | Calcium, omega-3, phosphorus | High in fiber and antioxidants. | [41,48,49] |
Almonds | 10–35 | 0.35 | 0.40 | Lysine | Iron, zinc, calcium | Good source of dietary fibers. | [5,50] |
Sesame | 50–60 | 0.42–0.48 | 0.45 | Lysine and methionine | Calcium, magnesium | Good source of healthy fats, antioxidant properties. | [32,33] |
3. Product Forms of Plant-Based Protein Supplements: Ingredients and Formulation
3.1. Powder-Based Formulations
3.2. Liquid-Based Formulations
3.3. Tablet- and Capsule-Based Formulations
3.4. Applications of Plant-Based Protein in Food Systems
Product Form | Nutritional Efficiency Index | Key Advantages | Limitations | Applications | Formulation Challenges and Solution | References |
---|---|---|---|---|---|---|
Protein isolates | P.C: 90–98% D: 92–97% A.R: 30–60 min | -High bioavailability -Reduced antinutrients -Excellent solubility -Minimal matrix interference | -Higher cost -Extensive processing -Potential loss of beneficial compounds | -Sports nutrition -Clinical applications -Therapeutic supplementation | -Solubility optimization via microencapsulation -Off-flavor masking via controlled processing -Oxidation prevention using antioxidant systems | [5,7] |
Protein concentrates | P.C: 70–89% D: 85–92% A.R: 45–90 min | -Cost-effective -Retains beneficial fiber and micronutrients -Good functionality -Moderate processing requirements | -Lower protein density -May contain antinutrients -Variable quality between sources | -General supplementation -Food fortification -Daily nutrition enhancement | -Antinutrient reduction via enzymatic treatment -Quality standardization through controlled processing -Sensory improvement using fermentation | [1,7,13] |
Protein blends | P.C: 75–90% D: 88–94% A.R: 40–80 min | -Complete amino acid profile -Nutritional synergy -Balanced functionality -Cost optimization through strategic combinations | -Complex formulation requirements -Potential ingredient interactions -Quality control challenges across multiple sources | -Comprehensive nutrition -Meal replacement -Balanced supplementation for diverse populations | -Ratio optimization using complementation principles -Compatibility testing for ingredient interactions -Stability maintenance through processing control | [5] |
Beverages | P.C: 10–25% D: 90–95% A.R: 15–45 min | -Immediate bioavailability -Consumption convenience -Rapid gastric emptying -Enhanced hydration benefits | -Protein aggregation during storage -Shorter shelf life -Packaging limitations -Higher cost per protein unit | -Post-workout recovery -On-the-go nutrition -Clinical feeding applications | -Protein stability through pH buffering -Microbial safety via aseptic processing -Separation prevention using natural emulsifiers | [29] |
Protein bars | P.C: 15–30% D: 80–88% A.R: 60–120 min | -Portability -Sustained protein release -Texture variety -Combined macronutrient delivery | -Matrix interference with protein digestion -Moisture migration affecting quality -Binding challenges during processing | -Convenient snacking -Endurance sports -Meal replacement for active lifestyles | -Texture optimization using plasticizers -Moisture control through barrier technologies -Binding efficiency via novel binding agents | [51,56] |
Capsules/tablets | P.C: 60–80% D: 85–93% A.R: varies | -Precise dosing capability -Complete taste masking -Excellent stability -Targeted delivery potential | -Low absolute protein per unit -Dissolution requirements -Swallowing limitations for some populations | -Targeted supplementation -Therapeutic applications -Sensitive populations with taste aversions | -Release kinetics optimization through enteric coatings -Coating integrity via controlled processing -Compression optimization using co-processing techniques | [13,57,58] |
Functional foods | P.C: 5–20% D: 75–85% A.R: 90–180 min | -Seamless dietary integration -Familiar consumption patterns -Enhanced nutritional value of staple foods | -Limited protein contribution per serving -Formulation complexity -Potential sensory impact on food products | -Population-wide nutrition enhancement -Specific demographic targeting -Daily protein fortification | -Matrix compatibility through protein modification -Sensory integration via processing optimization -Stability maintenance using masking technologies | [21,56] |
4. Novel Processing Techniques of Plant-Based Protein Supplements
4.1. Mechanical Processing Technology
4.2. Chemical Modification Technology
4.3. Enzymatic Modification Technology
4.4. Biotechnological Innovations
4.5. Emerging Technologies: AI and 3D Food Printing
5. Properties and Health Benefits of Plant-Based Protein Supplements
5.1. Protein Quality and Nutritional Composition
5.2. Health Benefits of Plant-Based Protein Supplements
Health Domain | Key Benefits | Mechanism/Bioactive | Example Sources | Reference |
---|---|---|---|---|
Cardiovascular Health | ↓ LDL and BP, ↑ Endothelial function | Arginine, polyphenols, low SFA | Soy, Pea, Flax | [81,84] |
Weight Management/ Obesity Prevention | ↑ Satiety, ↓ Energy intake | Fiber, protein, appetite hormones | Pea, Rice, Chia | [81] |
Muscle Health and Protein Synthesis | ↑ Muscle protein synthesis (MPS) | Leucine, complete AA profile | Soy, Rice + Pea Blend | [81] |
Improved Glycemic Control/Type 2 Diabetes | ↓ Fasting glucose, ↑ Insulin sensitivity ↑ Glycemic response | Fiber, polyphenols, DPP-4 inhibition | Lupin, Chickpea, Pea | [85] |
Gut Microbiota Modulation | ↑ SCFA, ↓ Inflammation | Prebiotic fiber, fermentable starches | Chia, Mycoprotein | [85,86] |
Immune Function | ↑ Cytokine modulation, ↓ Oxidative stress | Phycocyanin, isoflavones, lignans | Soy, Flax | [81] |
Hormonal Balance (Women) | ↓ Menopause symptoms, ↑ Bone health | Phytoestrogens (isoflavones) | Soy, Flax | [85] |
Cognitive Support | ↓ Neuroinflammation, ↑ Brain function | Omega-3, vitamin B12, peptides | Chia, Pumpkin | [85] |
Oxidative Stress Reduction | ↓ Oxidative stress due to ↑ antioxidant activity | Antioxidants, phenolic compounds (phenolic acids, flavonoids, ellagitannins) | Hemp | [85] |
Anti-Inflammatory | ↓ Inflammation in type 2 diabetes patients | Polyphenols, flavonoids | Soy, Hemp | [85] |
6. Challenges and Future Perspectives
6.1. Limitations of Plant-Based Proteins Compared to Animal Proteins
6.2. Future Research Directions and Trends in the Plant-Based Protein Industry
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PBPS | Plant-based protein supplement |
LDL | Low-density lipoprotein |
CVD | Cardiovascular disease |
T2D | Type 2 diabetes |
PDCAAS | Protein Digestibility-Corrected Amino Acid Score |
PPI | Pea protein isolate |
DIAAS | Digestible Indispensable Amino Acid Score |
EAI | Emulsifying activity index |
SPI | Soy protein isolate |
References
- Qin, P.; Wang, T.; Luo, Y. A Review on Plant-Based Proteins from Soybean: Health Benefits and Soy Product Development. J. Agric. Food Res. 2022, 7, 100265. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization). The Future of Food and Agriculture—Alternative Pathways to 2050; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; Available online: https://www.fao.org/global-perspectives-studies/fofa/en/ (accessed on 17 September 2025).
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2024: Summary of Results; United Nations: New York, NY, USA, 2024; Available online: https://www.un.org/development/desa/pd/content/world-population-prospects-2024-summary-results-0 (accessed on 17 September 2025).
- Choręziak, A.; Rosiejka, D.; Michałowska, J.; Bogdański, P. Nutritional Quality, Safety and Environmental Benefits of Alternative Protein Sources—An Overview. Nutrients 2025, 17, 1148. [Google Scholar] [CrossRef]
- Hertzler, S.R.; Lieblein-Boff, J.C.; Weiler, M.; Allgeier, C. Plant Proteins: Assessing Their Nutritional Quality and Effects on Health and Physical Function. Nutrients 2020, 12, 3704. [Google Scholar] [CrossRef]
- Can Karaca, A.; Nickerson, M.; Caggia, C.; Randazzo, C.L.; Balange, A.K.; Carrillo, C.; Gallego, M.; Sharifi-Rad, J.; Kamiloglu, S.; Capanoglu, E. Nutritional and Functional Properties of Novel Protein Sources. Food Rev. Int. 2023, 39, 6045–6077. [Google Scholar] [CrossRef]
- Nolden, A.A.; Forde, C.G. The Nutritional Quality of Plant-Based Foods. Sustainability 2023, 15, 3324. [Google Scholar] [CrossRef]
- Langyan, S.; Yadava, P.; Khan, F.N.; Dar, Z.A.; Singh, R.; Kumar, A. Sustaining Protein Nutrition Through Plant-Based Foods. Front. Nutr. 2022, 8, 772573. [Google Scholar] [CrossRef]
- Juárez-Chairez, M.F.; Cid-Gallegos, M.S.; Meza-Márquez, O.G.; Jiménez-Martínez, C. Biological Functions of Peptides from Legumes in Gastrointestinal Health. A Review Legume Peptides with Gastrointestinal Protection. J. Food Biochem. 2022, 46, e14308. [Google Scholar] [CrossRef]
- Liu, T.; Zhen, X.; Lei, H.; Li, J.; Wang, Y.; Gou, D.; Zhao, J. Investigating the Physicochemical Characteristics and Importance of Insoluble Dietary Fiber Extracted from Legumes: An in-Depth Study on Its Biological Functions. Food Chem. X 2024, 22, 101424. [Google Scholar] [CrossRef]
- Lukus, P.K.; Doma, K.M.; Duncan, A.M. The Role of Pulses in Cardiovascular Disease Risk for Adults with Diabetes. Am. J. Lifestyle Med. 2020, 14, 571–584. [Google Scholar] [CrossRef]
- Marcos-Méndez, D.A.; Canseco-Nava, H.; Oliart-Ros, R.M.; Ramírez-Higuera, A. Presence of Antinutritional Factors in Legumes. Rev. Ing. Innov. 2021, 5, 6–13. [Google Scholar] [CrossRef]
- Mohanto, K.; Aye, A.T. An Analysis of Health Risk and Potential Elimination Strategies of Anti-Nutritional Factors in Cereals and Legumes. Asian Food Sci. J. 2024, 23, 44–51. [Google Scholar] [CrossRef]
- Ahmed, H.G.M.-D.; Naeem, M.; Faisal, A.; Fatima, N.; Tariq, S.; Owais, M. Enriching the Content of Proteins and Essential Amino Acids in Legumes. In Legumes Biofortification; Springer International Publishing: Cham, Switzerland, 2023; pp. 417–447. [Google Scholar]
- Kim, I.-S.; Kim, C.-H.; Yang, W.-S. Physiologically Active Molecules and Functional Properties of Soybeans in Human Health—A Current Perspective. Int. J. Mol. Sci. 2021, 22, 4054. [Google Scholar] [CrossRef]
- Kim, I.-S. Current Perspectives on the Beneficial Effects of Soybean Isoflavones and Their Metabolites for Humans. Antioxidants 2021, 10, 1064. [Google Scholar] [CrossRef]
- Auer, J.; Östlund, J.; Nilsson, K.; Johansson, M.; Herneke, A.; Langton, M. Nordic Crops as Alternatives to Soy—An Overview of Nutritional, Sensory, and Functional Properties. Foods 2023, 12, 2607. [Google Scholar] [CrossRef]
- Shen, Y.; Hong, S.; Li, Y. Pea Protein Composition, Functionality, Modification, and Food Applications: A Review. Adv. Food Nutr. Res. 2022, 101, 71–127. [Google Scholar]
- Shaw, K.A.; Zello, G.A.; Rodgers, C.D.; Warkentin, T.D.; Baerwald, A.R.; Chilibeck, P.D. Benefits of a Plant-Based Diet and Considerations for the Athlete. Eur. J. Appl. Physiol. 2022, 122, 1163–1178. [Google Scholar] [CrossRef]
- Pinckaers, P.J.M.; Trommelen, J.; Snijders, T.; van Loon, L.J.C. The Anabolic Response to Plant-Based Protein Ingestion. Sports Med. 2021, 51, 59–74. [Google Scholar] [CrossRef]
- Sharma, K.; Kaur, J.; Kumar, V.; Gupta, A.; Sharma, S.; Bhadariya, V. Nutritional Profile, Bioactives, and Health Benefits of Quinoa, 1st ed.; Apple Academic Press, Ed.; Taylor & Francis Online: Abingdon, UK, 2025; ISBN 9781040385456. [Google Scholar]
- Wang, R.; Wu, X.; Lin, K.; Guo, S.; Hou, Y.; Ma, R.; Wang, Q.; Wang, R. Plasma metabolomics reveals β-glucan improves muscle strength and exercise capacity in athletes. Metabolites 2022, 12, 988. [Google Scholar] [CrossRef]
- Esmaeili, M.; Rafe, A.; Shahidi, S.A.; Ghorbani Hasan-Saraei, A. Functional properties of rice bran protein isolate at different pH levels. Cereal Chem. 2016, 93, 58–63. [Google Scholar] [CrossRef]
- Zhao, M.; Wu, X.; Li, F.; Li, H.; Wu, W. Effect of rice bran rancidity on the structural characteristics and rheological properties of rice bran protein fibril aggregates. Food Hydrocoll. 2023, 144, 108959. [Google Scholar] [CrossRef]
- Mohammadi, A.; Shahidi, S.A.; Rafe, A.; Naghizadeh Raeisi, S.; Ghorbani-HasanSaraei, A. Rheological properties of dairy desserts: Effect of rice bran protein and fat content. J. Food Sci. 2022, 87, 4977–4990. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D.; Diao, Y.; Xu, W.; Wang, G.; Hu, Z.; Hu, C. Effect of rice bran protein on the foaming properties and foaming characteristics of rice bran protein–sodium caseinate and rice bran protein nanoparticles–sodium caseinate. Foods 2024, 13, 2328. [Google Scholar] [CrossRef]
- Malila, Y.; Owolabi, I.O.; Chotanaphuti, T.; Sakdibhornssup, N.; Elliott, C.T.; Visessanguan, W.; Petchkongkaew, A. Current challenges of alternative proteins as future foods. npj Sci. Food 2024, 8, 53. [Google Scholar] [CrossRef]
- Opazo-Navarrete, M.; Burgos-Díaz, C.; Bravo-Reyes, C.; Gajardo-Poblete, I.; Chacón-Fuentes, M.; Reyes, J.E.; Mojica, L. Comprehensive review of plant protein digestibility: Challenges, assessment methods, and improvement strategies. Appl. Sci. 2025, 15, 3538. [Google Scholar] [CrossRef]
- Sawicki, T.; Jabłońska, M.; Danielewicz, A.; Przybyłowicz, K.E. Phenolic Compounds Profile and Antioxidant Capacity of Plant-Based Protein Supplements. Molecules 2024, 29, 2101. [Google Scholar] [CrossRef]
- Massantini, R.; Frangipane, M.T. Progress in almond quality and sensory assessment: An overview. Agriculture 2022, 12, 710. [Google Scholar] [CrossRef]
- Singar, S.; Kadyan, S.; Patoine, C.; Park, G.; Arjmandi, B.; Nagpal, R. The effects of almond consumption on cardiovascular health and gut microbiome: A comprehensive review. Nutrients 2024, 16, 1964. [Google Scholar] [CrossRef]
- Ghorbani, A.; Rafe, A.; Hesarinejad, M.A.; Lorenzo, J.M. Impact of pH on the physicochemical, structural, and techno-functional properties of sesame protein isolate. Food Sci. Nutr. 2025, 13, e4760. [Google Scholar] [CrossRef]
- Gul, O.; Saricaoglu, F.T.; Atalar, I.; Gul, L.B.; Tornuk, F.; Simsek, S. Structural characterization, technofunctional and rheological properties of sesame proteins treated by high-intensity ultrasound. Foods 2023, 12, 1791. [Google Scholar] [CrossRef]
- Rafe, A.; Seddighi, R.; Mousavi, M.; Bastan, E. Dynamic rheological properties of sesame protein dispersions. Legume Sci. 2023, 5, e177. [Google Scholar] [CrossRef]
- Hu, N.; Li, W.; Du, C.; Zhang, Z.; Gao, Y.; Sun, Z.; Yang, L.; Yu, K.; Zhang, Y.; Wang, Z. Predicting Micronutrients of Wheat Using Hyperspectral Imaging. Food Chem. 2021, 343, 128473. [Google Scholar] [CrossRef]
- Immonen, M.; Myllyviita, J.; Sontag-Strohm, T.; Myllärinen, P. Oat Protein Concentrates with Improved Solubility Produced by an Enzyme-Aided Ultrafiltration Extraction Method. Foods 2021, 10, 3050. [Google Scholar] [CrossRef]
- Galani, Y.J.H.; Orfila, C.; Gong, Y.Y. A Review of Micronutrient Deficiencies and Analysis of Maize Contribution to Nutrient Requirements of Women and Children in Eastern and Southern Africa. Crit. Rev. Food Sci. Nutr. 2022, 62, 1568–1591. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Gao, S.; Li, B. Impact of Processing Methods on the In Vitro Protein Digestibility and DIAAS of Various Foods Produced by Millet, Highland Barley and Buckwheat. Foods 2023, 12, 1714. [Google Scholar] [CrossRef] [PubMed]
- Zenkova, M. Bioactivated Buckwheat In Terms Of Its Nutritional Valuebioactivated Buckwheat In Terms Of Its Nutritional Value. Food Sci. Technol. 2021, 15, 4–10. [Google Scholar] [CrossRef]
- Olmos, E.; Roman-Garcia, I.; Reguera, M.; Mestanza, C.; Fernandez-Garcia, N. An Update on the Nutritional Profiles of Quinoa (Chenopodium Quinoa Willd.), Amaranth (Amaranthus Spp.), and Chia (Salvia Hispanica L.), Three Key Species with the Potential to Contribute to Food Security Worldwide. JSFA Rep. 2022, 2, 591–602. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Osman, A.I.; Abdelshafy, A.M.; Mo, J.; Chen, W. Plant-Based Proteins: Advanced Extraction Technologies, Interactions, Physicochemical and Functional Properties, Food and Related Applications, and Health Benefits. Crit. Rev. Food Sci. Nutr. 2025, 65, 667–694. [Google Scholar] [CrossRef]
- Bailey, H.M.; Fanelli, N.S.; Stein, H.H. Effect of Heat Treatment on Protein Quality of Rapeseed Protein Isolate Compared with Non-heated Rapeseed Isolate, Soy and Whey Protein Isolates, and Rice and Pea Protein Concentrates. J. Sci. Food Agric. 2023, 103, 7251–7259. [Google Scholar] [CrossRef]
- Poonia, A.; Vikranta, U.; Chaudhary, N.; Dangi, P. Current and Potential Health Claims of Faba Beans (Vicia Faba, L.) and Its Components. In Faba Bean: Chemistry, Properties and Functionality; Springer International Publishing: Cham, Switzerland, 2022; pp. 331–355. [Google Scholar]
- Itkonen, S.T.; Calvez, J.; Airinei, G.; Chapelais, M.; Khodorova, N.; Sahaka, M.; Benamouzig, R.; Stoddard, F.L.; Simojoki, A.; Pajari, A.-M.; et al. True Ileal Amino Acid Digestibility and Protein Quality of 15N-Labeled Faba Bean in Healthy Humans. J. Nutr. 2024, 154, 1165–1174. [Google Scholar] [CrossRef]
- Axentii, M.; Codină, G.G. Exploring the Nutritional Potential and Functionality of Hemp and Rapeseed Proteins: A Review on Unveiling Anti-Nutritional Factors, Bioactive Compounds, and Functional Attributes. Plants 2024, 13, 1195. [Google Scholar] [CrossRef]
- Cargo-Froom, C.L.; Tansil, F.; Columbus, D.A.; Marinangeli, C.P.F.; Kiarie, E.G.; Shoveller, A.K. Determination of Standardized Ileal Digestibility of Crude Protein and Amino Acids and Digestible Indispensable Amino Acid Score of Faba Beans, Lentils, and Yellow Peas Fed to Growing Pigs. Can. J. Anim. Sci. 2023, 103, 273–281. [Google Scholar] [CrossRef]
- Langyan, S.; Yadava, P.; Khan, F.N.; Bhardwaj, R.; Tripathi, K.; Bhardwaj, V.; Bhardwaj, R.; Gautam, R.K.; Kumar, A. Nutritional and Food Composition Survey of Major Pulses Toward Healthy, Sustainable, and Biofortified Diets. Front. Sustain. Food Syst. 2022, 6, 878269. [Google Scholar] [CrossRef]
- Sá, A.G.A.; Silva, D.C.d.; Pacheco, M.T.B.; Moreno, Y.M.F.; Carciofi, B.A.M. Oilseed By-Products as Plant-Based Protein Sources: Amino Acid Profile and Digestibility. Futur. Foods 2021, 3, 100023. [Google Scholar] [CrossRef]
- Shaghaghian, S.; McClements, D.J.; Khalesi, M.; Garcia-Vaquero, M.; Mirzapour-Kouhdasht, A. Digestibility and Bioavailability of Plant-Based Proteins Intended for Use in Meat Analogues: A Review. Trends Food Sci. Technol. 2022, 129, 646–656. [Google Scholar] [CrossRef]
- Phillips, S.M. Current Concepts and Unresolved Questions in Dietary Protein Requirements and Supplements in Adults. Front. Nutr. 2017, 4, 13. [Google Scholar] [CrossRef]
- Katidi, A.; Xypolitaki, K.; Vlassopoulos, A.; Kapsokefalou, M. Nutritional Quality of Plant-Based Meat and Dairy Imitation Products and Comparison with Animal-Based Counterparts. Nutrients 2023, 15, 401. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Yiu, C.C.-Y.; Wang, Y.; Zhou, W.; Selomulya, C. Toward diverse plant proteins for food innovation. Adv. Sci. 2024, 11, 2408150. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, Y.; Sun, T.; Lu, Y.; Huan, S.; Liu, S.; Li, W.; Li, Z.; Liu, Y.; Rojas, O.J.; et al. Recent advances in plant-based edible emulsion gels for 3D-printed foods. Annu. Rev. Food Sci. Technol. 2025, 16, 63–79. [Google Scholar] [CrossRef]
- Rout, S.; Dash, P.; Panda, P.K.; Yang, P.-C.; Srivastav, P.P. Interaction of dairy and plant proteins for improving the emulsifying and gelation properties in food matrices: A review. Food Sci. Biotechnol. 2024, 33, 3199–3212. [Google Scholar] [CrossRef]
- Sui, X.; Zhang, T.; Zhang, X.; Jiang, L. High-moisture extrusion of plant proteins: Fundamentals of texturization and applications. Annu. Rev. Food Sci. Technol. 2024, 15, 125–149. [Google Scholar] [CrossRef]
- Alasi, S.O.; Sanusi, M.S.; Sunmonu, M.O.; Odewole, M.M.; Adepoju, A.L. Exploring Recent Developments in Novel Technologies and AI Integration for Plant-Based Protein Functionality: A Review. J. Agric. Food Res. 2024, 15, 101036. [Google Scholar] [CrossRef]
- Day, L.; Cakebread, J.A.; Loveday, S.M. Food Proteins from Animals and Plants: Differences in the Nutritional and Functional Properties. Trends Food Sci. Technol. 2022, 119, 428–442. [Google Scholar] [CrossRef]
- Estell, M.; Hughes, J.; Grafenauer, S. Plant Protein and Plant-Based Meat Alternatives: Consumer and Nutrition Professional Attitudes and Perceptions. Sustainability 2021, 13, 1478. [Google Scholar] [CrossRef]
- Eze, C.R.; Kwofie, E.M.; Adewale, P.; Lam, E.; Ngadi, M. Advances in Legume Protein Extraction Technologies: A Review. Innov. Food Sci. Emerg. Technol. 2022, 82, 103199. [Google Scholar] [CrossRef]
- Sánchez-Velázquez, O.A.; Manzanilla-Valdez, M.L.; Wang, Y.; Mondor, M.; Hernández-Álvarez, A.J. Micellar Precipitation and Reverse Micelle Extraction of Plant Proteins. In Green Protein Processing Technologies from Plants; Springer International Publishing: Cham, Switzerland, 2023; pp. 237–263. [Google Scholar]
- Hadidi, M.; Aghababaei, F.; McClements, D.J. Enhanced Alkaline Extraction Techniques for Isolating and Modifying Plant-Based Proteins. Food Hydrocoll. 2023, 145, 109132. [Google Scholar] [CrossRef]
- Wang, R.; Thakur, K.; Feng, J.-Y.; Zhu, Y.-Y.; Zhang, F.; Russo, P.; Spano, G.; Zhang, J.-G.; Wei, Z.-J. Functionalization of Soy Residue (Okara) by Enzymatic Hydrolysis and LAB Fermentation for B2 Bio-Enrichment and Improved in Vitro Digestion. Food Chem. 2022, 387, 132947. [Google Scholar] [CrossRef]
- Wang, H.; Tong, X.; Yuan, Y.; Peng, X.; Zhang, Q.; Zhang, S.; Xie, C.; Zhang, X.; Yan, S.; Xu, J.; et al. Effect of Spray-Drying and Freeze-Drying on the Properties of Soybean Hydrolysates. J. Chem. 2020, 2020, 9201457. [Google Scholar] [CrossRef]
- Teng, T.S.; Chin, Y.L.; Chai, K.F.; Chen, W.N. Fermentation for Future Food Systems. EMBO Rep. 2021, 22, e52680. [Google Scholar] [CrossRef] [PubMed]
- Mulla, M.Z.; Subramanian, P.; Dar, B.N. Functionalization of Legume Proteins Using High Pressure Processing: Effect on Technofunctional Properties and Digestibility of Legume Proteins. LWT 2022, 158, 113106. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, D.; Wang, J.; Yang, Y.; Zhang, L.; Li, J.; Wang, S. Functional Properties and Structural Characteristics of Phosphorylated Pea Protein Isolate. Int. J. Food Sci. Technol. 2020, 55, 2002–2010. [Google Scholar] [CrossRef]
- Zahari, I.; Ferawati, F.; Helstad, A.; Ahlström, C.; Östbring, K.; Rayner, M.; Purhagen, J.K. Development of High-Moisture Meat Analogues with Hemp and Soy Protein Using Extrusion Cooking. Foods 2020, 9, 772. [Google Scholar] [CrossRef]
- Sharma, K.; Nilsuwan, K.; Ma, L.; Benjakul, S. Effect of Liposomal Encapsulation and Ultrasonication on Debittering of Protein Hydrolysate and Plastein from Salmon Frame. Foods 2023, 12, 761. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Nilsuwan, K.; Zhang, B.; Hong, H.; Benjakul, S. Protein Hydrolysate from Salmon Frame Debittered by Plastein Reaction: Amino Acid Composition, Characteristics and Antioxidant Activities. Int. J. Food Sci. Technol. 2022, 58, 154–166. [Google Scholar] [CrossRef]
- Ewy, M.W.; Patel, A.; Abdelmagid, M.G.; Mohamed Elfadil, O.; Bonnes, S.L.; Salonen, B.R.; Hurt, R.T.; Mundi, M.S. Plant-Based Diet: Is It as Good as an Animal-Based Diet When It Comes to Protein? Curr. Nutr. Rep. 2022, 11, 337–346. [Google Scholar] [CrossRef]
- Jang, J.; Lee, D.-W. Advancements in Plant Based Meat Analogs Enhancing Sensory and Nutritional Attributes. npj Sci. Food 2024, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Li, J.; Ding, H.; Zhao, T.; Guo, Z.; Li, Y.; Sun, X.; Wang, F.; Qiu, J. Synergistic Approaches of AI and NMR in Enhancing Food Component Analysis: A Comprehensive Review. Trends Food Sci. Technol. 2025, 156, 104852. [Google Scholar] [CrossRef]
- Goyal, M.K.; Kumar, S.; Gupta, A. AI Innovation for Water Policy and Sustainability; SpringerBriefs in Water Science and Technology; Springer Nature: Cham, Switzerland, 2024; ISBN 978-3-031-72013-0. [Google Scholar]
- Pointke, M.; Pawelzik, E. Plant-Based Alternative Products: Are They Healthy Alternatives? Micro- and Macronutrients and Nutritional Scoring. Nutrients 2022, 14, 601. [Google Scholar] [CrossRef] [PubMed]
- Hevia-Larraín, V.; Gualano, B.; Longobardi, I.; Gil, S.; Fernandes, A.L.; Costa, L.A.R.; Pereira, R.M.R.; Artioli, G.G.; Phillips, S.M.; Roschel, H. High-Protein Plant-Based Diet Versus a Protein-Matched Omnivorous Diet to Support Resistance Training Adaptations: A Comparison Between Habitual Vegans and Omnivores. Sports Med. 2021, 51, 1317–1330. [Google Scholar] [CrossRef]
- Herreman, L.; Nommensen, P.; Pennings, B.; Laus, M.C. Comprehensive Overview of the Quality of Plant- And Animal-sourced Proteins Based on the Digestible Indispensable Amino Acid Score. Food Sci. Nutr. 2020, 8, 5379–5391. [Google Scholar] [CrossRef]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J.C. Protein Content and Amino Acid Composition of Commercially Available Plant-Based Protein Isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef]
- Lima, D.A.S.; Santos, M.M.F.; Duvale, R.L.F.; Bezerra, T.K.A.; Araújo, Í.B.d.S.; Madruga, M.S.; da Silva, F.A.P. Technological Properties of Protein Hydrolysate from the Cutting Byproduct of Serra Spanish Mackerel (Scomberomorus Brasiliensis). J. Food Sci. Technol. 2021, 58, 2952–2962. [Google Scholar] [CrossRef]
- Reynaud, Y.; Buffière, C.; Cohade, B.; Vauris, M.; Liebermann, K.; Hafnaoui, N.; Lopez, M.; Souchon, I.; Dupont, D.; Rémond, D. True Ileal Amino Acid Digestibility and Digestible Indispensable Amino Acid Scores (DIAASs) of Plant-Based Protein Foods. Food Chem. 2021, 338, 128020. [Google Scholar] [CrossRef]
- Lonnie, M.; Laurie, I.; Myers, M.; Horgan, G.; Russell, W.; Johnstone, A. Exploring Health-Promoting Attributes of Plant Proteins as a Functional Ingredient for the Food Sector: A Systematic Review of Human Interventional Studies. Nutrients 2020, 12, 2291. [Google Scholar] [CrossRef]
- De Géa Neves, M.; Poppi, R.J.; Breitkreitz, M.C. Authentication of Plant-Based Protein Powders and Classification of Adulterants as Whey, Soy Protein, and Wheat Using FT-NIR in Tandem with OC-PLS and PLS-DA Models. Food Control 2022, 132, 108489. [Google Scholar] [CrossRef]
- Mohammadhasani, K.; Vahedi Fard, M.; Mottaghi Moghaddam Shahri, A.; Khorasanchi, Z. Polyphenols improve non-alcoholic fatty liver disease via gut microbiota: A comprehensive review. Food Sci. Nutr. 2024, 12, 5341–5356. [Google Scholar] [CrossRef] [PubMed]
- Facchin, S.; Bertin, L.; Bonazzi, E.; Lorenzon, G.; De Barba, C.; Barberio, B.; Zingone, F.; Maniero, D.; Scarpa, M.; Ruffolo, C.; et al. Short-chain fatty acids and human health: From metabolic pathways to current therapeutic implications. Life 2024, 14, 559. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Ferrari, L.; Panaite, S.-A.; Bertazzo, A.; Visioli, F. Animal- and Plant-Based Protein Sources: A Scoping Review of Human Health Outcomes and Environmental Impact. Nutrients 2022, 14, 5115. [Google Scholar] [CrossRef]
- Tomova, A.; Bukovsky, I.; Rembert, E.; Yonas, W.; Alwarith, J.; Barnard, N.D.; Kahleova, H. The Effects of Vegetarian and Vegan Diets on Gut Microbiota. Front. Nutr. 2019, 6, 47. [Google Scholar] [CrossRef]
- Kaur, L.; Mao, B.; Beniwal, A.S.; Abhilasha; Kaur, R.; Chian, F.M.; Singh, J. Alternative Proteins vs Animal Proteins: The Influence of Structure and Processing on Their Gastro-Small Intestinal Digestion. Trends Food Sci. Technol. 2022, 122, 275–286. [Google Scholar] [CrossRef]
- Teixeira, F.J.; Matias, C.N.; Faleiro, J.; Giro, R.; Pires, J.; Figueiredo, H.; Carvalhinho, R.; Monteiro, C.P.; Reis, J.F.; Valamatos, M.J.; et al. A Novel Plant-Based Protein Has Similar Effects Compared to Whey Protein on Body Composition, Strength, Power, and Aerobic Performance in Professional and Semi-Professional Futsal Players. Front. Nutr. 2022, 9, 934438. [Google Scholar] [CrossRef] [PubMed]
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Halpern, B.S.; Frazier, M.; Verstaen, J.; Rayner, P.-E.; Clawson, G.; Blanchard, J.L.; Cottrell, R.S.; Froehlich, H.E.; Gephart, J.A.; Jacobsen, N.S.; et al. The Environmental Footprint of Global Food Production. Nat. Sustain. 2022, 5, 1027–1039. [Google Scholar] [CrossRef]
- Eshel, G.; Shepon, A.; Shaket, T.; Cotler, B.D.; Gilutz, S.; Giddings, D.; Raymo, M.E.; Milo, R. A Model for ‘Sustainable’ US Beef Production. Nat. Ecol. Evol. 2017, 2, 81–85. [Google Scholar] [CrossRef]
- Smetana, S.; Ashtari Larki, N.; Pernutz, C.; Franke, K.; Bindrich, U.; Toepfl, S.; Heinz, V. Structure Design of Insect-Based Meat Analogs with High-Moisture Extrusion. J. Food Eng. 2018, 229, 83–85. [Google Scholar] [CrossRef]
- Lynch, H.; Johnston, C.; Wharton, C. Plant-Based Diets: Considerations for Environmental Impact, Protein Quality, and Exercise Performance. Nutrients 2018, 10, 1841. [Google Scholar] [CrossRef]
- Yang, X.; Jiao, L. Artificial intelligence in the food industry: Innovations and applications. Discover Artif. Intell. 2025, 5, 60. [Google Scholar] [CrossRef]
- Prithviraj, A.; Singh, S.; Kaur, M. Emerging advancements in 3D food printing: A systematic review. Front. Food Sci. Technol. 2025, 2, 1607449. [Google Scholar] [CrossRef]
- Karabulut, G.; Goksen, G.; Khaneghah, A.M. Plant-based protein modification strategies towards challenges. J. Agric. Food Res. 2024, 15, 101017. [Google Scholar] [CrossRef]
Method | Description | Impact on Protein Quality | Applications | Reference |
---|---|---|---|---|
Dry Fractionation | Mechanical separation (air classification) | Retains native structure, low yield | Pea, lentil proteins | [59] |
Wet Extraction | Solubilization + isoelectric precipitation | High yield, requires solvents | Soy, rice, lupin | [59] |
Ultrafiltration | Membrane-based separation | High purity, preserves bioactive | Soy isolate, hydrolyzed blends | [60] |
Enzymatic Hydrolysis | Breaks protein into peptides | ↑ Digestibility, ↑ solubility, ↓ allergenicity | Clinical formulas, infant nutrition | [61] |
Fermentation | Microbial treatment (LAB, fungi) | ↑ Bioavailability, ↓ antinutrients | Algae, soy, seed blends | [62] |
Spray Drying | Converts extract to powder | Shelf-stable, cost-effective | All commercial PBPSs | [63] |
Fortification | Nutrient addition (B12, Iron, Omega-3) | Targeted nutrition | Functional foods, personalized supplements | [64] |
High-Pressure Processing (HPP) | Modifies protein structure via pressure | Maintains nutritional quality, ↑ functionality like gelling and emulsification | Fortified drinks, plant-based yogurts | [65] |
Ultrasound | Disrupts protein structure and improves dispersion | ↑ Solubility ↑ Emulsifying capacity | Soy, oats, rice proteins in emulsion | [61] |
Chemical Modification (E.g., Acylation, Phosphorylation) | Alters functional group of proteins | ↑ Solubility | Limited use due to safety concerns | [66] |
Extrusion | Combines heat, shear, and pressure to form textured proteins | ↑ Palatability | Protein snacks, meat analogs | [67] |
Protein Source | GHG Emissions (kg CO2-eq/kg Protein) | Land Use (m2/kg Protein) | Water Use (L/kg Protein) | Energy Input (MJ/kg Protein) | Nitrogen Use (g N/kg Protein) |
---|---|---|---|---|---|
Plant-Based Proteins | |||||
Soy protein isolate | 2–2.5 | 16–20 | 2500–4000 | 15–25 | 20–35 |
Pea protein isolate | 1.8–2.2 | 15–18 | 2000–3500 | 12–20 | 15–25 |
Rice protein concentrate | 2.5–3 | 18–25 | 3500–5000 | 18–28 | 25–40 |
Hemp protein powder | 1.5–2 | 12–16 | 1800–2800 | 10–18 | 12–20 |
Animal-Based Proteins | |||||
Whey protein isolate | 9–11 | 60–75 | 5000–7500 | 40–60 | 80–120 |
Beef protein (cattle) | 25–35 | 150–200 | 15,000–20,000 | 80–120 | 150–250 |
Egg protein powder | 6–8 | 40–55 | 3500–5000 | 35–50 | 60–90 |
Fish protein (aquaculture) | 5–7 | 35–50 | 4000–6000 | 30–45 | 50–80 |
Ref: [89,90,91,92,93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, K.; Zhang, W.; Rawdkuen, S. Dietary Plant-Based Protein Supplements: Sources, Processing, Nutritional Value, and Health Benefits. Foods 2025, 14, 3259. https://doi.org/10.3390/foods14183259
Sharma K, Zhang W, Rawdkuen S. Dietary Plant-Based Protein Supplements: Sources, Processing, Nutritional Value, and Health Benefits. Foods. 2025; 14(18):3259. https://doi.org/10.3390/foods14183259
Chicago/Turabian StyleSharma, Kartik, Wanli Zhang, and Saroat Rawdkuen. 2025. "Dietary Plant-Based Protein Supplements: Sources, Processing, Nutritional Value, and Health Benefits" Foods 14, no. 18: 3259. https://doi.org/10.3390/foods14183259
APA StyleSharma, K., Zhang, W., & Rawdkuen, S. (2025). Dietary Plant-Based Protein Supplements: Sources, Processing, Nutritional Value, and Health Benefits. Foods, 14(18), 3259. https://doi.org/10.3390/foods14183259